2017

MATHEMATICS

[Honours]

PAPER - IV

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

[OLD SYLLABUS]

GROUP - A

(Analytical Dynamics)

[Marks: 40]

1. Answer any one question:

 15×1

(a) (i) A heavy particle slides down a rough cycloid whose base is horizontal and vertex downwards. Show that (I) if it starts from rest at the cusp and comes

to rest at the vertex then $\mu^2 e^{\mu x} = 1$ (II) if it starts from rest at a point where the tangent makes an angle θ with the horizon and comes to rest at the vertex then

$$\mu e^{\mu \theta} = \sin \theta - \mu \cos \theta$$

where μ is the coefficient of friction.

- (ii) A particle moves in a plane with an acceleration which is parallel to the axis of Y and varies as the distances from the axis of X. Write the equation of motion and show that the equation of the path may be written in the form
 - (1) $y = a \cos(Ax + B)$ when acceleration is attractive.
 - (II) $y = Ae^{\alpha x} + Be^{-\alpha x}$ when the acceleration is repulsive. The curve $x = a(\theta \cos\theta)$, $y = a(1 \cos\theta)$, where a, e are constants and θ is a parameter, is described under the

action of force parallel to the axis of X, show that the force varies

as
$$\frac{(e-\cos\theta)}{\sin^3\theta}$$
. $2+2+4$

- (b) (i) A particle of mass m moves under a central attractive force $m\mu (5u^3 + 8c^2u^5)$ and is projected from an apse at a distance C with velocity $3\sqrt{\mu}/C$; prove that the orbit is $r = C \cos 2/3\theta$ and that it will arrive at the origin after a time $\frac{\pi c^2}{8\sqrt{\mu}}$.
 - (ii) One end of an elastic string, modulus of elasticity X and of natural lenght l is fixed to a point on a smooth horizontal table and the other end is tied to a particle of mass 'm' lying on the table. The particle is pulled to a distance such that the length of the string is equal to twice its natural length l and is released.

Show that the time of a complete oscillation is

$$2(\pi+2)\sqrt{\frac{lm}{\lambda}}.$$
 8

2. Answer any two questions:

 8×2

- (a) Find the radial and cross-radial components and velocity and acceleration of a particle moving in plane in polar co-ordinates (r, θ) .
- (b) If the velocity of a body in an elliptic orbit, major axis 2a, is the same at a certain point P, whether the orbit being described in a periodic time T about one focus S or in periodic time T' about the other focus S', prove that

$$SP = \frac{2aT'}{T+T'}$$
 and $S'P = \frac{2aT}{T+T'}$

(c) A particle describes a path which is nearly a circle about a centre of force f(x) at its centre where u = l/r. Find the condition under which this may be a stable motion.

3. Answer any three questions:

 3×3

- (a) Find the escape velocity at an altitude of 900 km above the surface of the earth.
- (b) A shell of mass m is ejected from a gun of mass M by an explosion which generates kinetic energy E. Prove that the initial velocity of the shell is

$$\sqrt{\frac{2ME}{(M+m)m}}.$$

(c) A spherical drop of liquid falling freely in a vapour acquires mass by condensation a constant rate K. Show that velocity after falling from rest in time t is

$$\frac{1}{2}gt\left(1+\frac{m}{M+kt}\right).$$

Where M is the initial mass of the drop.

(d) The velocity V of a particle moving along the x axis given by $V^2 = 16 - x^2$. Prove that the motion is simple harmonic.

GROUP - B

(Linear Programming and Game Theory)

[Marks : 36]

- 4. Answer any one question of the following: 15×1
 - (a) (i) Using simplex method to solve the following LPP:

Maximize
$$Z = 2x_1 + 9x_2 + x_3$$

subject to $x_1 + 4x_2 + 2x_3 \ge 5$
 $3x_1 + x_2 + 2x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$.

(ii) In rectangular game the pay-off matrix given below:

$$\begin{bmatrix} 2 & 2 & 1 & -2 & -3 \\ 4 & 3 & 4 & -2 & 0 \\ 5 & 1 & 2 & 3 & 6 \end{bmatrix}$$

use dominance to reduce the game 2×2 and then solve the game.

(iii) Solve the following 2×4 game geometrically

Player A
$$A_1 \begin{bmatrix} 3 & 2 & -1 & 4 \\ A_2 & 5 & 6 & -2 \end{bmatrix}$$

(b) (i) Use duality to solve the following LPP:

Maximize
$$Z = 3x_1 - 2x_2$$

subject to $x_1 \leq 4$
 $x_2 \leq 6$
 $x_1 + x_2 \leq 5$
 $x_2 \geq 1$
and $x_1, x_2 \geq 0$.

(ii) Solve the following transportation problem:

	D_1	D_2	D_3	
O_{i}	8	7	3	60
O_2	3	8	9	70
O_3	11	3	5	80
-	50	80	80	

-

8

- 5. Answer any two of the following questions: 8×2
 - (a) Use two phase simplex method to

Minimize
$$Z = x_1 - 3x_2 + 2x_3$$

subject to $3x_1 - x_2 + 2x_3 \le 7$
 $-2x_1 + 4x_2 \le 12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

(b) Solve graphically the following LPP

Minimize
$$Z = 2x_1 + 3x_2$$

subject to $-x_1 + 2x_2 \le 4$
 $x_1 + x_2 \le 6$
 $x_1 + 3x_2 \ge 9$
and $x_1, x_2 \ge 0$.

Hence show that feasible region of a LPP is a convex set.

(c) A transport company has offices in five localities A, B, C, D and E. Some day the offices located at A and B has 8 and 10 spare trucks whereas offices at C, D, E required

6, 8, 4 trucks respectively. The distance in kilometer between the five localities given below:

То	С	D	E
. A	2	5	3
From B	4	2	7

How should the trucks from A and B be sent to C, D and E so that the total distance covered by the trucks is minimum. Formulate the problem as L.P.P. and hence solve it graphically.

6. Answer any one of the following:

 3×1

- (a) Define convex set in R". What do you mean by convex combination of vectors in R"?
- (b) Show that although (2, 3, 2) is a feasible solution to the system of equations

$$x_1 + x_2 + 2x_3 = 9$$

$$3x_1 + 2x_2 + 5x_3 = 22$$

$$x_1, x_2, x_3 \ge 0$$

it is not a basic solution. Find all the basic feasible solution of the given system.

7. Answer any one question:

 2×1

- (a) Show that $X = \{x : |x| \le 2\}$ is a convex set.
- (b) Graph the convex hull of the point: (0, 0), (0, 1), (1, 2) (1, 1), (4, 0). Which of these points is an interior point of the convex hull? Explain it as a convex combination of the extreme points.

GROUP - C

(Tensor Calculus)

[Marks: 14]

8. Answer any one question:

 8×1

5

(a) (i) If A^i be an arbitrary contravariant vector and $C_{ij} A^i A^j$ be an invariant, then show that $(C_{ij} + C_{ji})$ is a covariant tensors of the second order.

- (ii) If a_{ij} be skew-symmetric tensor and A^{ij} be a contravariant vector, then show that $a_{ij}A^{i}A^{j}=0$.
- (b) Define Ricci Tensor. Show that Ricci tensor is symmetric. 2+6
- 9. Answer any two questions:

 3×2

- (a) Prove that the inner product of tensors A_q^p and B_l^{ij} is a tensor of rank three.
- (b) If f be a scalar function of co-ordinates x^{j} , then prove that
 - (i) $\frac{\partial f}{\partial x^j}$ is a covariant vector.
 - (ii) d^{xj} is a contravariant vector.
- (c) If A_i is a covarient vector, examine whether $\frac{\partial A_i}{\partial x^j} \frac{\partial A_j}{\partial x^i}$ are the component of a tensor or not.