NEW

Part II 3-Tier

2017

COMPUTER SCIENCE

(Honours)

PAPER-V (Set-II)

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Answer any one questions taking one from each Group (Lottery Basis).

Unit - II

Group-A

(Digital Electronics)

1×20

- 1. Design a circuit convert BCD numbers to corresponding gray codes and verify its truth table.
- 2. Design and implement a full subtractor using recoders and verify its truth table.
- 3. Design and parity generator circuit using basic gates and verify its truth table.

(Turn Over)

- 4. Design a magnitude comparator using universal gates and verify its truth table.
- 5. Design and implement a 4 bit shift register using JK flip-flop.
- 6. Design a MOD 10 counter using JK master slave flip-flop and verify its truth table.
- 7. Design and implement a synchronous counter (4 bit) using JK master slave flip-flop.
- 8. Design and implement 4 bit synchronous counter using JK master slave flip-flop.
- 9. Design and implement a serial adder using flip-flops.
- Design and implement a 4 bit register (PIPO, PISO) using JK flip-flop.

Group-B

(Microprocessor and Interfacing)

Microprocessor

Answer any one question (lottery basis): 1×12

1. Write an assembly language program to move 20 data (8 bit) from one memory location to another memory location.

(Continued)

- 2. Write an 8085 program to find all negative number in a set of data and add them. Result will be store in memory location.
- 3. Write an assebly language program to seperate even number and add them from a series of numbers. Result will be store in some memory location.
- 4. Write an ALP to sort 15 numbers (8 bit) from some memory location in descending order.
- 5. Write an ALP to generate 10 Fibonacci number from 02H to FFH.
- 6. Write an ALP to find the highest and lowest number from a list of byte and add them.
- 7. Write an ALP to add on by all positive numbers from a list of byte.
- 8. Write an ALP to convert a number from binary to BCD.

Interfacing using 8255

Answer any one question (lottery basis): 1×8

 Write an ALP to display "VU123H". Using seven segment displays.

- 2. Write an ALP to interface 7 segment display with 8085 using 8285 to display "INTERFACE".
- 3. Write an ALP to generate a square wave through 8255 port.
 - 4. Write an ALP to scroll a letter 'U' through 7 segment.

Viva Voce : 5

Practical Note Book: 5