M.Sc. 1st Semester Examination, 2013

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Real Analysis)

PAPER-MTM-101

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any four from Q. No. 2 to Q. No. 7

The figures in the right-hand margin indicate marks

1. Answer any four questions:

 2×4

- (a) Define cover, open cover in metric space. Give an open cover of (0, 1).
- (b) If $f(x) = 4x^2 + 5$ and g(x) = 8 then find the RS-integral

$$\int_{1}^{4} f(x) dg(x)$$

- (c) Let $f:[a,b] \to \mathbb{R}$ be a function of bounded variation on [a,b] and $[c,d] \subset [a,b]$. Prove that f is a function of bounded variation on [c,d].
- (d) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. "Identify" f([a, b]).
- (e) Show by an example that closed and bounded subset of a metric space is not necessarily compact.
- (a) Show that a metric space (X, d) is connected if and only if every continuous function f: X→ {0, 1} is constant, where the two point set {0, 1} is considered to be a metric space under discrete metric.
 - (b) Verify wheather the following sets are connected and compact sets:

 4
 - (i) Set of all rationals of IR.
 - (ii) $\{(x, y) \in \mathbb{R}^2 : xy \neq 0 \text{ and } x^2 + y^2 = 5\}.$

(Continued)

- 3. (a) Prove that the necessary and sufficient condition for a function to be of bounded variation on [a, b] is that it can be expressed as the difference between two monotonic function on [a, b].
 - (b) Find the variation function for the function $f(x) = [x] x, x \in [0, 2]$.
- 4. (a) Show that $f \in R(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$, there exists a partition P of [a, b] such that $U(P, f, \alpha) L(P, f, \alpha) < \epsilon$.
 - (b) Evaluate the RS-integral

$$\int_{-2}^{3} 2x^4 d(2|x|+3x^2-5).$$

- 5. (a) Define a measurable function on [a, b]. Prove that any continuous function defined over [a, b] is always measurable on [a, b]. 1 + 3
 - (b) Let $\{E_n\}$ be a sequence of measurable sets such that $E_{n+1} \subseteq E_n$ for each $n \in \mathbb{N}$. If $\mu(E_1)$ is finite, then show that

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

6. (a) Let f be a non-negative measurable function on X and E be a measurable subset of X be such that

$$\int_{E} f d\mu = 0.$$

Then show that f = 0 a.e. $\mu(x)$ on E.

- (b) If $f_1, f_2 \in L^1(\mu)$ then show that $f_1 + f_2 \in L^1(\mu)$ and $\int (f_1 + f_2) d\mu = \int f_1 d\mu + \int f_2 d\mu$. 5
- 7. (a) Define Lebesgue integral for unbounded measurable function on [a, b].
 - (b) Let f(x) be defined on [0, 1] as

$$f(x) = \frac{1}{x^{4/5}}, \quad 0 < x \le 1$$
$$= 0, \quad x = 0.$$

Show that f(x) is Lebesgue integrable on [0, 1]. Find the value of the integral.

[Internal Assessment: 10 Marks]

3