M.Sc. 2nd Semester Examination, 2013 APPLIED MATHEMATICS WITH OCEANOLOGY

PPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Functional Analysis)

PAPER-MTM-205

Full Marks: 50

Time: 2 hours

Answer Q. No.1 and 2 and any four from Q. No. 3 to 8

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any two questions:

- 2×2
- (a) Define seperable metric space. Give an example of a metric space which is not seperable.
- (b) Let H be a Hilbert space and fix $Y \in H$. Define $f(x) = \langle x, y \rangle$, $\forall X \in H$. Find ||f||.

(Turn Over)

- (c) Prove that any function from a discrete metric space into a metric space is continuous.
- 2. Answer any one:

 8×1

8

8

- (a) If X is a normed space, M is a closed subspace of X, $x_0 \in X \setminus M$ and $d = \text{dist}(x_0, M)$, show that there is an $f \in X^*$ such that $f(x_0) = d$, f(x) = 0 for all $x \in M$, and ||f|| = 1.
- (b) Using Banach fixed point theorem determine the solution of the system of equations

$$x = 0.2x - 0.5y + 1.3$$
$$y = 0.4x + 0.3y + 0.3$$

- 3. Let V, W and U be normed spaces. Prove that:
 - (i) B(V, W) is a normed space.
 - (ii) If $T \in B(V, W)$ and $S \in B(W, U)$ Prove that $ST \in B(V, U)$ and $||ST|| \le ||S|| ||T||$. 3+4
- 4. (a) State uniform Boundedness principle.

PG/IIS/MTM-205/13

(Continued)

- (b) Suppose $\{T_n : n = 1, 2, 3, ...\} CB(X,Y)$ is a sequence of bounded operators, where X is a Banach space and Y is a normed space, and suppose the sequence $\{T_n x\}_{n=1}^{\infty}$ is a convergent sequence in Y, for each $x \in X$. Show that the equation $T(x) = \lim_{n \to \infty} T_n(x)$ defines a bounded operator $T \in B(X, Y)$.
- 5. (a) Prove: (polarization identity) For $x, y \in V$,

$$4 < x.y > = \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}.$$

where V is a inner product space.

- (b) Assume that $\{u_{\alpha}\}_{\alpha \in I}$ is an orthonormal set in the inner product space X and $x \in X$. Let $E_x = \{u_{\alpha} : \langle x, u_{\alpha} \rangle \neq 0\}$. Then show that E_x is a countable set.
- 6. (a) Define positive operator. Prove that positive operators are self-adjoint operators.
 - (b) If H be a complex Hilbert space and $A \in BL(H)$ and $\langle Ax, x \rangle = 0$, $\forall x \in H$, then show that A = 0. 1 + 2 + 4

PG/IIS/MTM-205/13

(Turn Over)

- 7. (a) State and Prove Projection theorem.
 - (b) Let H be a Hilbert space and ECH. Prove that Span $E = E^{\perp \perp}$.
- 8. (a) If f(x) = f(y) for every bounded linear functional f on a normed space X, show that x = y.
 - (b) Is dual of a non-zero normed space non-zero? 2+5

[Internal Assessment: 10 Marks]

MV-125