2015

M.Sc.

1st Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-103

Full Marks ; 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Ordinary Differential Equations and Special Functions)

Answer Q. No. 1 and any three from the rest.

1. Answer any five questions:

5×2

- (a) Define fundamental set of solutions and fundamental matrix for system of differential equation.
- (b) What do you mean INDICIAL equation concerning ODE?
- (c) Write the properties of Sturm Lionvilles problem.
- (d) What do you mean by Wronskian in ODE and state its utility?

(Turn Over)

- (e) Examine that whether infinity is a regular singular point for Bessel's differential equation or not.
- (f) Find all the singularities of the following differential equation and then classify them:

$$\left(z-1\right)\frac{d^2w}{dz^2} + \left(\cot\pi z\right)\frac{dw}{dz} + \left(\cos ec^2\pi z\right)w = 0.$$

(g) Define Green's function of the differential operator L of the non-homogeneous differential equation:

$$Lu(x) = f(x).$$

- 2. (a) Let $w_1(z)$ and $w_2(z)$ be two solutions of $(1-z^2)$ w''(z) 2z $w'(z) + (\sec z)w = 0$ with Wronskian w(z). If $w_1(0) = 1$, $w_1(0) = 0$ and $w(\frac{1}{2}) = \frac{1}{3}$, then find the value of $w_2(z)$ at z = 0.
 - (b) Using Green's function method, solve the following differential equation:

$$y^{IV}(x) = 1$$

subject to boundary conditions

$$y(0) = y'(0) = y''(0) = y'''(1) = 0.$$

3. (a) Discuss the solution procedure for solving the homogeneous vector differential equation in the form

$$\frac{dx}{dt} = Ax$$
, where $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ and $A = (a_{ij})_{n \times n}$

matrix (where the eigen values are real distinct).

6

(b) Prove that :

$$\int_{-1}^{1} P_{m}(z) P_{n}(z) dz = \frac{2}{2n+1} \delta_{mn}$$

where δ_{mn} and $P_n(z)$ are the Knoneker delta and Legendre's polynomial respectively.

4. (a) Find the eigen values and eigen functions of the Storm-Liouville system :

$$\frac{d^2y}{dx^2} + \lambda y = 0, \quad 0 < x < \pi,$$

and the boundary conditions are

$$y(0) = 0, y'(\pi) = 0.$$

- (b) Deduce Rodrigue's formula for Legendre's polynomial.
- (c) Establish the integral representation of confluent hypergeometric function.
- 5. (a) Establish the generating function for Bessel's function $J_n(z)$. Use it, prove the following:

$$ZJ_{n}'(z) = ZJ_{n-1}(z) - n'J_{n}(z).$$
 5

(b) Show that eigen functions of a regular Sturm-Liouville system:

$$\frac{d}{dx}\left\{p(x)\frac{du}{dx}\right\} + \left\{\lambda \ p(x) - q(x)\right\}u = 0,$$

where λ is a parameter, p, ρ and q are real-valued functions of x, p and ρ being positive, having different

eigen values are orthogonal with respect to the weight function p(x).

6. (a) Show that :

$$w(z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{k! (c)_k} z^k$$

where $(a_k) = a(a+1)...(a+k-1)$ etc. is a solution of the hypergeometric equation:

$$z(1-z)\frac{d^2w}{dz^2} + \left\{c - (a+b+1)z\right\}\frac{dw}{dz} - abw = 0. \quad \epsilon$$

(b) Let $P_n(z)$ be the Legendre polynomial of degree n such that $P_n(1) = 1$, n = 1, 2, 3, ...

If
$$\int_{-1}^{1} \left(\sum_{j=1}^{2} \sqrt{j(2j-1)} P_j(z) \right)^2 dz = 20, \text{ then find the value of n.}$$

(Internal Assessment — 10 Marks)