M.Sc. 1st Semester Examination, 2013

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Classical Mechanics)

PAPER - MTM-105

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any two questions from the rest

The figures in the right hand margin indicate marks

1. Answer any four questions:

 2×4

- (a) What do you mean by a connected holonomic system? Give an example of constraints for such a system.
- (b) Derive the following differential operator

$$\left(\frac{d}{dt}\right)_{fix} \equiv \left(\frac{d}{dt}\right)_{rot} + wx,$$

the symbols having usual meaning.

- (c) Define Lagrangian and Hamiltonian of a dynamical system.
- (d) State Hamilton's principle.
- (e) How the Canonical transformation be determined from the generating function? Explain.
- (f) State basic postulates of special theory of relativity.
- 2. (a) Show that the path followed by a particle in sliding from one point to another in the absence of friction in the shortest time is a cycloid.
 - (b) Derive the Hamilton's equations for conservative unconnected holonomic system.
- 3. (a) A body moves under no forces about a point 0, the principal moments of inertia at 0 being 6A, 3A and A. Initially, angular velocity of the body has the components $w_1 = n$, $w_2 = 0$, $w_3 = 3n$ about the principal axes. Show that at any time t, $w_2 = -\sqrt{5}n \tan h \sqrt{5}nt$ and ultimately the body rotates about the mean axis.

:8

8

(b) If a body in the northern hemisphere falls freely to the ground from a height h, show that it trikes the ground at

$$\frac{2}{3}\omega h \left(\frac{2h}{g_e}\right)^{1/2} \cos \lambda$$

to the east, where ω is the earth's angular velocity, g_{e} is the acceleration due to the combined effect of gravity and centrifugal force and λ is the latitude of the place.

- 4. (a) Derive the Lorentz transformation equations for relativistic mechanics.
 - (b) Prove that the Poisson bracket of two constants of motion is itself a constant even when the constants depend on time explicitly.
 - (c) Use Hamilton's procedure, to find the equation of motion of a simple pendulum.

[Internal Assessment: 10 Marks]

8