M.Sc. 4th Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-402

(Differential Geometry/Magneto hydrodynamics)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

GROUP - A

(Differential Geometry)

[Marks: 25]

Answer Q.No.1 and any three from the rest

- 1. (a) Define the word "Geodesic for a curve C".
 - (b) What is the difference between contravarient and co-varient tensor? Give examples.

2. Find the principal curvature of the surface S defined by:

$$x^{1} = u^{1}\cos u^{2}, \quad x^{2} = u^{1}\sin u^{2},$$

$$x^{3} = a\log\left(u^{1} + \sqrt{(u^{1})^{2} - a^{2}}\right)$$

and prove that it is minimal surface.

3. Deduce the Serret-Frenet formula for a space curve S.

4. Calculate the geodesic curvature of the circle C:

$$u^{1} = \text{constant} = u_0^{1} \neq 0$$
$$u^{1} = u^{2}$$

on the surface of the sphere.

- 5. Deduce the equation of lines of curvature from the equation of principal curvature of a surface S.
- 6. Prove that a geodesic is an auto parallel curve.

[Internal Assessment - 5 Marks]

5

5

5

GROUP - B

(Magneto hydrodynamics)

[*Marks* : 25]

1. Answer any two questions:

- (a) Write down the basic equation of magneto hydrodynamics and hence deduce the magnetic induction equation in MHD flows. Explain the significance of high and low magnetic Reynolds number.
- (b) A viscous incompressible finitely conducting fluid flows steadily under a uniform pressure gradient in a channel formed by two infinite parallel plates which are non-conducting. If a uniform magnetic field acts perpendicular to the channel walls, find the velocity and the magnetic field.
- (c) A viscous incompressible fluid of uniform density is confined between the horizontal

non-conducting planes z = 0 (lower) and z = h (upper). The lower plane is held at rest and the upper one is moved horizontally in its own plane with uniform velocity U_0 . A uniform magnetic field H_0 acts perpendicular to the planes. Find the velocity and the magnetic field between the planes.

[Internal Assessment - 5 Marks]

10