M.Sc. 3rd Semester Examination, 2014

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

Special Paper: OM/OR: (Dynamical Oceanology-I/ Advanced Optimization and Operations Research)

PAPER - MTM-304

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

(Dynamical Oceanology-I)

Answer any five questions:

1. Considering sea-water an as two components mixture of pure water and sult, obtain Gibbs relation and hence deduce the Gibbs-Duhem relation.

(Turn Over)

2. State the principle of conservation of mass'.

Obtain the following pair of equations:

$$\frac{D\rho}{Dt} + \rho \operatorname{div} \vec{q} = 0$$

$$\rho \frac{Ds}{Dt} = -\operatorname{div} \bar{I}s$$

by considering sea-water to be a two components mixture of salt and pure water (symbols have their usual meanings).

8

- 3. What are the assumptions regarding Boussinesq approximation? Derive the approximate form of the field equation under these assumptions. 2+6
- 4. Show that, under usual notions,

$$T = -\frac{1}{\lambda}, \ \mu_s = -U - \frac{\lambda_s}{\lambda} + \frac{\vec{q}^2}{2}$$

$$\mu_w = -U - \frac{\lambda_w}{\lambda} + \frac{\vec{q}^2}{2}, \ \vec{q} = -\frac{\vec{a}}{\lambda} - \frac{1}{\lambda} (\vec{b} \times \vec{r})$$

are the necessary conditions of thermodynamical equilibrium of a finite volume of sea-water. Hence deduce the hydrostatic pressure equation. (symbols have their usual meanings). 6+2

- 5. Derive Fridman's equation for diffusion of absolute vorticity in a viscous flow in terms of motion relative to the earth. Deduce Ertel's formula for the evaluation of potential vorticity.
- 6. Assuming the sea-water to be a viscous incompressible heat conducting fluid, derive the energy equation in the form

$$\frac{\partial}{\partial t}(\rho E_m) = -\operatorname{div}\vec{I}_E$$

where symbols have their usual meanings.

- 7. Derive the equations for small amplitude wave motion in the ocean.
- 8. Show, by the method of separation of variables, that the problem of free oscillations of an ocean reduces to that of the determination of the eigen-value curves of two distinct eigen-value 8 problem.

[Internal Assessment - 10 Marks]

8

(Advanced Optimization and Operation Research)

Answer Q.No.1 and any four from the rest

1. Answer any four questions:

 2×4

- (a) What are the limitations of the Lagrangian multiplier technique?
- (b) What is the criteria to apply revised simplex method to solve an LPP?
- (c) Give an example showing that we may not get the optimal solution of IPP just rounding off the optimal solution of the corresponding LPP.
- (d) In Golden section method why it is called Golden Section?
- (e) State Kuhun-Tucker necessary conditions for optimality test of a function.
- (f) What do you mean by post-optimality analysis?

2. Maximize

$$f(x_1,x_2) = x_1^2 + x_2^2 + 2gx_1 + 2fx_2 + c$$

starting from the point $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ by using steepest descent method.

8

3. Discuss the revised simplex method to find the optimum solution of the following LPP

Max.
$$Z = CX$$

subject to the constraints

$$AX = b$$
$$X \ge 0.$$

8

4. The Optimal solution of the LPP

Max.
$$Z = 3x_1 + 5x_2$$

sub. to
$$x_1 + x_2 \le 1$$

 $2x_1 + 3x_2 \le 1$

and $x_1, x_2 \ge 0$

is contained in the table

C_{B}	Y_{B}	$X_{_{B}}$	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄
0	x_3	2/3	1/3	0	1	-1/3
5	x_2	1/3	2/3	1	0	1/3
		5/3	1/3	0	0	5/3

Find the ranges of c_1 and c_2 for which the optimal solution remains optimum when changes one at a time.

8

5. Solve the following goal programming problem graphically

Min.
$$Z = P_1 d_1^- + P_2 d_2^- + P_3 d_3^-$$

subject to constraints

$$20 x_{1} + 10x_{2} \le 60$$

$$10 x_{1} + 10x_{2} \le 40$$

$$40 x_{1} + 80x_{2} + d_{1}^{-} - d_{1}^{+} = 1000$$

$$x_{1} + d_{2}^{-} - d_{2}^{+} = 2$$

$$x_{2} + d_{3}^{-} - d_{3}^{+} = 2$$
and $x_{1}, x_{2}, d_{i}^{-}, d_{i}^{+} \ge 0$ $i = 1, 2, 3$.

PG/HIS/MTM-304/14

(Continued)

6. Using Gomory, s cutting plane method solve the following IPP

Maximize
$$Z = x_1 + x_2$$

subject to $5x_1 + 6x_2 \le 30$
 $5x_1 + 2x_2 \le 16$
 $x_1, x_2 \ge 0$
 x_1, x_2 are integers. 8

7. Use Kuhn-Tucher method to determine x_1, x_2, x_3 so as to

Maximize
$$Z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$$

subject to the constraints
$$x_1 + x_2 \le 2$$

$$2x_1 + 3x_2 \le 12 \text{ and}$$

$$x_1, x_2 \ge 0.$$

[Internal Assessment - 10 Marks]

8