UG/II/STAT/H/III/17(Old)

2017

STATISTICS

[Honours]

PAPER - III

Full Marks: 100

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[OLD SYLLABUS]

GROUP - A

Answer any three questions:

 18×3

1. (a) Find the moment generating function of $X \sim N_p(\mu, \Sigma)$. Hence show that any subvector of X also follows multivariate normal distribution.

- (b) If $X_{P\times 1}$ follows $N_P(\mu, \Sigma)$, find out the distribution of $(X \mu)^T \Sigma^T (X \mu)$.
- 2. (a) What do you mean by multiple correlation coefficient? Derive the formula of multiple correlation coefficient.
 - (b) Supose X_1, X_2, X_3 be three variates with the correlation coefficient ρ_{ij} between X_i and $X_j(i \neq j)$. Show that $\rho_{12}^2 + \rho_{13}^2 + \rho_{23}^2 \leq 2\rho_{12} \rho_{13} \rho_{23} + 1.$ Hence show that if $\rho_{13} = r, \rho_{13} = -r, \text{ then } 1 \leq \rho_{23} \leq 1 2r^2.$
 - 3. Define an F statistic with $df = (n_1, n_2)$. Hence obtain its probability density function. Also, obtain its mean and variance. 12 + 6
 - 4. (a) If X and Y are independents distributed bionomial random variables with parameters (n_1, p) and (n_2, p) , find the distribution of X + Y. Also obtain the conditional distribution of X, given X + Y = n.

9

	(b) If X follows $N(0, 1)$, find the p.d.f of $Y = X^2$.
5.	(a) If $X_1, X_2,, X_n$ are distributed Independently as normal variable with means μ_i ($i = 1, 2,, n$) and variances σ_i^2 ($i = 1, n$) i.e. $(X_i \sim N(\mu_\rho, \sigma_i^2))$, $i = 1,, n$, show that
	$a + \sum_{i=1}^{n} b_i X_i$ (at least are b_i being non-zero) is normally distributed. Find its mean and variance.
80	(b) If X_1 , X_2 are $U(0, 1)$ random variables. Obtain the p.d.f of $X_1 + X_2$. GROUP – B
	Answer any one question: 18 x 1
6.	(a) What do you mean by a control chart for statistical quality control? Define 3-σ

limits and probability limits.

(b)	Describe the construction of mean chart					
	when the parametric values are known and					
	when they are unknown.					

- 7. (a) Explain the terms AOQL, LTPD, producer's risk and consumer's risk.
 - (b) Describe double sampling plan for attributed and derive its OC function.

GROUP - C

Answer any one question:

 18×1

- 8. (a) Write an algorithm to calculate the standard deviation and the range of an ungrouped data set.
 - (b) Write an algorithm to find the Prime numbers from the first 100 natural numbers.

9.	(a)	Write a	C-p	tograi	mme	to gene	rate	a random	
		sample	of	size	100	from	the	standard	
j		normal distribution.						12	

(b) Write a C-programme to calculate A.M. and H.M of ungrouped data. 6