## M.Sc. 3rd Semester Examination – 2012

## APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

( Partial Differential Equations )

PAPER-MTM-301

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any two from the rest

The figures in the right-hand margin indicate marks

## 1. Answer any two questions:

 $4 \times 2$ 

- (a) Let u(x, t) be a solution of the wave equation  $u_{tt} c^2 u_{xx} = 0$ , which is defined in the whole plane. Assume that u is constant along the line x = 2 + ct. Prove that  $u_t + cu_t = 0$ .
- (b) Find the characteristics of the equation pq = z and determine the integral surface which passes through the parabola x = 0,  $y^2 = z$ .

- (c) Solve the equation  $(p^2 + q^2)y = qz$  by Charpit's method.
- 2. (a) Prove that the equation  $x^{2}u_{xx} 2xyu_{xy} + y^{2}u_{yy} + xu_{x} + yu_{y} = 0 \text{ is parabolic}$ and find its canonical form. Find the general solution on the half-plane x > 0.
  - (b) (i) Let u(x, t) be the solution of the cauchy problem

$$\begin{split} u_{tt} - 9u_{xx} &= 0, -\infty < x < \infty, t > 0, \\ u(x, 0) &= \begin{cases} 1, & |x| \le 2 \\ 0, & |x| > 2, \end{cases} \\ u_{t}(x, 0) &= \begin{cases} 1, & |x| \le 2 \\ 0, & |x| > 2. \end{cases} \end{split}$$

Find  $u\left(0, \frac{1}{6}\right)$ . Discuss the large time behaviour of the solution.

(ii) Consider the cauchy problem

$$u_{tt} - c^2 u_{xx} = F(x, t), -\infty < x < \infty, t > 0$$
  
 $u(x, 0) = f(x), u(x, 0) = g(x), -\infty < x < \infty$ 

.

X

Suppose that f, g are odd functions and for every  $t \ge 0$  the function F(.,t) is odd too. Then prove that for every  $t \ge 0$ , the solution u(.,t) of the cauchy problem is also odd.

3. (a) Using the method of seperation of variables solve the following problem:

$$u_{tt} - u_{xx} = \cos(2\pi x)\cos(2\pi t), \ 0 < x < 1, \ t > 0$$

$$u_{x}(0, t) = u_{x}(1, t) = 0, \ t \ge 0$$

$$u(x, 0) = f(x) = \cos^{2}(\pi x), \ 0 \le x \le 1$$

$$u_{x}(x, 0) = g(x) = 2\cos(2\pi x), \ 0 \le x \le 1.$$

(b) (i) Consider the heat equation  $u_t - u_{xx} = 0$ ,  $x \in R$ ,  $t \ge 0$ .

Set 
$$u(x, t) = \phi(\lambda(x, t))$$
, where  $\lambda(x, t) = \frac{x}{2\sqrt{t}}$ .  
Show that  $u$  is a solution of the heat equation iff  $\phi(\lambda)$  is a solution of the  $ODE \phi'' + 2\lambda \phi' = 0$ , where  $' = \frac{d}{d\lambda}$ .

(ii) Give an example to show that the cauchy problem for the laplace equation is not well-posed.

8

| 4. | (a) | Establish poisson's formula for the dirichlet |     |         |          |      |         |
|----|-----|-----------------------------------------------|-----|---------|----------|------|---------|
|    |     | problem of                                    | the | laplace | equation | in a | disk of |
|    |     | radius a.                                     |     | Je.     |          |      |         |
|    |     | •                                             |     |         |          | 2    |         |
|    |     |                                               |     |         |          |      |         |

(b) (i) State and prove strong maximum principle. 6

(ii) Show that the laplace operator is a self-adjoint operator.

[Internal Assessment: 10 Marks]