2015

M.Sc.

1st Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-102

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Complex Analysis)

Answer Q. No. 1 and any eight from the rest.

- 1. Answer any four questions: 4×2
 (Write only the appropriate answers by preparing a table.

 Do the rough works after the table.)
 - (i) The square roots of (5-12i) are
 - (ii) All the points of discontinuity of the function $f(Z) = \frac{\tanh Z}{Z^2 + 1}$ are

- (iii) Is the function $u = 2xy + 3xy^2 2y^3$ harmonic?
- (iv) The principal value of $(-1)^{\log(1+i)}$ is
- (v) Res f(z) at z = 0 where

$$f(z) = \frac{z-3}{z^2} \sin \frac{1}{1-z}$$
 is

- (vi) The value of $\oint \frac{\cos^2 tz}{z^3} dz$ where c is the circle |z|= 1 and t > 0, is
- 2. Determine the analytic function f(z) = u + iv where $u + v = e^{x}(\cos y + \sin y)$.
- 3. If a function f(z) is continuous on a contour c of length l and if M be the upper bound of |f(z)| on c, then prove that:

$$\left| \int_{C} f(z) dz \right| \leq Ml.$$

- 4. Find the singular points of the following function, if any, $f(z) = z \cdot |z|$. Justify.
- 5. Find the Laurent series that represent the function $\frac{1}{z^3-5z^2+8z-4}$ in the following domains (i) 0 < |z-1| < 1 and (ii) 0 < |z-2| < 1.

- 6. Find the residue of $\frac{1}{z^3-5z^2+8z-4}$ at its poles inside c: |z| = 3 and hence evaluate $\int_{c}^{1} \frac{1}{z^3-5z^2+8z-4} dz$, in counter clockwise sense.
- 7. Using the method of residues, evaluate (no marks will be awarded if method of residues is not used):

$$\int_{-\infty}^{\infty} \frac{\mathrm{dx}}{\left(x^2 + 4\right)^3} \,. \tag{4}$$

8. Using the method of residues, evaluate (no marks will be awarded if method of residues is not used):

$$\int_{0}^{2\pi} \frac{1+\sin\theta}{2+\cos\theta} d\theta$$

9. Evaluate the integral $\int_{c}^{\frac{\sinh \pi z}{(z-1)(z^2+1)}} dz$ where c is the

simple closed contour
$$|z-1-i| = \frac{5}{2}$$
, in counter clockwise sense.

10. Show that the bilinear transformation $w = \frac{az+b}{cz+d}$ transforms the circle

$$\arg\left(\frac{z-z_1}{z-z_2}\right) = \lambda$$

into similar circle $\arg\left(\frac{w-w_1}{w-w_2}\right) = constant$ where w_1 and w_2 correspond to z_1 and z_2 , respectively.

11. Prove that the poles of an analytic function are isolated.Let f(z) = u + iv be analytic in a region.Show that:

$$\frac{\partial(\mathbf{u},\mathbf{v})}{\partial(\mathbf{x},\mathbf{y})} = \left| \mathbf{f}'(\mathbf{z}) \right|^2$$

12. Use Rouche's theorem to find the number of zero of $z^{10} + a_1 z^4 + a_2 z^3 + a_3 z^2 + a_4 z + a_5 = 0$ in |z| = 1 if $|a_1| > |a_2| + |a_3| + |a_4| + |a_5| + 1$.

13. Find the Möbius transformation that maps the points $z_1 = \infty$, $z_2 = i$ and $z_3 = 0$ into the points $w_1 = 0$, $w_2 = i$ and $w_3 = \infty$, respectively.

(Internal Assessment — 10 Marks)