M.Sc. 2nd Semester Examination, 2015

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(General Topology & Fuzzy Sets and Their Applications)

PAPER - MTM - 205

Full Marks : 50

Time: 2 hours

The figures in the right-hand margin indicate marks

UNIT – I

(General Topology) [Marks : 25]

Answer Q.No. 1 and any two from the rest

1. Answer any two questions:

 2×2

.

(a) Define locally connected spaces. Give an example of a space which is locally connected but not connected.

(Turn Over)

(b) Consider the set Y = [-1, 1] as a subspace of R. Which of the following sets are open in Y? Which are open in R?

$$A = \left\{ x : \frac{1}{2} < |x| < 1 \right\},\$$
$$B = \left\{ x : \frac{1}{2} < |x| \le 1 \right\}.$$

(c) Give an example of a mapping which is continuous but not open.

2. (a) Let X be a set and B be a basis for X. Show that B generates a topology for X.

(b) Let A, B denote subsets of a space X. Determine whether the following equations hold. If an equality fails, determine whether one of the inclusions \supset or \subset holds.

(i)
$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$

(ii) $\overline{A \cap B} = \overline{A} \cap \overline{B}$

PG/IIS/MTM-205/15

(Continued)

S. S. S. S.	
3.	(a) Consider the product, uniform, and box topologies on $\mathbb{R}^{"}$. In which topologies does the following function f form \mathbb{R} to $\mathbb{R}^{"}$ continuous?
	$f(t) = \left(t, \frac{1}{2}t, \frac{1}{3}t, \dots\right),$
	(b) Prove that every finite set is closed in a T
	space. Define a $T3\frac{1}{2}$ space. $3+1$
4.	(a) Show that every Compact Hausdorff space is normal.
	 (b) State the following theorems – Urysohn metrization theorem, Tietz extension theorem, Tychonoff theorem.
đ.	[Internal Assessment : 5 Marks] UNIT – II
	(Fuzzy Sets and Their Applications) [Marks: 25]
į,	Answer Q.No. 1 and any three from the rest
PG/II	S/MTM-205/15 (Turn Over)

,

.

1.	Answer any <i>two</i> questions : 1×2^{-1}
	(a) Write the membership function of a convex fuzzy set.
	(b) Is fuzzy sets satisfy all the properties of crisp sets ? Justify your answer
	(c) When a fuzzy set becomes a fuzzy number?
2.	State the Zadeh's extension principle of fuzzy sets. Using this show that
÷.	[2, 4] + [5, 7] = [7, 11]. 2+4
3.	(a) If \tilde{A} is the triangular fuzzy number [1, 3, 4]
	determine $f(\tilde{A})$ where $f(x) = 2x + 3$. 2
2	(b) What are causes of uncertainty? Is there any relation between probability and fuzzy?
	Justify your answer. $2+2$
4.	Illustrate Bellman and Zadeh's principle to optimize a fuzzy LPP. Discuss Werner's method to slove a
	fuzzy LPP. 2+4

PG/IIS/MTM-205/15

(Continued)

5. (a) For any two triangular fuzzy numbers $\tilde{A} = [a_1, b_1, c_1]$ and $\tilde{B} = [a_2, b_2, c_2]$, using α -cuts show that

$$A + B = [a_1 + a_2, b_1 + b_2, c_1 + c_2].$$
 5

(b) What is a support of a fuzzy set?

6. Solve the following fuzzy LPP by using Verdgey's method

Max.
$$Z = x_1 - 3x_2$$

Sub. to

$$x_{1} - 2x_{2} - x_{3} \le 1 \text{ to } 1.5$$

- $x_{1} + 4x_{2} - x_{3} \le 2 \text{ to } 4$
- $x_{1} - 3x_{2} + x_{3} \le 3 \text{ to } 5$
(..., x., x. > 0)

[Internal Assessment : 5 Marks]

PG/IIS/MTM-205/15

MV-150

(5)