M.Sc. 3rd Semester Examination, 2014

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Special Paper: OM/OR: Dynamical Meteorology - I/ Operational Research Modelling - I)

PAPER-MTM-305

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

(Dynamical Meteorology - I)

Answer Q. No. 8 and any four from the rest

- What is the purpose of aerological diagram?
 Derive the area equivalence of Emagram and discuss its important features.
- 2. (a) Derive the momentum equation of motion of an air parcel in the atmosphere in spherical co-ordinate system.

(Turn Over)

	(b)	What is meant by relative humidity?	2
3.	(a)	Derive the effect of ascent and descent of an air parcel on lapse rate in terms of pressure changes.	6
	(b)	Derive the hypsometric equation in the atmosphere.	3
4.	(a)	Derive the expression of the pressure gradient force in the atmosphere.	4
	(b)	Deduce the expression for the density ρ of an air parcel at pressure p if it is adiabatically expands from a level where pressure and density are p_s and ρ_s respectively.	4
	(c)	Write down the second law of thermodynamics.	1
5.	(a)	How is a gradient wind generated in the atmosphere? Discuss different cases of its occurrences.	7
	(b)	Show that the potential temperature of an air parcel is invariant.	2
PG/	IIIS/M	TM-305/14 (Continue	d)

0.	the actual vapor pressure in terms of dry by and wet bulb temperature.			
	(b)	State and prove the Clausius-Clapeyron equation in the atmosphere.	6	
7.	(a)	What is the difference between Solar radiation and Terrestrial radiation?	2	
	(b)	Derive the Beer's law indicating the relationship between incident radiative intensity and outgoing transmitted radiative intensity. Hence deduce the coefficient of transmission.	7	
8.	Ans	swer any two questions: 2+	2	
	(i)	What is lifting condensation level?		
	(ii)	Define Dew-point temperature.		
	(iii)	Define pseudoadiabatic change.		
		[Internal Assessment: 10 Marks]		

PG/IIIS/MTM-305/14

(Operational Research Modelling - I)

Answer Q. No. 1 and any four from the rest

- 1. Answer any four questions: 2×4
 - (a) What do you mean by pessimistic, optimistic and most likely times in a network? Explain.
 - (b) What do you mean by simulation? What are the draw backs of this process?
 - (c) What is the basic principle to solve a problem using dynamic programming method?
 - (d) What do you mean by economic lot-size?
 - (e) What is the relation between queue length and system length in (M/M/N:∞/FCFS) queueing system?
 - (f) What do you mean by the terms lead time and procurement cost in inventory control?

2. A project is represented by the network shown below and has the following data:

Task : A B C D E F G H 1

Least time

(week) : 5 18 26 16 15 6 7 7 3

Greatest time

(week) : 10 22 40 20 25 12 12 9 5

Most likely

time (week): 8 20 33 18 20 9 10 8 4

Determine the following:

(i) expected task time and their variance,

- (ii) the earliest and latest expected times to reach each node,
- (iii) the critical path, and
- (iv) the probability to complete the project in 41.5 weeks.

Given
$$\int_{-\infty}^{0.52} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = 0.70$$

3. Describe dynamic programming method to solve the following problem:

Minimize
$$Z = \sum_{j=1}^{n} f_j(y_j)$$

subject to
$$\sum_{j=1}^{n} a_{j} y_{j} \ge b$$

 a_j , b are real numbers, $a_j \ge 0$, $y_j \ge 0$, b > 0. Use this process find the values of y_1 , y_2 and y_3 such that

Minimize
$$Z = y_1^2 + y_2^2 + y_3^2$$

subject to $y_1 + y_2 + y_3 \ge 75$, $y_1, y_2, y_3 \ge 0$
 $4 + 4$

- 4. What do you mean by random number? Explain a method to generate random numbers. Use Monte-Carlo simulation method to find the area of a circle whose radius is a. 4+4
- 5. Suppose in a system all items are new at beginning. Each item has a probability p of failing immediately before the end of the first month of life and probability q(=1-p) of failing immediately before the end of the second month. If all items are replaced as they fail. Show that the expected number of failures f(x) at the end of a month is given by

$$f(x) = \frac{N}{1+q} \left[1 - (-q)^{x+1} \right]$$

where N be the initial items of the system. If the cost per item of individual replacement policy is Rs. C_1 and the cost per item of group replacement policy is Rs. C_2 . Find the condition under which group replacement policy at the end of the first month is most profitable over individual replacement.

6. Derive the differential difference equations for (M/M/C: N/FCFS/∞) queueing system in transient state.

8

7. A small shop produces three machine parts 1, 2, 3 in lots. The shop has only 650 sq. ft. storage space. The appropriate data for three items are presented in the following table:

Items	1	2	3
Demand Rate (units/year)	5000	2000	10000
Procurement cost (Rs.)	100	200	75
Cost per units (Rs.)	10	15	5
Floor space required (sq. ft./unit)	0.7	0.8	0.4

The carring charge on each item is 20% of average inventory valuation per annum. If shortage are not allowed, determine the optimal lot size for each item.

8

[Internal Assessment: 10 Marks]