M.Sc 2nd Semester Examination, 2011

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Numerical Analysis)

PAPER-MTM-202

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any two from the rest

The figures in the right-hand margin indicate marks

1. Answer any four questions:

 2×4

- (a) What are the differences between single step and multistep methods to solve a differential equation?
- (b) What are the basic differences between Newton-Cotes method and Gaussian quadrature method?

(c) Express the polynomial

$$5x^3 - 4x^2 + 3x + 8$$

interms of Chebyshev polynomial.

- (d) Is LU decomposition method applicable for all system of linear equations? Explain.
 - (e) Prove that

$$\delta f(x) = 2\sin h \left(\frac{hD}{2}\right) f(x)$$

where δ and D and central difference and differential operators respectively.

- (f) Compare direct and iteration method to solve a system of linear equations.
- 2. (a) Define cubic spline. Deduce cubic spline interpolation formula. 2+6
 - (b) Explain Runge-Kutta fourth order method to solve the following system of differential equations:

$$\frac{dy}{dx} = f(x, y, z), \ \frac{dz}{dx} = g(x, y, z)$$

$$y(x_0) = y_0$$
 and $z(x_0) = z_0$.

(c) Given the following pair of differential equations:

$$\frac{dy}{dx} = \frac{x+y}{z}$$
 and $\frac{dz}{dx} = xy+z$

with initial condition $x_0 = 0.5$, $y_0 = 1.5$ and $z_0 = 1$. Find y and z for x = 0.6, using fourth order Runge-Kutta method.

3. (a) Explain finite difference method to solve the following equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \ t > 0, \ 0 < x < 1,$$

where initial conditions u(x, 0) = f(x) and $\left(\frac{\partial u}{\partial t}\right)_{x=0} = g(x), \ 0 < x < 1$ and boundary

conditions $u(0, t) = \phi(t)$, $u(1, t) = \psi(t)$, $t \ge 0$. Draw the suitable mesh points.

(b) Explain an efficient method to solve a tri-diagonal system of equations containing n

8

5

variables and n equations. Use this method 5 + 3to solve the following equations:

$$x_1 + 2x_2 = 5$$

$$-2x_1 + 3x_2 + 4x_3 = 3$$

$$4x_2 - x_3 = 6.$$

(a) Deduce 4-point Gauss-Legendre quadrature formula. Use this method to find the value 5 + 3of

$$\int_{1}^{2} \left(x^3 + e^x\right) dx.$$

(b) Describe least square method to approximate a function y = f(x) with the help of orthogonal polynomials. What is the advantage to use orthogonal polynomials than other polynomials?

6 + 2

[Internal Assessment: 10 Marks]