M.Sc. 2nd Semester Examination, 2014

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Numerical Analysis)

PAPER - MTM - 202

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any two from the rest

The figures in the right-hand margin indicate marks

1. Answer any four questions:

 2×4

- (a) What do you mean by single-step and multistep method to solve a differential equation by numerical method?
- (b) Prove that

 $hD \equiv \sin h^{-1}(\mu \delta)$

where the symbols have their usual meanings.

(Turn Over)

- (c) What are the differences between Newton -Cotes quadrature and Gaussian quadrature?
- (d) Is LU decomposition method applicable to all system of linear equation? Explain.
- (e) Mention the difference of open type and closed type formulae for numerical integration.
- 2. (a) Explain Bairstow method to solve a polynomial equation.
 - (b) Deduce three-points Gauss-Chebyshev quadrature formula. Use this formula to evaluate the integral 5+3

$$\int_0^1 \frac{e^x + x^2}{\sqrt{1 - x^2}} \, dx$$

3. (a) Define cubic spline function. Deduce cubic spline interpolation formula [using natural end boundary conditions].

- (b) Explain successive overrelaxation method to solve a system of linear equations.
 - O
- 4. (a) Explain Jacobi's method for finding the eigen values and eigen vectors of a real symmetric matrix.
- 8

8

(b) Describe finite difference method to solve a second order BVP.

Or:

(b) Deduce an explicit finite difference scheme for solving one dimensional heat equation

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial r^2}, \ 0 < x < l, \ t > 0$$

Subject to the condition

$$u(0, t) = u(l, t) = 0, u(x, 0) = f(x).$$
 8

[Internal Assessment: 10 Marks]