M.Sc. 1st Semester Examination, 2014

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Classical Mechanics and Non-linear Dynamics)

PAPER - MTM-105

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any four questions from the rest

The figures in the right hand margin indicate marks

- 1. Answer any four questions:
- 2×4
- (a) What do you mean by generalised forces? Find the expression of it in terms of generalised coordinates.
- (b) Show that the rate of change of angular momentum is equal to the applied torque for a system of particles.

- (c) State Liouville's theorem.
- (d) Give an example of a mechanical system where
 - (i) Work done by the forces of constraint is zero
 - (ii) Work done by the forces of constraint is non-zero.
- (e) Describe the phase portrait in the xy-plane of a system described by the following differential equations:

$$\frac{dx}{dt} = 0$$
, $\frac{dy}{dt} = 0$.

- (f) State the fundamental postulates of special Theory of relativity.
- 2. Derive Lorentz transformation equations in special theory of relativity.
- 3. Discuss a method to determine the eigen frequencies and normal modes of small oscillation of a dynamical system.

4. Show that there is no analytic solution for the Euler's equations

$$A\dot{w}_1 - (B - C)w_2w_3 = 0$$

$$B\dot{w}_2 - (C - A)w_1w_3 = 0$$

$$C\dot{w}_3 - (A - B)w_1w_2 = 0$$

where A, B, C are moments of inertia and w_1, w_2, w_3 are the components of angular velocity.

- 5. (a) Deduce Hamilton's equations of motion from Hamilton's principle.
 - (b) The potential energy and kinetic energy of a dynamical system are given by

$$V = \frac{1}{2} kr^2 \text{ and } T = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} mr^2 \sin^2 \phi \dot{\phi}^2.$$
Determine the Lagrangian and Lagrange's

Determine the Lagrangian and Lagrange's equations of motion.

6. (a) Prove that

$$\frac{dH}{dt} = -\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$$

where H is the Hamiltonian and L is the Lagrangian of a mechanical system composed N particles with n degrees of freedom.

4

(b) If the kinetic energy of a conservative scleronomic system is a homogeneous quadratic function of velocities, then prove that the total energy of the system is a constant of motion.

4

7. (a) Prove that the Poisson bracket of two constants of motion is itself a constant even, when the constants depend on time explicitly.

4

(b) If the transformation equations between two sets of coordinates are

$$P = 2(1 + \sqrt{q}\cos p)\sqrt{q}\sin p,$$

$$Q = \log_e \left(1 + \sqrt{q} \cos p\right),$$

Then show that

- (i) the transformation is canonical, and
- (ii) the generating function of this transformation can be put in the form

$$F = -(e^Q - 1)^2 \tan p.$$
 4

[Internal Assessment - 10 Marks]