2018

COMPUTER SCIENCE

[Honours]

PAPER -II

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

Answer any two questions:

15 × 2

1. (a) Prove that following is a tautology

$$A \vee (\overline{B \wedge C}) \equiv (A \vee \overline{B}) \vee \overline{C}$$
 5

(Than Over)

(b) Solve the recurrence relation

$$a_r - 3a_{r-1} + 2a_{r-2} = 0$$

satisfying the initial condition

$$a_0 = 1 \text{ and } a_1 = 4$$

(c) Show that

$$\frac{1^2}{1.3} + \frac{2^2}{3.5} + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}$$

- 2. (a) Draw the circuit of two stage R-C coupled amplifier. Explain qualitatively nature of the frequency response characteristic of this amplifier.
 - (b) What is the effect on the space charge wilth at a p-n-Junction when the junction is
 (i) Forward biased and (ii) Reverse-biased.
- 3. (a) Describe the functions of each layers in OSI model.
 - (b) Explain the different types of ARQ techniques

	in Data link layer with advantage and disadvantages.	8
4.	(a) Explain how J-K flip-flop can be used for parallel data transfer.	5
	(b) How does a MOSFET differ from a JFET? Sketch the structure of an n-channel depletion-type MOSFET and briefly explain its working. Draw its circuit symbol. 1 + 4 +	1
	(c) Design a logic circuit to implement binary to excess -3 code converter.	4
	GROUP – B	
	Answer any five questions: 8 ×	5
5.	Using 4 bit parallel binary adder, design a circuit to perform BCD addition. Show different condition with different examples.	8
6.	(a) What is meant by Common-Mode Rejection Ratio (CMRR) of an op-amp?	2
	(b) Explain the concept of virtual ground in	

connection with op-amp. Draw the circuit diagram of a difference amplifier using op-amp and find an expression for the output voltage.

2+4

- 7. (a) Define conjunctive canonical form and disjunctive canonical form. 1+1
 - (b) What is the major restriction while operating a pulse triggered filp-flop?
 - (c) An 8-to-1 Mux has inputs a, b, c connected to the selection inputs. The data inputs d_0 to d_1 are as follows $d_1 = d_2 = d_1 = 0$, $d_3 = d_5 = 1$, $d_0 = d_4 = d$ and $d_6 = d'$. Determine the Boolean expression that mux implements.
- Explain HDLC frame format and how explain the concept of piggybacking used using HDLC frame during transmission.
- Explain different types of switching techniques in brief. Compare and contrast between circuit switching and virtual circuits.

10. Write down the characteristics of zener diode. Describe the phenomenon of zener breakdown.	8
11. Reduce the expression using k-map and implement through minimum universal gates	
$f = \Pi M(2, 7, 9, 10, 11, 12, 14, 15) + d(0, 4, 6, 8)$	8
12. (a) Draw a block diagram of an 8:1 MUX. Design an 8:1 MUX using two 4:1 MUX and one 2:1 MUX.	4
(b) Draw the function	
$F(D, C, B, A) = \Sigma m(0, 5, 7, 9, 10, 11, 13, 15)$	
using 8:1 MUX.	4
GROUP – C	
Answer any five questions: $4 \times$	5
13. What is bit stuffing and de-stuffing explain with example.	4
14. State and prove De Morgan's Law.	4
UG/VCSC/H/II/18 (Turn Ower	. }

15.	What is Router? Differentiate function of	
	Router, Switch and Hub.	4
16.	Using set theory solve the following:	4
	Among the first 500 positiver integers	
	(a) Determine the no of integers which are not divisible by 2, nor by 3, nor by 5.	
	(b) Determine the no of integers which are exactly divisible by one of them.	
17.	Define set and power set with example.	4
18.	Write down the character of tri-state buffer.	4
19.	A combinational circuit is defined by the following three functions:	
8	f(x, y, z) = x'y' + xyz'	
	g(x, y, z) = x' + y and	
	h(x, y, z) = xy + x'y'	
	Design the circuit with a decoder and external	

gates.

20. Fibonacci series can be described as 1, 1, 2, 3,
5, 8, α Formulate a recurrence relation defined on it. Hence solve that Recurrence relation for eliminating recursion using Generating Function.