2017

STATISTICS

[Honours]

PAPER - VI

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

(Statistical Inference-II)

[Marks: 35]

Answer Q. No. 1 and any one from Q. Nos. 2 & 3

17 12 Ner

- 1. Answer any five from the following questions: 5×5
 - (a) Show that if $\{T_n\}$ be a sequence of statistics such that

$$\sqrt{n}(T_n-\theta) \stackrel{L}{\to} N(0,\sigma^2(\theta)),$$

then $\sqrt{n}(g(T_n)-g(\theta)) \stackrel{L}{\to} N(0,(g'(\theta))^2 \sigma^2(\theta))$, provided $g(\cdot)$ admitting first order derivative with $g'(\theta) \neq 0$.

- (b) Derive shortest confidence interval for the mean of a normal population with unknown variance.
- (c) Define power, level of significance and size of a non-randomized test.
- (d) On the basis of a random sample of size 5 from Poisson distribution with unknown parameter $\lambda(0 < \lambda < \infty)$, construct the MP test of exact size $\alpha(0 < \alpha < 1)$ for testing $H_0: \lambda = 3$ against $H_1: \lambda = \lambda_1(>3)$.
- (e) Let $(X_1, X_2, ..., X_n)$ is a random sample of size n from $U(\theta, \theta+1)$. To test $H_0: \theta=0$

against $H_1: 0 > 0$ the following test was used:

Reject H_0 iff $X_{(1)} > 1$ or $X_{(n)} > C$ where C is a constant and $X_{(1)} = \min_{1 \le i \le n} \{X_i\}$, $X_{(n)} = \max_{1 \le i \le n} \{X_i\}$. Determine C so that the size of the test is α .

- (f) Describe how you use the variance stabilization transformation for testing the equality of variances of two normal populations.
 - (g) Define most powerful, uniformly most powerful and uniformly most powerful unbiased tests.
 - (h) Describe Mann-Whitney test procedure.
- 2. (a) State Neyman-Pearson fundamental lemma.
 - (b) Suppose $(X_1, X_2, ..., X_n)$ is random sample of size n from a population having pdf

$$f(x) = \begin{cases} \theta e^{-\theta x} & \text{; } 0 < x < \infty \\ 0 & \text{; otherwise,} \end{cases}$$

where $0 < \theta < \infty$.

Derive UMP critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$. Show that the test can be done using a chi-square statistic.

3. Describe the likelihood ratio (LR) test procedure based on a random sample of size n drawn from $N(\mu, \sigma^2)$, where μ and σ^2 are both unknown, for testing $H_0: \mu = \mu_0$ against the alternatives $H_1: \mu < \mu_0, H_2: \mu > \mu_0$.

GROUP - B

(Theory of Sample Survey)

[Marks: 35]

Answer Q. No. 4 and any one from Q. Nos. 5 & 6

- 4. Answer any five from the following questions: 5×5
 - (a) State some advantages of sample survey over complete census.
 - (b) For an SRSWOR of size n drawn from a

population of size N, consider a class of estimators of population mean (\overline{Y}) ,

$$\overline{y}' = \sum_{r=1}^n a_r y_r,$$

where a_r is the constant depending at the rth draw, y_r is the value of study variable y on the unit selected at rth draw. Show that \overline{y}' is

unbiased for
$$\overline{Y}$$
 iff $\sum_{r=1}^{n} a_r = 1$.

Show also that, under this condition,

$$V(\overline{y}) = S^2 \left[\sum_{r=1}^n a_r^2 - \frac{1}{N} \right],$$

where S^2 is population variance with divisor (N-1).

(c) Let Y be the population total of the study variable y. Define ratio estimator \hat{y}_R of Y. Show that \hat{y}_R is a biased estimator of Y. Obtain an approximate expression for bias of ratio estimator \hat{y}_R of population mean \overline{Y} .

- (d) Distinguish between two-stage sampling and stratified Random Sampling. Indicate the cases when a systematic sampling is equivalent to stratified random sampling.
- (e) Obtain an unbiased estimator of the variance of sample proportion in case of simple random sampling drawn with replacement (SRSWR) from a finite population.
- (f) Give an unbiased estimator of population total under two-stage sampling with SRSWOR at both the stages. Show that variance of the estimator is greater than the variance of the corresponding single-stage estimator.
- (g) Obtain a ratio estimator of population mean under double sampling and also obtain its mean square error.
- (h) Mention the basic principles of sample survey. Discuss the non-sampling errors that may arise in a large-scale sample survey.

- 5. (a) In stratified random sampling using SRSWOR in each stratum, obtain an unbiased estimator of population mean.
 - (b) Show that, with usual notations, for estimating population mean of a stratified population under SRSWOR in each stratum

$$V_{\rm rand} \ge V_{\rm prop} \ge V_{\rm opt}$$
. 10

- 6. (a) Describe the method of Linear systematic sampling. Also indicate the modification for circular systematic sampling.
 - (b) Show that the variance of the unbiased estimator of population mean may be expressed as

$$\frac{(N-1)}{nN}S^2[1+(n-1)\rho],$$

where S^2 is population variance with divisor (N-1) and ρ is the intra-class correlation coefficient between the values of the pairs of units. Hence show that systematic sampling is better than SRSWOR if

$$\rho \le -\frac{1}{N-1}.$$

GROUP - C

(Statistical Quality Control (SQC))

[Marks : 20]

Answer Q. No. 7 Or Q. No. 8 and Q. No. 9

- 7. Answer any *two* from the following questions: 5×2
 - (a) How do you calculate control limits for a C-chart?
 - (b) Distinguish clearly between
 - (i) Producer's risk and Consumer's risk.
 - (ii) 3σ-limits and specification limits.
 - (c) Derive the expression of OC curve in double sampling inspection plan.
 - (d) Describe the technique of single sampling plan for inspection by variables assuming normal distribution with known standard deviation.
- 8. (a) Explain the construction of \overline{X} chart for detection of lack of control in a continuous flow of manufactured product.

- (b) When S-chart used in place of R-chart?
- (c) Give practical examples where attribute control chart can be used.
- 9. Describe single sampling inspection plan in detail. Give a general outline of methods for determining the constants involved in single sampling plan.