M.Sc. 1st Semester Examination, 2013

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Ordinary Differential Equations and Special Functions)

PAPER-MTM-103

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from Q. No. 2 to Q. No. 5

The figures in the right-hand margin indicate marks

1. Answer any five questions:

 2×5

- (a) Show that $J_n(z)$ is an odd function of z if n is odd.
- (b) Define fundamental set of solutions and fundamental matrix for system of differential equation.

- (c) What do you mean by Wronskian in ODE and its utility?
- (d) Define orthogonal functions associated with Strum-Liouville problem.
- (e) What do you mean indicial equation concerning on ODE?
- (f) Let $P_n(z)$ be the Legendre polynomial of degree n. If

$$1 + z^5 = \sum_{n=0}^{5} C_n P_n(z),$$

then find the value of C_5

- (g) When a boundary problem is a Strum-Liouville problem?
- 2. (a) Find the general solution of the equation

$$2z(1-z) w''(z) + w'(z) + 4w(z) = 0$$

by the method of solution in series about z = 0, and show that the equation has a solution which is polynomial in z.

6

(b) Show that

$$n P_n(z) = z P_n'(z) - P_{n-1}'(z),$$

where $P_n(z)$ denotes the Legendre polynomial of degrees n.

3. (a) Find the characteristics values and characteristic functions of the Sturm-Liouville problem.

$$(x^3y')' + \lambda xy = 0$$
; $y(1) = 0$, $y(e) = 0$. 5

(b) Determine whether the matrix

$$B = \begin{pmatrix} e^{4i} & 0 & 2e^{4i} \\ 2e^{4i} & 3e^{i} & 4e^{4i} \\ e^{4i} & e^{i} & 2e^{4i} \end{pmatrix}.$$

is a fundamental matrix of the system

$$\frac{dX}{dt} = AX$$
 where

$$X = \begin{pmatrix} x_1 \\ 0 & 1 \\ x_2 \\ x_3 \end{pmatrix}, A = \begin{pmatrix} 1 & -3 & 9 \\ 0 & -5 & 18 \\ 0 & -3 & 10 \end{pmatrix}.$$
 5

(Turn Over)

4. (a) Solve the following boundary value problem using Green's function

$$\frac{d^2y}{dx^2} + y = x^2; \ y(0) = y(\pi/2) = 0.$$

(b) Prove that

4.9.

$$\frac{d}{dz}\left[z^{-n}J_n(z)\right] = -z^{-n}J_{n+1}(z),$$

where $J_n(z)$ is the Bessel's function.

3

5. (a) If the vector functions $\phi_1, \phi_2,, \phi_n$ defined as follows:

$$\boldsymbol{\phi}_{1} = \begin{bmatrix} \boldsymbol{\phi}_{11} \\ \boldsymbol{\phi}_{21} \\ \vdots \\ \boldsymbol{\phi}_{nl} \end{bmatrix}, \quad \boldsymbol{\phi}_{2} = \begin{bmatrix} \boldsymbol{\phi}_{12} \\ \boldsymbol{\phi}_{22} \\ \vdots \\ \boldsymbol{\phi}_{n2} \end{bmatrix}, \quad \dots \boldsymbol{\phi}_{n} = \begin{bmatrix} \boldsymbol{\phi}_{ln} \\ \boldsymbol{\phi}_{2n} \\ \vdots \\ \boldsymbol{\phi}_{nn} \end{bmatrix}$$

be *n* solutions of the homogeneous linear differential equation $\frac{dx^2}{dt} = A(t) x(t)$ in the

interval $a \le t \le b$, then these n solutions are linearly independent in $a \le t \le b$ iff Wronskian $W[\phi_1, \phi_2, \phi_n] \ne 0 \quad \forall t$, on $a \le t \le b$.

(b) Find the Legendre polynomial $P_n(z)$ by solving the following differential equation

$$(1-z^2)\frac{d^2w}{dz^2} - 2z\frac{dw}{dz} + n(n+1)w = 0.$$

[Internal Assessment: 10 Marks]