The same of the same

## M.Sc. 4th Semester Examination, 2012

## APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-405

(Operational Research Modelling - II / OM)

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any two from the rest

The figures in the right hand margin indicate marks

(Operational Research Modelling - II)

[ Marks: 25 ]

Time: 1 hour

1. Answer any two questions:

 $2 \times 2$ 

2..

- (a) What do you mean by total elapsed time by a machine?
- (b) Distinguish between Serial Arrangement and Parallel Arrangement in the reliability of a system.

- (c) Explain impulse control, feedback control and transversality condition in an optimal control problem.
- (a) Show that the geodesic on a sphere of radius a is its great circle.
  - (b) Derive the use of reliability to make the design of a system.4 + 4
- 3. (a) A source memory has six characters with the following probabilities of transmission:

Derive the Shanon-Fano encoding procedure to obtain a uniquely decodable code to the above message ensemble. What is the average length, efficiency and redundancy of the code that you obtain?

(b) Let there be n events  $E_1, E_2, ...., E_n$  with probabilities  $p_1, p_2, ..., p_n$  respectively of their occurences so that  $p_1 + p_2 + ... + p_n = 1$ . Prove

that the entropy H associated with the above probability distribution is maximum when the events are equally likely to occur and  $H_{\text{max}} = \log n$ . 4 + 4

- (a) Deduce the procedure to process n jobs through m machines.
  - (b) Find the extremising curve for the integral

$$I = \int_0^1 (y'^2 - 4xyy' - y^2) dx$$

where 
$$y(0) = 1$$
 and  $y(1) = \frac{1}{2} \left( e + \frac{1}{e} \right)$ .  $4 + 4$ 

[Internal Assessment: 5 Marks]

(OM)

[ Marks: 25 ]

Time: I hour

Answer any one question:

 $2 \times 1$ 

- (a) Explain the classification of fronts.
- (b) What is CISK?

- 2. (a) Show that the isobars are always V-shaped at a front with lower pressures within the V and develop a formula for the angle between the two arms of the V made by the isobars at a front.
  - (b) Show that in a geostrophic wind field, an ideal front is necessarily stationary. 7 + 2
- 3. (a) Derive the equation to determine the diffusion of water vapor through the atmosphere by turbulent mixing processes.
  - (b) What is the difference between stream line and turbulent motion in the atmosphere? 7+2
- Discuss the frontagenesis and frontolysis in a deformation fied and also give an example of a specific contraction field in the earth's atmosphere.

[Internal Assessment: 5 Marks]