2017

CHEMISTRY

[Honours]

PAPER - VI(A+B)

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Use separate scripts for Group-A and Group-B

[OLD SYLLABUS]

GROUP - A

(-Organic)

Group—A(a)

Answer any one question:

 15×1

1. (a) Draw the structure of synthetic equivalent

of the following synthon skeleton:

1 + 1

- (b) Rationalise briefly the following facts: 2
 "Phenanthrene reacts easily with diazomethane
 Where as anthracene fails to record this reaction"
- (c) What do you mean by "Antipyretic drug"?

 Out line the synthesis of paracetamol from nitrobenzene. 1+2
- (d) Hydrolysis of sucrose results equimolar mixture of glucose and fructose. Specific rotation of mixture and glucose are -20° and +52.5°. What is the specific rotation of fructose?
- (e) Predict the products $(A \rightarrow C)$ $1\frac{1}{2}$

$$\underbrace{O \xrightarrow{NH_2} \xrightarrow{HNO_2}}_{COOH} \underbrace{HNO_2}_{\Delta} [A] \xrightarrow{C}_{S} B (C_8H_6S) + C$$

- (f) Write down the structure of an acidic amino acid at (i) pH < 7 (ii) pH > 7 (iii) isoelectric point.
- (g) Explain with appropriate reagent and mechanism of the reductive N-alkylation of primary amine. $1\frac{1}{2}$
- 2. (a) Carry out the following conversion.

Glycine → Phenylalanine (Using Erlenmeyer azalactone synthesis)

- (b) "Furan can be regarded as a masked 1, 4- dicarbonyl compound" Explain.
- (c) Predict the product of the following with mechanistic explanation (if any): 2+2+2

(iii) Glucose
$$\frac{\text{Ph}-\text{N(Me)}-\text{NH}_2}{\text{excess.}}$$
?

- (d) What are the demerits of acyloin condensation in ring synthesis? How these problem can be overcome? 2+1
- (e) Write down the structure of a L-amino acid which is a R-enantiomer.
- (f) Put the appropriate reagent.

Group-A(b)

Answer any two questions:

 10×2

3. (a) Write down the product of the following reaction which follows [3, 3]- sigmatropic pathway and justify.

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{\Delta}?$$

(b) Predict the 1:1 adduct of the following reaction under thermal condition and explain. 2

(c) Carry out the following transformation using Diels-Alder reaction as one of the steps.

(d) Compare the rate of alkaline hydrolysis of the following compounds and explain.

(e) Predict the product(s) and explain why does a change from Li⁺ < Na⁺ < K⁺ favour O-alkylation over C- alkylation.

4. (a) Give retrosynthetic and synthetic path of the following compound from suitable starting material. (any two): $2\frac{1}{2}+2\frac{1}{2}$

(b) Convert:

$$1\frac{1}{2}+1\frac{1}{2}$$

(i) CHO CH₂OH
$$H \xrightarrow{} OH \longrightarrow = O$$

$$CH_2OH$$

$$CH_2OH$$

(ii)
$$CH_2OH$$
 CH_2OH CH_2OH OMe CH_2OH CH_2OH CH_2OH

(c) What is isoelectric point? Find out the relation between pH; pKa₁ and pKa₂ of glycine at isoelectric point. 1+1

- 5. (a) Predict the product(s) $(A \rightarrow C)$ with mechanism. 3×2
 - (i)
 D-Fructose Tollen's
 Reagent A (A mixture of two aldonic acid)

- (b) What is meant by specific base pairing in double helix structure of a DNA molecule? 2
- (c) How will you convert?

 Cyclohexanone → EtOOC (CH₂)₅ OH
- 6. (a) Write suitable reagent(s) of the following transformations: 1+1+1

$$(ii) OH OH$$

$$(iii) OH$$

$$HO - O - (CH_2)_3 - OH \longrightarrow HO - O - (CH_2)_3 - O - Me$$

- (b) How will you convert CH₃COCOCH₃ to CH₃COCH₃ using CH₃Li as one of the steps. 2
- (c) Write retrosynthesis and forward synthesis of the following: 2+2

(d) What are metallo enzymes?

1

Group -A(c)

Answer any five questions:

 2×5

7. (a) Put the appropriate reagent.

UG/III/CHEM/H/VI/17(Old)

(Continued)

- (b) Write down the role of t-RNA and r-RNA in protein synthesis.
- (c) What happens when pyridine N-oxide is refluxed with acetic anhydride?
- (d) A student wrote the following Diels-Alder adduct (X) from isoprene and acrolein. Is it correct? Why?

$$\mathcal{L}^{(X)}_{CHO}$$
.

- (e) How can you determine the C-terminal residue of a peptide chain?
- (f) How will you distinguish D-glucose and D-fructose chemically?
- (g) Predict the product with mechanism.

(h) Find out the pericyclic path(s) of the following conversion:

(i) Compound 'A' undergoes alkaline hydrolysis at faster rate than compound 'B'. - Explain.

(j) On partial reduction by Ni/H₂, the middle benzene ring of 'P' undergoes reduction at faster rate than terminal one-- Explain.

GROUP - B

(Inorganic)

Group-B(a)

Answer any one question:

8.	(a)	Why K ₃ [CuF ₆] is paramagnetic while K[AgF ₄] is diamagnetic.	2
	(b)	The complex $[Cu(H_2O)_6]^{2+}$ is succeptible to John-Teller distortion more than $[Ti(H_2O)_6]^{3+}$ — Explain.	2
	(c)	What is the 'Co-operative effect' in the oxygen transport phenomena?	2
	(<i>d</i>)	Explain briefly the principle of separation of lanthanides by ion exchange method.	3

(f) Will oxidation of Cp₂Fe to [Cp₂Fe]⁺ produce a substantial change in Metal-Carbon (M-C) bond length?

(e) Starting from K₂[PtCl₆] how would you

prepare Zeise's salt?

 15×1

	(g)	contribution to spin only magnetic moment value.	2
9.	(a)	Give the preparation and uses of $(\eta^5-C_5H_5)_2\text{TiCl}_2$.	3
	(b)	$[NiCl_4]^{2-}$ is tetrahedral while $[PdCl_4]^{2-}$ and $[PtCl_4]^{2-}$ are square planar — Explain.	2
	(c)	cis- $[Co(en)_2F_2]^{\oplus}$ is more intensely coloured than transform.	2
	(d)	What is the role of globin chain in hemoglobin oxygenation?	2
40 12	(e)	The N-O distance in [Co(diars) ₂ NO] ²⁺ is 168 pm and the [Co-N-O bond angle is 180°. Reaction of the complex with SCN [⊕] forms [Co(diars) ₂ (NCS)NO] ⁺ in which N-O distance is 185 pm and [Co-N-O bond angle is 135°- Explain.	
		[diars = 1, 2-bis(dimethylarsino) benzene]	3

(f)	Name the metal ion(s) present in the active site of the following biomolecules:
8	(i) Carbonic Anhydrase(ii) Rubredoxin.
(g	Explain why V(CO) ₆ is readily reduced to the monoanion.
	Group—B(b)
	Answer any two questions: 10 ×
10. (of compounds generally undergo this type of reaction?
(b) K ₂ Ba[Cu(NO ₂) ₆] has distorted octahedral structure but K ₂ Pb[Cu(NO ₂) ₆] has regular octahedral.
	c) To remove Pb ²⁺ from human body it is better to use Na ₂ Ca (edta) than Na ₂ H ₂ (edta)—Explain.

(d)	Draw a plot of $1/\chi_M$ vs temperature T(K) for materials which obey	2
31	 (i) Curie law. (ii) Curie-Weiss law. (χ_M = Magnetic susceptibility) 	
(e)	$[Pt(NH_3)_2Cl_2]$ forms two isomers. One isomer gives $[Pt(NH_3)_2(tu)_2]^{2+}$ on treatment with thiourea (tu); the other isomer gives $[Pt(tu)_4]^{2+}$ on similar treatment. Identify the isomers.	2
(a)	The position of CO in the spectrochemical series is higher compared to CN^{Θ} .	2
(b)	Discuss about the Laporte selection rule for electronic spectral transitions.	2
(c)	Write down the mechanism through which the nerve cells maintain Na ⁺ and K ⁺ concentrations inside and outside of the cell.	3
(d)	Copper (II) formate tetrahydrate have a	

magnetic moment value of 1.67 BM.

11.

	(e)	Give one example of optically active square planar complex.	1
12.	(a)	Lanthanides exhibit +3 oxidation state in general while actinides can show variable oxidation state-Explain.	3
	(b)	Draw the catalytic cycle for hydro- formylation reaction.	3
(A)	(c)	A deep blue solution containing Co(II) in concentrated HCl gradually turns pale pink on addition of excess water.	2
	(d)	What do you mean by TDS and COD of a sample of water?	2
13.	(a)	State the role of PS-I and PS-II in photo- synthesis using z-scheme.	3
Č,	(b)	Give the flow-sheet diagram of extraction of pure Uranium metal from Pitchblende. Write the related chemical reactions.	

(c) Identify A, B, C and D in the following reaction scheme:

(d) Compute Δ_0 and B' for the CrF₆³⁻ from the given absorption energies 34, 400, 22700 and 14900 cm⁻¹.

Group-B(c)

Answer any five questions: 2×5

- 14. (a) Compare the coordination sphere of cytochrome a with that of cytochrome C.
 - (b) Draw the all possible isomers of [Co(NH₁)(OH)₂Cl₁]²⁻.

(c)	What happens when zinc uranyl acetate is added to an aqueous solution of NaCl? Give equation.	•
(d)	The C-C bond length in the co-ordinated olefin is greater than that in the free olefin.	
(e)	Electronic Absorption spectra of lanthanides consists of sharp lines whereas those of the transition metal ions consist of broad bands — Explain.	
(ƒ)	Name one gold drug and state its therapeutic application.	
(g)	Find the values of x assuming validity of the $18e^{\Theta}$ rule.	
	(i) $\operatorname{Co_2(CO)_x(C_2H_2)}$	
	(ii) $\operatorname{Fe}(\eta^5 - \operatorname{Cp})(\eta^1 - \operatorname{Cp})(\operatorname{CO})_x$	
(h)	What do you mean by half-wave potential in polarography?	