Total Pages-10 UG/III/MATH/H/VIII/17(New)

2017

MATHEMATICS

[Honours]

PAPER - VIII

Full Marks: 60

Time: 3 hours

The figures in the right hand margin indicate marks

[NEW SYLLABUS]

GROUP - A

(Numerical Analysis)

[Marks : 25]

1. Answer any two questions:

 8×2

(a) (i) Prove that the remainder in approximating f(x) by the interpolation, polynomial

using interpolating points $x_0, x_1, ..., x_n$ is of the form

$$\frac{w(x)f^{n+1}(\xi)}{(n+1)!}$$

where $w(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ and ξ lies between the smallest and the largest of the numbers $x, x_0, x_1, ..., x_n$.

(ii) Show that the maximum error in linear interpolation is given by $\frac{h^2M_2}{8}$ where.

$$M_2 = \max_{0 \le x \le 1} \left| f''(x) \right|$$

- (b) (i) Derive the error in Simpson's $\frac{1}{3}$ rd rule from Newton-Cotes' quadrature formula. 4
 - (ii) Describe Gauss-Seidel method for solving a system of n linear equations assuming that the system has unique solution.

- (c) (i) Explain the Newton-Raphson method to determine approximately one simple real root of an equation f(x) = 0 and discuss its convergence.
 - (ii) Prove that

$$f(x_k, x_{k-1}, ..., x_{k-n}) \frac{\nabla^n f(x_k)}{n!h^n}$$

where the arguments are equispaced and ∇ being a backword difference operator. Hence show that

$$f(x_n, x_{n-1}, ..., x_0) = \frac{\nabla^n f(x_n)}{n!h^n}$$

2. Answer any three questions:

- 3 × 3
- (a) Using Lagrange's interpolation formula express

$$\frac{x^3 - 10x + 13}{x^3 - 6x^2 + 11x - 6}$$

as a sum of partial fractions.

(b) Using Euler's method evalute y(1) correct upto three significant figures from the differential equation

$$\frac{dy}{dx} = xy$$
,

given that y(0) = 1 and take h = 0.2.

3

3

- (c) Prove that sum of Lagrangian function is 1. 3
- (d) Use Euler-Maclaurin formula to find the value of the series

$$\frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \dots + \frac{1}{99^2}.$$

(e) Establish

$$\mu^2 \equiv 1 + \frac{1}{4}\delta^2$$

where μ , δ represent average and central difference operators respestively.

GROUP -- B

(Real Analysis - III)

[Marks : 25]

3. Answer any one questions:

 15×1

- (a) (i) Let D be a subset of R and a series of function Σf_n be uniformly convergent on D to a function f. Let $x_0 \in D'$ (the derived set of D) and $\lim_{x \to x_0} f_n(x) = a_n$. Then show that
 - (1) the series $\sum a_n$ is convergent, and
 - (II) $\lim_{x \to x_0} f(x)$ exists and equals $\sum a_n$.
 - (ii) Let $\{f_n\}$ be a sequence of functions on [a, b] such that for each $n \in \mathbb{N}$, $f'_n(x)$ exists for all $x \in [a, b]$. If the sequence of derivatives $\{f'_n\}$ converges uniformly on [a, b] to a function g and the sequence $\{f_n\}$ converges at least at one point $x_0 \in [a, b]$, then show that the sequence $\{f_n\}$ is uniformly convergent on [a, b] and if the limit function be f then show that f'(x) = g(x) for all $x \in [a, b]$.

- (b) (i) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence 1. If $\sum_{n=0}^{\infty} a_n$ be convergent then show that series $\sum_{n=0}^{\infty} a_n x^n$ is uniformly convergent on [0, 1]. 5
 - (ii) If $f: [-\pi, \pi] \to \mathbb{R}$ be bounded and integrable and $\{a_n, b_n\}$ are its fourier coefficients, then show that

$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \text{ convergence and}$$

$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \le \frac{1}{\pi} \int_{-\pi}^{\pi} [f(x)]^2 dx. \quad 5$$

(iii) Let $D \subset \mathbb{R}$ and for each $n \in \mathbb{N}$, $f_n: D \to \mathbb{R}$ is bounded on D. If the sequence $\{f_n\}$ be uniformly convergent on D, then show that the limit function f is bounded on D. Is the converse true? Justify your answer.

4. Answer any one question:

 8×1

(a) (i) Examine whether the sequence

$$\left\{\frac{nx}{1-n^2x^2}\right\}$$

is uniformly convergent on $[0, \infty]$.

(ii) Prove that a power series can be integrated term-by-term on any closed and bounded interval contained within the interval of convergence.

(b) (i) Find the Fourier series expansion of

$$f(x) = \begin{cases} \frac{1}{4}\pi x & \text{if } 0 \le x \le \frac{\pi}{2} \\ \frac{1}{4}\pi(\pi - x) & \text{if } \frac{\pi}{2} < x \le \pi \end{cases}$$

defined on $[0, \pi]$.

3

3

(ii) Show that the series

$$\sum_{1}^{\infty} \frac{1}{n^2 + [f(x)]^2}$$

is uniformly convergent on any set $D \subset \mathbb{R}$ on which f is defined.

5. Answer any one question:

2×1

5

(i) Determine the radius of convergence of the power series

$$\sum_{n=2}^{\infty} \frac{(x+2)^n}{\log n}.$$

2

(ii) Show that the series

$$1 - \frac{e^{-2x}}{2^2 - 1} + \frac{e^{-4x}}{4^2 - 1} - \frac{e^{-6x}}{6^2 - 1} + \dots$$

converges uniformly for all $x \ge 0$.

2

GROUP - C

(Linear Algebra - II)

[Marks: 10]

6. Answer any one question:

 8×1

(a) (i) Let V and W be vector spaces over a

field F. Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis of V and $\beta_1, \beta_2, ..., \beta_n$ be arbitrarily chosen elements (not necessarily distinct) in W. Then show that there exists one and only one linear mapping $T: V \to W$ such that $T(\alpha_i) = \beta_i$ for i = 1, 2, ..., n.

(ii) Find a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that Im T is the subspace

 $U = \{(z, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \text{ of } R^3$. Where Im T represents the image of T.

- (b) (i) Let V and W be finite dimensional vector spaces of same dimension over a field F and T: V → W be a linear mapping. Then show that T is an isomorphism if and only if T maps a basis of V to a basis of W.
 - (ii) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (2, 1, 1), (1, 2, 1), (1, 1, 2) of \mathbb{R}^3 to the

5

vectors (1, 1, 1), (1, 1, 1), (1, 1, 1)respectively. Find Ker T, Im T. Verify that dim Ker T + dim Im T = 3.

Where Ker T and ImT represent the Kernel of T and image of T.

7. Answer any one question:

 2×1

- (a) Let V and W be vector spaces over a field F. Let $T: V \to W$ be a linear mapping. Then show that T is injective if and only if $Ker(T) = \{0\}$. 2
- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear mapping defined by $T(x, y, z) = (x + y + z, 2x + y + 2z, x + 2y + z), (x, y, z) \in \mathbb{R}^3$. Find the kernel of T.

NEW

Part-III 3-Tier

2017

MATHEMATICS

(Honours)

PAPER-VIII

(PRACTICAL)

Full Marks: 30

(PROBLEM - 24 + PNB & VIVA - 6)

TIME - 2 HOURS

Group-D

Answer two questions:

2×12

The questions must be allotted by Lottery.

Program must be written either in FORTRAN-language or in C-language.

Set-I

- 1. Write a program to find the area and circumference of a circle whose diameter is given.

 Demonstrate your program for the diameters 1234.78 cm and 23445.44 cm.
- 2. Write a program to find the roots of a quadratic equation $ax^2 + bx + c = 0$. Demonstrate your program for the equation $32.12456x^2 120.2256x 332234.913 = 0$.
- 3. Write a program to find G.C.D between two integers. Demonstrate your program for the numbers 310298 and 23972.
- 4. Write a program to subtract the matrix A from the matrix 12A.
- 5. Write a program to subtract a matrix B from the matrix A.
- 6. Write a program which will convert uppercase characters of string to lowercase characters. Demonstrate your program for the string '1901. Rabindra Nath Sarkar'.

- 7. Write a program to sort a group names in descending order. Demonstrate your program for the set of strings Gopal, Krishna, Kanai, Surya, Barun, Pati.
- 8. Write a program to rewrite name of person in short form (i.g. Janaki Ranjan Sarkar in the form J. R. Sarkar).
- 9. Write a program in to find the mean and standard deviation of a set of 10 numbers. Demonstrate your program for the numbers 31.214, 11.82 19.08, 122.336, 22.323, 4532, 1.230, 423.21, 10323.0.
- 10. Write a program find a root of the equation (x 1.5) (x 2.5) (x 3.5) (x 4.5) = 0 by bisection method, correct up to 5 decimal places starting from x = 1.0.
- 11. Write a program to find a real root near x = 1 of the equation $x^{50} 1 = 0$ using Regula-falsi method correct up to 4 decimal places.
- 12. Write a program to evaluate $\int_{1.6}^{2.4} (2 \log 2x + x^{13}) dx$ by Simpson $\frac{1}{3}$ rd rule taking 100 subintervals.
- 13. Write a program to find the value of y(0.2) from the differential equation $\frac{dy}{dx} = x^2 + y + 1.03$, x(0.05) = 1 by fourth order Runge-Kutta methods.

NEW

Part-III 3-Tier

2017

MATHEMATICS

(Honours)

PAPER-VIII

(PRACTICAL)

Full Marks: 30

(PROBLEM - 24 + PNB & VIVA - 6)

TIME - 2 HOURS

Group-D

Answer two questions:

 2×12

The questions must be allotted by Lottery.

Program must be written either in FORTRAN-language or in C-language.

Set-III

- 1. Write a program to to test whether a matrix of order n × n is unit or not.
- 2. Write a program to determine whether a matrix of order 5×5 is singular or not.
- 3. Write a program to check a string for palindrome without using liberary function.
- 4. Write a program which will converts lowercase characters of a string to uppercase characters.
- 5. Write a program to find the third and fourth central moments for the sample 23.98, 34.2, 562.9, 231.4, 908.23, 342.33.
- *6. Write a program to compute the value of sine series up to 15 and 20 terms and compare the result when x = 0.75. (Write only one program).
- 7. Write a program to find the value of n! for n = 5, 15, 70 and 100.

- 8. Write a program to find the values of ${}^{n}C_{r}$ for given values of n and r. Demonstrate your program for n = 19, r = 9.
- 9. Write a program to test whether a positive integer is prime number or not. Demonstrate your program for the integers 290323, 12, 153, 34577.
- 10. Write a program to evaluate $\int_{0}^{1} (23x + e^{\cos x}) dx$ by Simpson 1/3rd rule taking 500 subintervals.
- 11. Write a program to find a real root near x = 1 of the equation $x^{60} 1 = 0$ using Regula-falsi method correct up to 4 decimal places.
- 12. Write a program to find a root of $x = \cos x$ by bisection method, correct up to 5 decimal places.
- 13. Write a program to find a real root of the equation $3x^5 10x^4 4x^2 + 2x + 8 = 0$ by Newton-Raphson method correct up to 5 decimal places.
- 14. Write a program to find the value of y(0.1) from the differential equation

$$\frac{dy}{dx} = x + y + 100$$
, $x(0) = 1.2$ by second order Runge-Kutta methods.

15. Write a program to find the sum of the series:

$$1 + \frac{1}{(2 \times 5)^2} + \frac{1}{(2 \times 5)^4} + \frac{1}{(2 \times 5)^6}$$
 correct up to 5 decimal places.

NEW

Part-III 3-Tier

2017

MATHEMATICS

(Honours)

PAPER—VIII

(PRACTICAL)

Full Marks: 30

(PROBLEM - 24 + PNB & VIVA - 6)

TIME — 2 HOURS

Group-D

Answer two questions:

 2×12

The questions must be allotted by Lottery.

Program must be written either in FORTRAN-language or in C-language.

Set-III

- 1. Write a program to to test whether a matrix of order $n \times n$ is unit or not.
- 2. Write a program to determine whether a matrix of order 5×5 is singular or not.
- 3. Write a program to check a string for palindrome without using liberary function.
- 4. Write a program which will converts lowercase characters of a string to uppercase characters.
- 5. Write a program to find the third and fourth central moments for the sample 23.98, 34.2, 562.9, 231.4, 908.23, 342.33.
- *6. Write a program to compute the value of sine series up to 15 and 20 terms and compare the result when x = 0.75. (Write only one program).
- 7. Write a program to find the value of n! for n = 5, 15, 70 and 100.

- 8. Write a program to find the values of ${}^{n}C_{r}$ for given values of n and r. Demonstrate your program for n = 19, r = 9.
- 9. Write a program to test whether a positive integer is prime number or not. Demonstrate your program for the integers 290323, 12, 153, 34577.
- 10. Write a program to evaluate $\int_{0}^{1} (23x + e^{\cos x}) dx$ by Simpson 1/3rd rule taking 500 subintervals.
- 11. Write a program to find a real root near x = 1 of the equation $x^{60} 1 = 0$ using Regulafalsi method correct up to 4 decimal places.
- 12. Write a program to find a root of $x = \cos x$ by bisection method, correct up to 5 decimal places.
- 13. Write a program to find a real root of the equation $3x^5 10x^4 4x^2 + 2x + 8 = 0$ by Newton-Raphson method correct up to 5 decimal places.
- 14. Write a program to find the value of y(0.1) from the differential equation

$$\frac{dy}{dx} = x + y + 100$$
, $x(0) = 1.2$ by second order Runge-Kutta methods.

15. Write a program to find the sum of the series :

$$1 + \frac{1}{(2 \times 5)^2} + \frac{1}{(2 \times 5)^4} + \frac{1}{(2 \times 5)^6}$$
 correct up to 5 decimal places.