2009

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

(Operational Research Modelling -II)

PAPER -- MA - 2205 (OR)

[Full Marks: 25]

Time: 1 hour

The figures in the right-hand margin indicate marks

Answer Q.No.1 and two from the rest

- 1. Answer any two questions:
 - 2 x 2
 - (a) What do you mean by memory less channel and noiseless channel.

- (b) Deduce an expression to compute the reliability of an item during the time interval (0, t).
- (c) Show that the entropy of the following probability distribution is $2 \left(\frac{1}{2}\right)^{n-2}$

Events:
$$x_1 \ x_2 \ x_3 x_j x_{n-1} \ x_n$$

Probability:
$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{2^{i}}$ $\frac{1}{2^{n-1}}$ $\frac{1}{2^{n-1}}$

three machines A, B, C in the order \overrightarrow{ABC} .

Processing times (in hours) are given in the following table. Determine a optimum sequence for the five jobs that will minimize the elapsed time. Find that elapsed time also.

Job	Processing time		
i	A_{i}	B_{i}	C_i
1	8	5	4
2	10	6	9
3	6	2	8
4	7	3	6
5	11	4	5

3. Calculate the reliability of a system when the components are connected in (a) series, and in (b) parallel.

An electronics circuit consist of 5 silicon transistor. 3 silicon diodes, 10 resistors and 2 capacitors in series configuration. The hourly failure rate of each component is

silicon transistor : $\lambda_{i} = 4 \times 10^{-5}$

silicon diode : $\lambda_d = 3 \times 10^{-5}$

resistor : $\lambda_{-} = 2 \times 10^{-4}$

capacitor : $\lambda_c = 2 \times 10^{-4}$

Calculate the reliability of the circuit for 10 hrs.When the components follow exponential distribution. (2+2)+4

4. (a) Prove that the functional

$$J = \int_{x_0}^{x_1} F(y(x), y'(x), y''(x), \dots,$$

$$y^{(n)}(x), x) dx$$

will be extrema along the path y = y(x) if

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial y''} \right)$$

$$- \dots + (-1)^n \frac{d^n}{dx^n} \left(\frac{\partial F}{\partial y^{(n)}} \right) = 0.$$

(b) Find the stationary path x = x(t) for the functional

$$J = \int_{0}^{1} [1 + \ddot{x}^{2}] dt$$

subject to the boundary conditions x(0) = 0, $\dot{x}(0) = 1$, x(1) = 1 and $\dot{x}(1) = 1$. 5+3

- 5. Define joint and conditional entropies. Deduce that
 - (a) $H(X, Y) \leq H(X) + H(Y)$, with equality iff X and Y are independent.

(b)
$$H(X, Y) = H(X/Y) + H(Y) = H(Y/X) + H(X)$$

where $H(X) \ge H(X/Y)$. 2+3+3

[Internal Assessment: 5 Marks]

(Dynamical Meteorology -II)

PAPER—MA - 2205 (OM)

[Full Marks: 25]

Time: 1 hour

Answer Q.No.1 and any two from the rest

- 1. Answer any one:
 - (a) What is CAPE?
 - (b) What is front and dynamic boundary condition for front?
- 2. Derive the general equations of horizontal motion including the effect of frictional forces resulting from the turbulent air motion.
- 3. Discuss the pressure distribution near the fronts. Explain the Kinematic boundary condition at the ideal frontal surface. Show that in a geostrophic wind field, an ideal front is necessarily stationary. 5+2+2
- 4. Explain the development of rotation in supercell thunder-storms.

[Internal Assessment: 5 Marks]