M.Sc 1st Semester Examination, 2010

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Complex Analysis)

PAPER-MA-1102

Full Marks: 50

Time: 2 hours

Answer Q. No. 4 and any two from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. (a) Obtain a set of sufficient condition for a function to be analytic.
 - (b) Determine a function v(x, y) such that the function f = u + iv is analytic on C, the complex plane, where u(x, y) = x(1 y).

(c) If a function
$$f(z)$$
 is continuous on a contour
 C of length l and if M be the upper bound of $|f(z)|$ on C then 4

$$\left| \int\limits_{C} f(z) dz \right| \leq Ml$$

(d) Let f(z) = u + iv be analytic in a region. Prove that

$$\frac{\partial(u,v)}{\partial(x,y)} = \left| f'(z) \right|^2.$$

2. (a) Evaluate:

$$\int_{C} \frac{z+4}{z^2+2z+5} dz$$

where C is the circle |z+1|=1.

- (b) State and prove Rouche's theorem.
- (c) Prove that the transformation

$$w = \frac{az+b}{cz+d}$$
, $ad-bc \neq 0$

transforms circles in the z-plane into circles in the w-plane, straight line using considered as limiting cases of circles.

(Continued)

(d) Show that all the roots of the equation

$$z^5 - 12z^2 + 14 = 0$$

lie between the circles |z|=1 and $|z|=\frac{5}{2}$.

3. (a) Find Laurent series at z = 1 where

$$f(z) = \frac{e^{2z}}{(z-1)^3}.$$

Name the singularity.

4

4

(b) Find the residues of

$$f(z) = \frac{z^2 - 2z}{(z+1)^2 (z^2 + 4)}$$

at all its poles in the finite plane.

4

(c) Evaluate the following by the method of contour integration (any two): 4 x 2

(i)
$$\int_0^\infty \frac{dx}{(1+x^2)^2}.$$

(ii)
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$$
.

(iii)
$$\int_{0}^{\infty} \frac{\sin \pi x}{x(1-x^2)} dx.$$

$$\int_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta}.$$

4. Answer the following:

2 x 4

- (a) When is a function f(z) said to be analytic in a given domain in the complex z-plane?
- (b) Prove that:

$$u = e^{-x} (x \sin y - y \cos y)$$

is harmonic.

(c) Locate and name the singularity of

$$f(z) = \frac{z}{(z^2+4)^2}.$$

(d) Find Res
$$f(z)$$
 at $z = 0$ where

$$f(z) = \frac{z-3}{z^2} \sin \frac{1}{1-z}$$
.

[Internal Assessment: 10 Marks]