M.Sc. 4th Semester Examination, 2013 APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Topology, Data Structure and Design and Analysis of Algorithms)

PAPER - MTM - 401

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP-A

(Topology)

[Marks : 25]

1. Answer any two questions:

 1×2

(a) Let $X = \{a, b, c\}$ and $\zeta = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a, c\}$. Find the subspace topology on A.

(Turn Over)

- (b) Give an example of a T_1 -space which is not T_2 .
- (c) Define a 1st countable space.
- 2. Answer any three questions:

 1×3

- (a) Show that \mathbb{R}^{w} in the box topology is not metrizable.
- (b) Prove that a compact T_2 -space is normal.
- (c) Let $p: x \rightarrow y$ be a continuous map. Show that if there is a continuous map $f: y \rightarrow x$ such that (pof) equals the identity map of y, then p is quotient map.
- (d) Prove that every second countable space is a Lindelöf space.
- (e) Show that continuous image of a compact set is compact.
- 3. Answer any one question:

 6×1

(a) Define Homeomorphism between two topological spaces. Show that no two of the spaces (0, 1), (0, 1) and [0, 1] are homeomorphic.

PG/IVS/MTM-401/13

(Continued)

- (b) Which of the following subsets of \mathbb{R}^2 are compact?
 - (i) $X_1 = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 10^{-100}\};$

(ii)
$$X_2 = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 10^{100}\};$$

(iii)
$$X_3 = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 3\};$$

(iv)
$$X_4 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \text{ and } xy \neq 0\}.$$

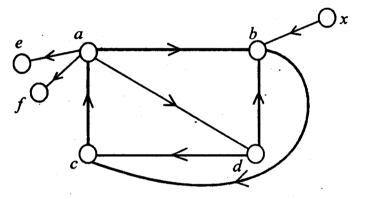
[Internal Assessment: 5 Marks]

GROUP-B

(Data Structure and Design and Analysis of Algorithms)

[Marks: 25]

Answer Q.No. 4 and any two from the rest.


4. Answer any two questions:

- 2×2
- (a) Define data structure with example.
- (b) Compare the data structure array and linkedlist.

PG/IVS/MTM-401/13

(Turn Over)

- (c) Define time and space complexities of an algorithm.
- (d) Define tree and binary tree. Also, define height of a tree.
- Write an algorithm to arrange a set of numbers in ascending order using quick sort technique.
 Write the time complexity of this algorithm.
- 6. Describe DFS and BFS. Find the DFS tree for the following graph starting from the vertex x. (2+2)+4

PG/IVS/MTM-401/13

(Continued)

- 7. Describe a method to store a polynomial into a linked list. Write an algorithm to add two polynomials without using a third list. 2+6
- 8. Define queue and stack. What are the differences between strem? Describe circular queue. What is its advantage over linear queue? How we can add an element into a circular queue?

 2+1+2+1+2

[Internal Assessment: 5 Marks]

PG/IVS/MTM-401/13

MV-125