M.Sc. 1st Semester Examination, 2013

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Graph Theory)

PAPER-MTM-106

Full Marks: 25

Time: 1 hour

Answer all questions

The figures in the right-hand margin indicate marks

_			
1.	Answer any	two question	ons:

 2×2

- (a) Show that in any graph the number of odd degree vertices is always even.
- (b) Define Eulerian graph. Explain it with an example.
 - 1+1
- (c) Define perfect matching. Explain it with an example. 1+1

2. Answer any four questions:

 4×4

- (a) Define dual of a graph. Show that the dual of a disconnected graph is a connected graph. 2 + 2
- (b) Define path of a graph. If a graph has exactly two vertices of odd degree, show that there exists a path joining these two vertices.

 1 + 3
- (c) Find the chromatic polynomial for the graph .

 Hence deduce the chromatic number of it. 3 + 1
- (d) Define connected graph. If any two distinct vertices u and v of a simple graph with n vertices are such that deg.(u) + deg.(v) $\ge n$, show that graph is connected. 1+3
- (e) Find the shortest path from the vertex A to the vertex F using Dijkstra's algorithm for the following weighted graph

(f) For every simple connected graph G, Show that $K(G) \le K'(G) \le \delta(G)$

Where K(G), K'(G) and $\delta(G)$ are the vertex connectivity, edge connectivity and minimum degree of the graph G respectively.

[Internal Assessment: 5 Marks]