2015

M.Sc.

1st Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-101

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Real Analysis)

Answer Q. No. 1 and any four from Q. No. 2 to Q. No. 7.

1. Answer any four questions:

- 4×2
- (a) Which of the following are connected?

(i)
$$\{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$$

(ii)
$$\{(x,y) \in \mathbb{R}^2 : x \in \mathbb{R} \text{ and } y \notin \mathbb{R}\}$$

Justify your answer.

- (b) Show that any function from a discrete metric space into a metric space is continuous.
- (c) Let I be an interval of \mathbb{R} having at least two distinct points. Show that I is not a null set.
- (d) Let $f:[a, b] \to \mathbb{R}$ be bounded on [a, b] and α be strictly monotonically increasing on [a, b]. Then show that

$$\int_{a}^{b} \int_{a}^{b} f d\alpha$$
 and $\int_{a}^{b} f d\alpha$ exists.

- (e) Define the following with example:
 - (i) Null sets;
 - (ii) Separable metric space.
- 2. (a) Show that the open interval (2, 3) of \mathbb{R} is not a compact subset of \mathbb{R} (without using Heine-Borel theorem).
 - (b) Show that every path-connected metric space is connected. Is the converse true?
- (a) Establish necessary and sufficient conditions for a function f: [a, b] → R to be a function of bounded variation on [a, b].
 - (b) Define variation function. Hence find the variation function for the function: $f(x) = [x] - x, x \in [1, 3].$

- 4. (a) Define the following: Measurable sets and Measurable functions. Cantor set, Lebesgne integral for unbounded function.
 - (b) Let μ be a positive measure on a σ -algebra m.

Then show that $\mu(A_n) \rightarrow \mu(A)$ as $n \rightarrow \infty$ if $A = \bigcup_{n=1}^{\infty} A_n$,

 $A_n \in m$, and $A_1 \subset A_2 \subset A_3 \subset \dots$

5. (a) If $f_1 \in R(\alpha)$ and $f_2 \in R(\alpha)$ on [a, b], then show that $f_1 + f_2 \in R(\alpha)$ and

 $\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$ 5

(b) Evaluate the R-S integral:

 $\int_{2}^{5} (5x^{5} + 7e^{5x} - 4x^{3} + 3x + 2)d(3[x] + 1).$

6. (a) Let f be a bounded function and Lebesgue integrable on [a, b]. Also, let g be a bounded function on [a, b] such that f(x) = g(x) a.e. on [a, b]. Then show that g is also Lebesgue integrable on [a, b] and

 $\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx.$

3

(b) Let f(x) be defined on [0, 1] where

$$f(x) = \begin{cases} \frac{1}{3}, & 0 < x < 1 \\ x^{\frac{3}{4}}, & 0 < x < 0 \end{cases}$$

Check whether f is Lebesgue integrable on [0, 1]. If it is Lebesgue integrable, then find the value of the integral.

(Internal Assessment - 10 Marks)