M.Sc. 1st Semester Examination, 2014

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Real Analysis)

PAPER-MTM-101

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any four from Q. No. 2 to Q. No. 7

The figures in the right-hand margin indicate marks

1. Answer any four questions:

- 2×4
- (a) In a metric space (X, d), if $A, B \subseteq X$ such that d(A, B) > 0, then prove that A and B are separated.
- (b) Define RS-integral with the help of limit.

(Turn Over)

- (c) If the outer measure of a set is zero, prove that the set is measurable.
- (d) Define the following with examples:
 - (i) Non-negative simple measurable function
 - (ii) Measure.
- (e) If $E \subset X$ and

$$X_E(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E \end{cases}$$

is a measurable function, then show that E is a measurable set in X.

2. (a) Is the set

$$\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1\}$$
compact in \mathbb{R}^3 ? Justify.

- (b) Let A and B be compact subsets of a metric space X. Is $A \cup B$ compact? Justify. 2
- (c) Prove that the union of connected sets in a mertic space, no two of which are separated, is a conected set.

2

3. (a) Let $f: [a, b] \to \mathbb{R}$ be a function of bounded variation on [a, c] and [c, b] where $c \in (a, b)$. Then show that

$$V_f[a, c] + V_f[c, b] = V_f[a, b]$$

Hence deduce that if $c_1, c_2 \in (a, b)$ with $c_1 < c_2$ then $V_f[a, c_1] + V_f[c_1, c_2] + V_f[c_2, b] = V_f[a, b]$.

(b) Let $x_1, x_2, ..., x_n, ...$ be an enumeration of all rationals in [0, 2] and let $f : [0, 2] \rightarrow \mathbb{R}$ be defined by

$$f(x_n) = \frac{1}{n^4}, n = 1, 2, 3,...$$
 and 0 elsewhere

Prove that f is a function of bounded variation on [0, 2].

- 4. (a) Let $\alpha(x)$ be monotonically increasing function on [a, b]. Prove that the following statements are equivalent
 - (i) $f \in R(\alpha)$ on [a,b] (limit definition)

$$(ii) \int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha$$

(b) Evaluate the RS-integral

$$\int_{-1}^{2} (2x+5)d(|x|+3)$$

5. State the following theorems and prove any one of them: 4+4

Fatou's Lemma, Lebesgue's Dominated Convergence theorem, Monotone Convergence theorem.

 (a) Define sigma algebra (σ-algebra) in a set X with example.

Suppose m is a σ -algebra in $X, f: X \to [-\infty, \infty]$ be a function. If $f^{-1}((\alpha, \infty]) \in m$ for every real α , then show that f is a measurable function.

(b) Let $f_n: X \to [-\infty, \infty]$ be measurable, for n = 1, 2, 3, ...

Define $\lim_{n\to\infty} \sup f_n$, $\lim_{n\to\infty} \inf f_n$.

Also, show that $\limsup_{n\to\infty} f_n$, $\lim_{n\to\infty} \inf f_n$ are measurable.

(Continued)

3

- 7. (a) Give an example of a function which is
 Lebesugue Integrable but not Riemann
 Integrable.
 - (b) Show that a bounded function f is lebesgue Integrable on [a, b] if and only if for every $\epsilon > 0$ there is a measurable partition P of [a, b] such that $U(P, f) L(P, f) < \epsilon$.
 - (c) Define Lebesgue Integral for unbounded measurable function on [a, b].

[Internal Assessment: 10 Marks]

3