Total Pages-16 UG/II/CHEM/H/III/18(New)

2018

CHEMISTRY

[Honours]

PAPER -III(A+B)

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

(Organic)

GROUP-A(a)

Answer any one question:

 15×1

1. (a) Isobutene in the presence of H₂SO₄ forms a

(Turn Over)

mixture of two isomeric alkenes C₈H₁₆. Formulate the reaction.

3

(b) What are singlet and triplet carbene? Triplet carbenes add to E or Z alkenes with loss of stereochemical integrity. Explain with an example.

4

(c) Cis-4-hydroxy cyclohexane carboxylic acid is easily lactomized on heating but the transisomer does not. – Explain.

2

(d) Predict the product with mechanism

3

Me

(ii)

<u>H</u>⊕

Me

$$Et - CH = CH - Et + Pr - CH = CH - Pr$$

$$Et \xrightarrow{O} Et \xrightarrow{Pr} \xrightarrow{O} Pr Et \xrightarrow{O} Pr$$

 (a) When the following compound is treated with mixed acid a single product of the molecular formula C₈H₈N₂O₅ is obtained. Identify the compound.

(b) Complete the reaction with mechanism

$$\begin{array}{c|c}
& \text{CH}_3(\text{CH}_2)_4 - \text{ONO} \\
\hline
& \Delta
\end{array}$$
? $\xrightarrow{\text{HI}}$?

UG/II/CHEM/H/III/18(New)

(Turn Over)

3

(c) Predict the favoured position of electrophilic substitution and justify your answer. 3

- (d) R¹ CH = CH COR² + R³MgX ?

 How would the ratio of the products change in this reaction if R² = Et, ⁱPr and ⁱBu?
- (e) Predict the product with plausible mechanism. 2

(f) What happen when benzophenone in ether dissolves sodium metal?

GROUP-A(b)

Answer any two questions:

 10×2

1

3

3. (a) Complete the following reaction sequence 2

$$\begin{array}{c}
\begin{array}{c}
\text{CHO} \\
\text{OH}
\end{array}
\begin{array}{c}
\text{Ac_2O} \\
\text{NaOAc}
\end{array}
\begin{array}{c}
\text{H}_3O^{\oplus}
\end{array}$$

(b) Draw the mechanistic path of the following reaction and name the reaction

$$R-CHO \xrightarrow{Al(OEt)_3} R-COOHCH_2R$$
 2

(c) Convert:

ОН - CHO -? ОН

- (d) p-Toluidine react with benzenediazonium chloride forms a compound which on heating with dil H₂SO₄ gives four products (excluding nitrogen). Write the products with appropriate mechanism.
- 4. (a) Predict the major product and explain the reaction using Cram-model.

(S)-Benzoin
$$(i)$$
 CH₃MgI
 (ii) H₃O ^{\oplus} ? 3

- (b) Draw the stable conformation of the following compound.
 - (i) trans-1, 3-di-tert-butylcyclohexane

- (ii) trans-cyclohexane 1, 3-diol.
- (c) Identify the compound (A) and (B): 2

$$\begin{array}{c}
\text{OMe} \\
& \downarrow \\
\text{COOH} \\
& \downarrow \\
\text{liq NH}_{3}
\end{array}
\begin{array}{c}
\text{H}_{3}\text{O}^{\oplus} \\
\end{array}
\begin{array}{c}
\text{B}
\end{array}$$

(d) Predict the product (s) with plausible mechanism -

CH₃— CH=CH—CHO
$$\frac{(i) \text{ CH}_3 \text{MgI}}{(ii) \text{ H}_2 \text{O}}$$
?
$$\downarrow (i) \text{ CH}_3 \text{MgI in CuCl}$$

$$\downarrow (ii) \text{ H}_2 \text{O}$$
?

- 5. (a) Hoffmann and Lossen rearrangements are mechanistically allied. Justify. 3
 - (b) Write a concerted and step-wise mechanism for conversion of PhCH₂CH₂Br to PhCH = CH₂ using NaOEt in EtOH. How would you establish the actual process taking place?

(c) Predict the product with mechanism

(d) What is ipso substitution?

l

6. Predict the product with mechanism:

$$2\frac{1}{2}\times4$$

$$\begin{array}{c} \text{Me} \\ \text{H} \\ \text{Ph} \end{array} \begin{array}{c} \text{NH}_2 \\ \text{KOH} \end{array} \begin{array}{c} \text{Br}_2 \\ \text{KOH} \end{array} \begin{array}{c} 2 \\ \text{ROH} \end{array}$$

$$(ii) \qquad \qquad C \qquad C \qquad C \qquad OMe \xrightarrow{\Theta} OH$$

(iii)
$$\sim$$
 NH \sim NH \sim COOH $\stackrel{\text{H}^+}{\longrightarrow}$?

$$CH_{2} \xrightarrow{HBr} ?$$

$$H_{2}O_{2} \xrightarrow{HCI} ?$$

GROUP-A(c)

7. Answer any five questions:

 2×5

- (i) Acetals are stable towards alkali but readily hydrolysed in presence of acid. Explain.
- (ii) How can you distinguish the following compounds using chemical reaction?

(iii) What happen when m-bromoanisole is treated with NaNH, and liq.NH,?

(iv) Predict the product

(v) Write down the product obtained for the following reaction

$$\begin{array}{c}
 & \text{Ph} \\
 & \text{CH}_2N_2
\end{array}$$
?

(vi) How can you carry out the following transformation

Me₃C - CH = CH₂
$$\xrightarrow{?}$$
 Me₃C - CH - CH₃

$$\downarrow ?$$
 OH
$$Me_3C - CH_2 - CH_2 - OH$$

(vii) Write down the product and name the reaction

$$COOEt + Me$$
 Me
 $Ether$?

- (viii) Excess diazomethane is used in Arndt Eistert synthesis. Explain.
- (ix) Convert:

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CO}_{2}
\text{H}
\end{array}$$

GROUP - B

GROUP-B(a)

Answer any one question:

 15×1

- (a) Using group displacement law assign the position in periodic Table after releasing of 8α and 6β particle from ²³⁸₉₂U. Write Radioactive disintegration series.
 - (b) Following n/p ratio principle explain nuclear instability of ${}^{14}_{6}$ C ${}^{13}_{7}$ N and ${}^{133}_{53}$ I.

- (c) By radiotracer technique explain redox nonequivalence character of S in $S_2O_3^=$.
- (d) Calculate mass defect and binding energy per nucleon of ⁴₂He. (Given: mass of proton, 1.00728 amu, mass of neutron, 1.00867 amu, 1 amu = 931 Mev)
- (e) Write notes on (any two):

 2×2

3

- (i) Nuclear hazard
- (ii) Spallation
- (iii)Transmutation
- (iv) Nuclear medicine.
- (a) Heating of (NH₄)₂Cr₂O₇ releases N₂. Write down the chemical reaction. Balance the chemical equation using ion-electron method.
 - (b) In acid medium I⁻ is oxidised to iodine $\left(\frac{1}{2}I_2\right)$ by Cu²⁺. Is it appropriate from the following data?

$E^0_{\text{Cu}^{2+}/\text{Cu}^+} = 0.15$	$V; E^0_{(12/1-)} = 0.54 \text{ V. Explain}$	
your answer.		2

- (c) Mention the name of a redox indicator and explain its indicating features during titration.
- (d) Half-Cell E⁰, V

 $Zn^{2+}/Zn - 0.763$

Ag+/Ag +0.799

 $Fe^{2+}/Fe - 0.441$.

Constitute most efficient and least efficient cells. Calculate ΔG for each cell reaction and explain your answer.

- (e) An unit cell of cubic close packed mixed oxide is composed of O²⁻ ion; 1/4th of tetrahedal holes are occupied by A²⁺ ions and the octahedral holes are occupied by B⁺ ions. Calculate the formula of oxide.
- (f) Using symmetry concept define π and σ bonds and qualitatively explain their stability and reactivity.

1

3

3

(g) With the help of metallic bonding concept explain the origin of semiconducting properties. How can you make a semiconductor from an insulator?

GROUP-B(b)

Answer any two questions:

 10×2

- 10. (a) State the difference between radioactive equilibrium and chemical equilibrium.
 - (b) Using redox potential diagram explain the origin of disproportionation reaction. Give example.
 - (c) Following the MO concept explain the magnetic property of O₂. If you add sequentially electron to O₂ how many maximum electrons could be accommodated? Explain the stability of species upon addition of electrons.
 - (d) Calculate radius ratio (r+/r-) range for four coordinated square plannar ionic lattice. 3

11. (a)	Empirical formula of a complex is COCl ₃ , 5NH ₃ . The conductance measurement shows that the complex is 1:2 type conductor and Cl ⁻ analysis by gravimetric method determines two equivalent ion. Draw the structure of the complex and write its IUPAC name.	3
(b)	To an aqueous solution of CuSO ₄ , ethylediamine (en) is added in dropwise and stability of the complex fromation is analysed. Explain the following observation.	
K ₁ ([C	$\text{Cu(en)}(\text{H}_2\text{O})_4]^{2+}$ > $K_2([\text{Cu(en)}_2(\text{H}_2\text{O})_2]^{2+})$ >> $K_3([\text{Cu(en)}_3]^{2+})$	2
(c)	Draw the structure of [Ca(EDTA)] ²⁻ .	1
(d)	How do you determine hardness of water? Mention the name of indicator used in this experiment.	2
(e)	Give examples of (i) perfect complex, (ii) imperfect complex and (iii) inner metallic complex.	2
12. (a)	State basic concepts of Werner's coordination	

theory and mention its limitations.

(b)	Give two experimental evidences of metal -ligand orbital overlap in coordination compound.	2
· (c)	Accounts on the statistical and non-statistical factors influencing the stability of complexes.	3
(d)	Explain following data regarding stability of complexes.	
9 9	Cu(en) ²⁺ (log K ₁ = 11.66), Cu(Pn) ²⁺ (log K ₁ = 10.71), Cu(den) ²⁺ (log K ₁ = 16.02)	
en=NH,	$-CH_2-CH_2-NH_2$; pn=NH ₂ - $CH_2-CH_2-CH_2-N$	H ₂
den = NH	₂ (CH ₂) ₂ NH(CH ₂) ₂ NH ₂	2
13. (a)	Using MO theory explain the cooridnating behaviour of CO with low valent metal ion through C-end although oxygen is more	
	electronegative.	3
(b)	Calculate bond order and hence stability of H_2^+ , H_2^- , He_2 and He_2^+ .	2
(c)	What are CFCs? How are they prepared?	2
(d)	Write note on pseudohalide.	2

(e) What happens when XeO₃ reacts with KI in presence of dil H₂SO₄.

.

GROUP-B(c)

14. Answer any five questions:

 2×5

- (a) In group-14 elements inert-pair effect is shown by Sn²⁺ and Pb²⁺ while other members remain silient.-Explain.
- (b) Reducing activity of hydrides of Group-16 elements increases on descending the group. Explain.
- (c) Boiling of elemental S with Na₂S develops yellow to dark red colour. Explain.
- (d) HF cannot be stored in glass bottle. Explain.
- (e) In group-15 elements phosphorus can form large variety of poly phosphates while other elements show very little trend. Explain.
- (f) Draw the structure of polythionic acids and explain their reducing behaviour.
- (g) What happen when aqueous Na₂CO₃ is saturated with SO₂ in cold condition.