2015

M.Sc.

3rd Semester Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-303

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Special Paper

(Dynamical Oceanology and Meteorology/ Operational Research)

(For the students of OM Special)

Operational Research

Answer Q. No. 1 and any two from the rest.

- 1. Answer any four questions of the following: 4×2
 - (i) What is the difference between local and global optima?

(Turn Over)

- (ii) What do you mean by uni-modal function?
- (iii) Write the Kuhn-Tucker conditions for the following problem:

Maximize
$$Z = 5 + 8x_1 + 12x_2 - 4x_1^2 - 4x_2^2 - 4x_3^2$$

Subject to $x_1 + x_2 \le 1$
 $2x_1 + 3x_2 \le 6$

- (iv) Define convex function.
- (v) State the Bellman's principle of optimality.
- (vi) What do you understand by the term Post-optimality analysis'?
- 2. (a) Solve by Dynamic Programming Technique:

Maximize
$$Z = y_1 + y_2 + ... + y_n$$

Subject to $y_1, y_2, ..., y_n = b$
 $y_1, y_2, ..., y_n \ge 0.$

(b) Describe Gomory's mixed integer programming algorithm to find the integer solution.

3. (a) Find the range of the cost component c_i of the LPP:

LPP Maximize
$$Z = \sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{ll} \sum\limits_{j=1}^{n}a_{ij}x_{j}\leq b_{i} & (i=1....m)\\ \text{Subject to} & \text{with }x_{j}\geq 0 \end{array}$$

in such a way that the optimality remain unchanged.

8

8

(b) Use Beale's method for scaling the QPP:

Max Z =
$$4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

subject to $x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

4. (a) Use Golden section method to minimize the following objective function:

$$f(x) = \begin{cases} \frac{x^2 - 6x + 13}{4}, & x \le 4 \\ x - 2, & x > 4 \end{cases}$$

in the interval [2, 5], upto five experiments. 8

(b) Solve the following problem by revised simplex method:

Maximize
$$Z = x_1 + x_2 + 3x_3$$

subject to $3x_1 + 2x_2 + x_3 \le 3$
 $2x_1 + x_2 + 2x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$

(Internal Assessment — 10 Marks)

(For the students of OR Special)

Dynamical Oceanology and Meteorology

Answer Q. No. 1 and any four from the rest.

- 1. Answer any four questions of the following: 4×2
 - (a) What do you mean by the geodynamical paradox?
 - (b) What is Cyclone?
 - (c) Define 'relative humidity'.
 - (d) What do you mean by moist air?
 - (e) Explain the term 'small amplitude oceanian wave'.
 - (f) Write down the boundary conditions at the free ocean surface.

- 2. Define the vertical temperation of moist air. Prove that T* > T, where T* and T are respectively the vertical temperature and the temperature of the moist air. 8
- 3. Deduce the equations of conservation of moving sea water.
- **4.** (a) Show that the specific entropy is a function of temperature and pressure.
 - (b) Define mixing ratio and specific humidity and show that they are nearly equal.

 4+4
- 5. Show that under usual notions:

$$T = -\frac{1}{\lambda}, \ \mu_{s} = -U - \frac{\lambda s}{\lambda} + \frac{\vec{q}^{2}}{2}$$

$$\mu_{w} = -U - \frac{\lambda w}{\lambda} + \frac{\vec{q}^{2}}{2}$$

$$\vec{q} = -\frac{\vec{a}}{\lambda} - \frac{1}{\lambda} (\vec{b} \times \vec{r})$$

are the necessary conditions of thermo-dynamical equilibrium of a finite volume of sea water.

- 6. Obtain the expression of Brunt-Vaisala frequency in terms of c_p and c_v . Give the physical interpretation of this frequency.

 6+2
- 7. (a) What do you mean by the 'Geostrophic balance'?
 - (b) Discuss Geostrophic and Thermal wind. 2+6

(Internal Assessment - 10 Marks)