NEW

2017

Part-II 3-Tier

MATHEMATICS

(General)

PAPER-II

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

(Differential Calculus)

[Marks: 45]

1. Answer any one question :

 1×15

(a) (i) Show that if $x_n = \frac{3n+1}{n+2}$ then the sequence $\{x_n\}$ is strictly increasing. Is the sequence convergent? Justify your answer. Also find its limits. 3+2+1

(Turn Over)

- (ii) Give example to show that the sum and product of two irrational numbers may be rational or irrational.
- (iii) Use Cauchy's criterion to prove that the sequence $\{x_n\}$, where $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, is divergent. 5
- (iv) Evaluate $\lim_{n\to\infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$.

(b) (i) If
$$f(x) = 2|x| + |x-2|$$
, find $f'(1)$.

(ii) State D' Alembert ratio test for positive term series.Examine the convergence of the series

$$2x + \frac{3x^2}{8} + \frac{4x^3}{27} + \cdots \quad (x > 0).$$
 2+5

- (iii) If $\lim_{x\to 0} \frac{\sin 2x + 9\sin x}{x^3}$ be finite, find the value of a and the limit.
- (iv) The function f is defined as

$$f(x) = -2\sin x, \quad -\pi \le x \le -\pi/2$$

= a.sinx + b, $-\pi/2 < x < \pi/2$
= cosx, $\pi/2 \le 6 \le \pi$

If the function f(x) is continuous in the interval $-\pi \le x \le \pi$, find the values of a and b.

2. Answer any one question :

1×8

- (a) (i) State Cauchy's Mean Value Theorem. Deduce Lagrange's Mean Value Theorem from Cauchy's Mean Value Theorem. 2+2
 - (ii) In the Mean Value Theorem, $f(h) = f(0) + h f'(\theta h)$, $0 < \theta < 1$. Show that the limiting value of θ as $h \to 0$ is $\frac{1}{2}$, when $f(x) = \cos x$.
- (b) (i) Expand the polynomial $f(x) = x^3 2x^2 + 3x + 5$ in a series of positive integral powers of (x 2).

(ii) Evaluate
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
.

3. Answer any four questions:

 4×4

(a) Investigate for what values of x, the function $f(x) = x^3 - 9x^2 + 24x - 12$ has maximum or minimum.

4

(b) Show that the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ touches the

straight line $\frac{x}{a} + \frac{y}{b} = 2$ at the point (a, b), whatever be the value of n.

C/17/B.Sc./Part-II(G)/3T(N)/Math./2

(Turn Over)

(c) If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2 = 4ax$ then show that

$$\rho_1^{-2/3} + \rho_2^{-2/3} = (2a)^{-2/3}$$
.

- (d) Find the asymptotes of the cubic $x^3 2y^3 + xy(2x y) + y(x y) + 1 = 0.$
- (e) Find the envelope of the family of parabolas $\alpha v^2 = 2x + 12\alpha^3$, where α is a parameter.
- (f) Verify the Schwarz's Theorem for the following function at (0, 0).

$$f(x, y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & x^2 + y^2 = 0 \end{cases}$$

4. Answer any three questions:

 2×3

- (a) If $z = e^{xy^2}$, $x = \cos t$, $y = \sin t$ find $\frac{\partial z}{\partial t}$ at $t = \pi/2$.
- (b) Show that the length of the normal chord at any point on the catenary $y = c \cosh(x/c)$ is y^2/c .
- (c) State the necessary condition for convergence of an infinite series Σu_n ($u_n > 0$) and justify it with an example.

2

- (d) Give an example of a function which is discontinuous everywhere. Justify your answer. 1+1
- (e) Find the nth derivative of sin(ax + b).

2

Group-B

(Integral Calculus)

[Marks: 30]

5. Answer any one question :

1×16

A. (a) Evaluate any two:

 2×4

(i)
$$\int \frac{x^3 dx}{(x-a)(x-b)(x-c)}$$

4

4

(ii) $\int \sin^{-1} \sqrt{\frac{x}{x+a}} \, dx$

(iii) $\int \frac{x^2 + 1}{x\sqrt{1 + x^4}} \, dx$

4

(b) Obtain the reduction formula for $\int \tan^n x \, dx$, n being positive integer greater than 1. Hence find the value of

$$\int_{0}^{\pi/4} \tan^{6} x \, dx.$$

4+4

B. (a) Answer any two questions:

 2×4

(i) Evaluate

$$\lim_{n\to\infty} \left[\frac{1^2}{n^3+1^3} + \frac{2^2}{n^3+2^3} + \dots + \frac{n^2}{n^3+n^3} \right]. \tag{4}$$

- (ii) Evaluate $\int_0^{\pi/2} \frac{dx}{5 + 3\cos x}$.
- (iii) Show that $\int_0^2 |1-x| \, dx = 1$.
- (b) (i) Apply Beta and Gamma functions show that

$$\int_0^1 x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} = \frac{3\pi}{128} \text{ by putting } x = \sin^2 \theta.$$
 4

- (ii) Show that $\int_0^\infty e^{-x^4} x^2 dx \times \int_0^\infty e^{-y^4} dy = \frac{\pi}{8\sqrt{2}}$. 4
- 6. Answer any one question :

1×9

(a) (i) Find the area in the 1st quadrant included between the parabola $y^2 = bx$ and the circle $x^2 + y^2 = 2bx$.

4

(ii) Fine the volume of the solid generated by revolving one arc of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ about its base.

- (b) (i) Find the surface of the sphere generated by the circle $x^2 + y^2 = a^2$ about the x-axis.
 - (ii) Show that length of the arc of the parabola $y^2 = 16x$ measured from the vertex to an extrimity of the la-

tus rectum is
$$4\left\{\sqrt{2} + \ln\left(\sqrt{2} + 1\right)\right\}$$
.

7. Answer any one question:

 1×5

- (i) Prove that $\iiint (x^2 + y^2 + z^2) dxdydz = \frac{4\pi}{5}$ when the integration is taken throughout the region $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}.$
- (ii) Evaluate

$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{a}^{b} (y^{2}+z^{2}) dzdydx.$$
 4

Group-C

(Differential Equation)

[Marks: 15]

8. Answer any two questions:

2×6

(a) (i) Show that a constant a can be found so that $(x + y)^a$ is an integrating factor of $(4x^2 + 2xy + 6y)dx + (2x^2 + 9y + 3x)dy = 0$ and hence solve the equation.

(ii) Solve:
$$\sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$$
.

(b) (i) Show that if
$$\frac{d^2\theta}{dt^2} = g\theta = 0$$
 and if $\theta = \alpha$ and $\frac{d\theta}{dt} = 0$
when $t = 0$ then $\theta = \alpha \cos \sqrt{\frac{g}{l}} t$, g, l being positive.

(ii) Solve:
$$3\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 8y = 5\cos x$$
.

(c) (i) Solve:

$$\frac{d^3y}{dx^3} - \frac{4}{x}\frac{d^2y}{dx^2} + \frac{5}{x^2}\frac{dy}{dx} - \frac{2y}{x^3} = 1.$$

- (ii) Find the eigen values and eigen functions for the differential equation $\frac{d^2y}{dx^2} + \lambda y = 0$ ($\lambda > 0$) satisfying the boundary conditions y(0) = 0 and $y(\pi/2) = 0$.
- 9. Answer any one question:

1×3

- (i) Find the equation to the cone whose slope at any point is equal to y + 2x and which passes through the origin.
 3
- (b) Find the integrating factor of $xdy ydx = cos(\frac{1}{x})dx$.

3