M.Sc. 4th Semester Examination, 2013 # APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING (Non-linear Optimization / Dynamical Oceanology - II) #### PAPER-MTM-404 Full Marks: 50 Time: 2 hours The figures in the right-hand margin indicate marks #### MTM-404(OR) (Non-linear Optimization) ## Q. No. 1 is compulsory and answer any three from the rest 1. Answer any *five* from the following: 2×5 (a) How is the degree of difficulty defined for a geometric programming problem? Calculate the degree of difficulty of the following function $$f = 4 + 2x_1^2x_2^{-1} + 3x_2^{-4} + 5x_1^{-1}x_2^3$$ (Turn Over) - (b) Define Nash equilibrium solution and Nash equilibrium outcome in mixed strategies for bimatrix game. - (c) Define differentiable concave vector function. - (d) What do you meant by 'Theorems of the alternative" in connection with non-linear programming? - (e) What is stochastic programming problem? Write two important methods for solving stochastic programming problem. - (f) What is the necessity of studying non-linear programming problem? - (g) Write down the differences between the quadratic and non-linear programming problems. - 2. (a) Prove that all strategically equivalent bimatrix games have the same Nash equilibria. - (b) State and prove Fritz John Saddle point sufficient optimality theorem. What are the (Continued) basic differences between the necessary criteria and sufficient criteria of Fritz John Saddle point theorem? 3 + 7 - 3. (a) State and prove Slater's theorem of alternative in connection with non-linear programming. - (b) Minimize the following function $$x_1 x_2 x_3^{-2} + 2x_1^{-1} x_2^{-1} x_3 + 5x_2 + 3x_1 x_2^{-1}$$ $x_1, x_2, x_3 > 0.$ 4 + 6 - 4. (a) What are the differences between Beale's and Wolfe's method for solving quadratic programming problem. - (b) Use Beale's method to solve the following NLPP: Minimize $$Z = 6 - 6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$ subject to the constraints: and $$x_1, x_2 \ge 0.$$ $x_1 + x_2 \le 2$ $x_1 + x_2 \le 3$ (Turn Over) PG/IVS/MTM-404/13 1 5. (a) Use the chance constrained programming technique to find an equivalent deterministic form of the following stochastic programming problem: Minimize $$f(x) = \sum_{j=1}^{n} C_j x_j$$ subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $x_j \ge 0, i. j = 1, 2, ..., n$ where C_j is normally distributed random variable. - (b) Define the following: - (i) the primal quadratic minimization problem. - (ii) the quadratic dual (maximization) problem. - 6. (a) Let θ be a numerical differentiable function on an open convex set μCR^n . Prove that θ is concave on μ iff $$\theta(x^2) - \theta(x^1) \le \nabla \theta(x^1)(x^2 - x^1)$$ for each $x^1, x^2 \in \Gamma$. PG/IVS/MTM-404/13 (Continued) 7 3 (b) State Farkas' theorem. Give the geometric interpretation of it. [Internal Assessment: 10 Marks] #### MTM-404(OM) (Dynamical Oceanology - II) Answer any four questions: 10×4 5 - Approximate the momentum equation when both the Ekman number and Rossby number are small. Hence deduce the equations of geostrophic approximation. - 2. Deduce the following equation related to the contribution of Ekman layer on a sloping surface: $$\frac{\partial^4 v}{\partial \rho^4} + 4v = 4\sec\theta \frac{\partial p}{\partial x'}$$ (symbols have their usual meanings). 10 3. (a) Show that potential vorticity is conserved in case of shallow water theory. (Turn Over) (b) Show that for large scale of motion vertical equation of motion can be written as 5+5 $$\frac{\partial p}{\partial z} = -\rho g.$$ - 4. Establish the condition for the existence of inertial boundary layer in a two-dimensional model. Show that accelerated boundary flow exists at the western shore of the ocean. - 5. Discuss pure drift current in a sea as a result of wind stress acting on the surface of the sea, assuming that there is no pressure gradient with the water mass. - 6. Show that the total flow function ψ is the Ekman's theory for a small Ekman number E satisfies the equation $$\Omega E \sqrt{\sin \varphi} \nabla_h^2 \psi + \frac{2\Omega}{a^2} \frac{\partial \psi}{\partial \lambda} = \text{rot}_z(\tau)$$ where the symbols have their usual meaning. 10 7. Give a mathematical formulation of the linear model of thermocline, show that the (Continued) perturbation temperature T_s outside the Western boundary layer may be expressed in the form $$T_s = \frac{2\theta(y)}{\pi} \int_0^\infty \frac{\sin x\tau}{\tau} \left(1 - e^{-x^2 f^2 \tau^4}\right) d\tau$$ where the symbols have their usual meaning. 10 [Internal Assessment: 10 Marks]