M.Sc 4th Semester Examination, 2011

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER -- MA - 2204

(Nonlinear Optimization)

Full Marks: 50

Time: 2 hours

Q.No.1 is compulsory and answer any three from the rest

The figures in the right-hand margin indicate marks

1. Answer any five of the following:

- 2 x 5
- (a) Define degree of difficulty to solve a geometric programming problem with an example.
- (b) Under what conditions, the Kuhn-Tucker condition for quadratic programming problem will be necessary and sufficient?
- (c) When two bimatrix games are said to be strategically equivalent?

- (d) What do you mean by differentiable convex function?
- (e) What are basic differences between Wolfe's method and Beale's method?
- (f) What do you mean by convex programming problem? Which type of convex programming problem can be solved by Frank-Wolfe algorithm?

2. (a) Define:

- (i) The (primal) quadratic minimization problem,
- (ii) The quadratic dual (maximization) problem.
- (b) How do you solve the following geometric programming problem?

 Find

$$X = \left\{ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right\}$$

that minimizes the objective function

$$f(x) = \sum_{j=1}^{N} U_{j}(x) = \sum_{j=1}^{N} \left(c_{j} \prod_{j=1}^{n} x_{i}^{a_{ij}} \right)$$

3. (a) Use the chance constained programming technique to find an equivalent deterministic LP problem to the following stochastic programming problem:

Minimize
$$F(x) = \sum_{j=1}^{n} c_j x_j$$

subject to $P\left[\sum_{j=1}^{n} a_{ij} x_j \leq b_i\right] \geq p_i$
 $x_j \geq 0, i = 1, 2, ..., n$
 $j = 1, 2, ..., n$

where c_j and a_{ij} are random variables and p_i are specified probabilities.

- (b) Define the following:
 - (i) Fritz-John stationary point problem.
 - (ii) Kuhn-Tucker stationary point problem. 7 + 3
- 4. (a) Solve the following quadratic programming problem by Wolfe's modified simplex method and test wheather the solution is global optimum or not

Minimize
$$f(x) = -8 x_1 - 16 x_2 + x_1^2 + 4 x_2^2$$

subject to $x_1 + x_2 \le 5$
 $x_1 \le 3$,
 $x_1 \ge 0$, $x_2 \ge 0$.

(b) Let $\bar{x} \in X^0$, let X^0 be an open, and let θ and g be differentiate and convex at \bar{x} . If (\bar{x}, \bar{u}) is a solution of KTP, then prove that \bar{x} is a solution of MP. If (\bar{x}, r_0, \bar{r}) is a solution of FJP, and $r_0 > 0$, then prove that \bar{x} is a solution of MP.

7 + 3

- 5. (a) State and prove Fritz-John saddle point sufficient optimality theorem. What are the basic differences between the necessary criteria and sufficient criteria of Fritz-John saddle point problem?
 - (b) Find the Nash equilibrium solution (s) of the following bimatrix game (if exists)

$$\begin{bmatrix} (-2,-1) & (1,1) \\ (-1,2) & (-1,-2) \end{bmatrix}$$

7 + 3

6. (a) Solve the following quadratic programming problems by using Beale's method:

Maximize
$$Z = 10x_1 + 25x_2 - 10x_1^2 - x_2^2 - 4x_1x_2$$

subject to constraints
$$x_1 + 2x_2 \le 10$$

 $x_1 + x_2 \le 9$
 $x_1 \cdot x_2 \ge 0$.

(5)

(b) Write short note on complementary slackness principle. 7 + 3

[Internal Assessment — 10 Marks]

(Dynamical Oceanology -II)

Full Marks: 50

Time: 2 hours

Answer any four questions

The questions are of equal value

- 1. Define absolute vorticity. Deduce the general vorticity equation of the fluid.
- 2. Define Rossby Number. Deduce the equations of thermal wind.
- 3. Show that the group velocity vector of plane Rossby waves makes an 2α with the axis of x and has a magnitude $\frac{\beta}{K^2}$ (symbols have their usual meaning).

4. Prove that the equation of Ekman layer on a sloping surface can be expressed as

$$\frac{1}{4} \cdot \frac{\partial^4 v}{\partial \zeta^4} + v = \frac{1}{\cos \theta} \frac{\partial p}{\partial x^1},$$

(symbols have their usual meaning).

- 5. Obtain the solution of the equation of motion for the pure wind drift current in plane homogeneous layer of fluid as the infinite depth rotating uniformly about a vertical axis.
- 6. Give a mathematical formulation of a linear model of thermocline. Obtain the expression of a perturbation temperature T_s outside the western boundary layer in the following form:

$$T_s = \frac{2 \theta (y)}{\pi} \int_{0}^{\infty} \frac{\sin \tau x}{\tau} (1 - e^{x^2 f^2 \tau^2}) d\tau$$

where symbols have their usual meaning.

[Internal Assessment — 10 Marks]