2018

CHEMISTRY

[Honours]

PAPER - I

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Use separate answer scripts for Group-A and Group-B

GROUP - A

(Organic)

Subgroup-A(a)

Answer any one question:

15×1

1. (a) (i) Calculate the double bond equivalent of C_3H_7N and $C_7H_6O_2$.

(ii) Draw the canonical forms of the following compounds and indicate the major contributor:

$$CH_3$$
- CH - O - C_2H_5 and CH_2 - CH = CH - C - CH_3

- (iii) Indicate the symmetry elements present in cis-2-butene and trans-2-butene.
- (iv) Draw the orbital picture of the following compound indicating the hybridization state of the key atoms: $1\frac{1}{2} \times 4$

$$CH_3-CH=C=O$$

(b) Which of the following compounds are aromatic, anti-aromatic or non-aromatic?

Justify.

2

- (c) Compare dipole moments between CH₃CH₂Cl and CH₂=CH-Cl
- (d) Predict R/S configuration of the following compound and state whether it is asymmetric or disymmetric?

- (e) What is primary kinetic isotope effect (PKIE)? Give an example.
- 2. (a) (i) Draw the π-M.O. diagram of 1,3,5
 -hexatriene and indicate the HOMO and
 LUMO at excited state.
 - (ii) Draw the enol tautomer of the following compound and indicate the most stable form with reasons:

$$Ar$$
 CH-CHO, $Ar = Me$ Me Me

(Turn Over)

3

UG/I/CHEM/H/I/18

- (iii) Explain enantiotopic and diastereotopic faces and ligands with examples.
- (b) Which C-N bond (a or b) has higher bond length and why? 1+1

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N

- (c) Compare the basicities of the following compounds with proper explanations:
 Bu₃N, Bu₂NH and BuNH₂ in CCl₄ solution.
- (d) Compare the stabilities of each pair in the following with reasons.

(i)
$$CH_3 \stackrel{\bigoplus}{\sim} O_{O}$$
 and $CH_3 \stackrel{\bigoplus}{\sim} S_{S}$

(ii)
$$Ph \stackrel{\bigcirc}{\longrightarrow} O$$
 and $Ph \stackrel{\bigcirc}{\longrightarrow} S$ $\frac{1}{1} \frac{1}{2} + 1\frac{1}{2}$

(Continued)

(e) Why neo-pentyl bromide can not undergo S_N2 displacement? Explain.

Subgroup-A(b)

Answer any two questions:

 10×2

1

- 3. (a) Draw orbital picture of carbene in sp²
 -singlet, sp²-triplet and sp-triplet states.
 Why dimethoxycarbene fails to add to an alkene?

 2+1
 - (b) Draw the energy profile diagram of 1,
 2-dichloroethane for C-C bond rotation.
 Compare the relative stability of the conformations with explanation.
 - (c) Assign the following pair of compounds as homomer, enantiomer or diastereomer: 1+1

(i)
$$\underset{F}{\overset{Me}{\bigvee}} CI$$
 and $\underset{F}{\overset{H}{\bigvee}} \underset{CI \overset{m}{\bigvee}}{\overset{H}{\bigvee}} Me$

- (d) Draw the preferred conformation of 1-methyl-1-phenyl cyclohexane with proper explanation. 1+1
- 4. (a) Write IUPAC names of

 $\frac{1}{2} \times 4$

- (i) HO₂C-CO₂H
- (ii) (CH₃)₂CHCONH₂
- (iii) CH₃-O-CH(CH₃)₃

O
$$\parallel$$
 (iv) CH-CH-C-O-CH₂-CH₃ Cl

(b) Which mechanism $S_N 1$ and $S_N 2$, is favourable for reactions with each of the following substrates. Explain.

MeO-
$$CH_2$$
-Cl; O_2N - CH_2 Cl, MeO- CH_3 -Cl

(c) Cl[⊖] ion of Bu₄N[⊕]Cl[⊖] in acetone is a better nucleophile than that of LiCl in the same solvent. Explain.

(d) Identify H_A and H_B in each of the following structures as homotopic, enantiotopic or diastereotopic and explain. 1+1+1

- 5. (a) When PhCH₂Br is added to a suspension of KF in C₆H₆ no reaction occurs. However when a catalytic amount of 18-crown-6 ether is added, PhCH₂F can be isolated in high yields. Explain the above observation.
 - (b) Carry out the following transformations: $\begin{array}{ccc}
 1\frac{1}{2} + 1\frac{1}{2} \\
 \end{array}$ (i) Me OH Me C

- (c) What are the necessary structural features for a biphenyl compound to be dissymetric? Explain with a suitable example.
- (d) Draw the preferred conformation of the following compounds: 1+1+1
 - (i) Trans-1, 3-di-tert-butylcyclohexane
 - (ii) cis-cyclohexane-1, 3-diol (iii) 1, 2-difluoroethane.
- 6. (a) Comment on the stereogeneoity and chirotopicity of C-3 of the following compound:

(b) Explain why (S)-3-phenylbutanone loses optical activity in alkali medium.

2

- (c) Why EtSCH₂CH₂Cl reacts with ethanol at a rate many fold faster than EtOCH₂CH₂Cl under similar conditions? Explain.
- (d) (i) Comment on optical activity of trans-1, 2-dimethyl-cyclohexane.
 - (ii) Explain whether the following compounds are resolvable or not: 2+2

Subgroup-A(c)

- 7. Answer any five questions from the following: 2×5
 - (a) Compare acidities of the following two compounds with reason:

(Turn Over)

- (b) What is sacrificial hyperconjugation? Give example.
- (c) Justify whether biphenyl is aromatic or not.
- (d) Arrage the following in order of basicity with reasons:

$$\stackrel{\Theta}{\text{OH}}$$
, $\stackrel{\Theta}{\text{OC}_2}\text{H}_5$, $\text{(CH}_3)_3\text{CO}$, CH_3COO

- (e) Give the product with stereochemistry when hydride ion attacks the Si-face of 2-butanone.
- (f) Write schematically the process of resolution of (\pm) -2-ethylhexanoic acid.
- (g) What is pseudorotation? Give an example.
- (h) Compare boiling point of n-pentane and neo-pentane.
- (i) Draw energy profile diagram for the following reaction:

$$SO_{3}H \xrightarrow{H_{2}S_{2}O_{7}} O \xrightarrow{H_{2}S_{2}O_{7}} O \xrightarrow{SO_{3}H}$$

GROUP - B

(Inorganic)

Ļ		
	Subgroup-B(a)	
	Answer any one question: 15×1	
	(a) What is the origin and physical significance of magnetic quantum number?	
	(b) Determine the ratio of ionisation energy of H atom, He ⁺ ion and Li ²⁺ ion using Bohr's idea.	3
	(c) Comment on the relative ionic radii of O ²⁻ , F ⁻ and Na ⁺ ions.	2
	(d) Explain why the complex forming ability of Group-2 metal ions changes as	3
	$Be^{2+} \rangle Mg^{2+} \rangle Ca^{2+} \rangle Sr^{2+} \rangle Ba^{2+}$	
	(e) State with reason whther there will be any increase or decrease in acidity if:	4
	(i) Anhydrous AlCl ₃ is added to liquid phosgene.	

- (ii) An excess solution of KI is added to HgO.
- (iii) SbF, is added to anhydrous liquid HF.
- (iv) CuSO₄ is added to aqueous solution of (NH₄)₂SO₄.
- 9. (a) Explain the effect of polarising power and polarisability on the properties of ionic compounds.
 - (b) Define Lattice energy of ionic solid. Frame the Born-Haber cycle for the formation of magnesium sulphide ionic solid and calculate the lattice energy of MgS(s) using the following energies (K. calmole⁻¹)

$$\Delta H_f$$
 of MgS(s) = -82.2
 ΔH_s of Mg(s) = +36.5
Heat of atomisation of S_g(s) = +133.2
 $IP_1 + IP_2$ of Mg(g) = +520.6
 $EA_1 + EA_2$ of S(g) = -72.4

(c) Explain why the solvation energy of K⁺ ion is less, than that of F⁻ ion though they have identical ionic radii in KF crystal.

 (d) Find out the radii of first and second Bohr orbits of Be³⁺ ion. (Given radius of H atom is 0.529 Å) 	3
(e) The ionisation energies for Cl ⁻ , Cl and Cl ⁺ are 349, 1251 and 2300 KJ/Mole respectively. Explain the trend.	, 2
Subgroup-B(b)	
Answer any two questions:	×2
10. (a) What is inert-pair effect? Why doe Thallium form iodide only in the +1 oxidation state?	3
(b) Discuss the type of defect observed in the crystal of ZnO when heated? What is the consequence of heating and cooling of ZnO	•
(c) Explain why KHCO ₃ is less soluble water than K ₂ CO ₃ but it is more solub than NaHCO ₃ .	in le
(d) If the energy difference between the ground state and excited state of an atom	nd is

UG/VCHEM/H/I/18

(Turn Over)

	4.4×10^{-19} Joule. What is the wavelength of the photon required to produce this transition?	2
11. (a)	Compare the following pairs with respect to volatility and solubility in organic solvents:	2
at .	(i) KCl and LiCl (ii) TiCl ₂ and TiCl ₄	
(b)	Predict the structure of SF ₄ using Bent's rule.	2
(c)	Find out the critical radius ratio (r_{cation}/r_{anion}) of ZnS lattice using radius ratio rule.	3
(d)	Why NaOH solution is not used as precipitating agent instead of NH ₄ Cl + NH ₄ OH during the precipitation of Fe(OH) ₃ , Al(OH) ₃ and Cr(OH) ₃ .	3
12. (a)	The C-Cl bond distance in CH ₃ Cl and CF ₃ Cl are 1.78 Å and 1.75 Å respectively. Comment on this difference with the help of Bent's rule.	2
UG/I/CHE	M/H/I/18 (Continue	ed)

UG/I/CHEM/H/I/18

	(b)	Predict the direction of the following equilibria:	,
		(i) $2CH_3MgF + HgF_2 \rightleftharpoons (CH_3)_2Hg + 2MgF_2$	
	i I	(ii) $La_2(CO_3)_3 + Bi_2S_3 \rightleftharpoons La_2S_3 + Bi_2(CO_3)_3$	
 	(c)	Why Li can not form super oxide but K, Rb and Cs can form stable super oxides?	2
. !	(d)	Which of the following bond angle is longer and why	3
1 1 1		(i) $H = \widehat{O} - H$ angle in H_2O and H_3O^+	
i		(ii) $F - \hat{I} - F$ angle in IF_2^+ and IF_6^+	
13	. (a)	The F-F bond distance in F ₂ is 141.3 pm. Calculate the Allred-Rochow electronegetivity of fluorine using Slaler's rule.	
	(b)	Berrylium chloride hydrate loses no water over P ₄ O ₁₀ . Explain.	2000 02
	(c)	Solution of Na in liquid ammonia shows electrical conductance but conductivity decreases when solution becomes more concentrated. Explain.	

UG/I/CHEM/H/I/18

(Turn Over)

(d) What are super acids? How the acidity of such solution is measured? Explain with example.

Subgroup-B(c)

Answer any five questions: 2×5

- 14. (a) Find the ground state term symbol for V³⁺ ion.
 - (b) Predict the shapes of CH₃ and CF₃ ions with explanation.
 - (c) MgSO₄ is soluble in water but BaSO₄ is not.— Explain.
 - (d) Atomic radii of Nb and Ta are atmost identical.— Explain.
 - (e) Why Au can form CsAu?
 - (f) The chemistry of Li is 'anamolous' in comparison with Na and K. Justify.
 - (g) Explain the linear symmetrical structure of HF, ion.

- (h) Electron affinity of Cl is greater than F yet F is much stronger oxidant than Cl. Explain.
- State the theory by which the reaction $6\text{CaO} + \text{P}_4\text{O}_{10} \rightarrow 2\text{Ca}_3(\text{PO}_4)_2$ may be regarded as an acid-base reaction.
- (j) Why the shape of s-orbital is spherical?