OLD

2017

Part-II 3-Tier

MATHEMATICS

(General)

PAPER-II

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

(Differential Calculus)

[Marks: 45]

1. Answer any one question :

- (a) (i) Prove that $\sqrt{2} + \sqrt{3}$ is an irrational number. 4
 - (ii) If $x_n = (-1)^n$ and $y_n = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$. Prove that the sequence $\{y_n\}$ converges although the sequence $\{x_n\}$ is not convergent.

(iii) Evaluate:
$$\lim_{n\to\infty} \left\{ \frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{n^3}{n^4} \right\}$$
 3

(iv) Let
$$f(x) = x \sin\left(\frac{1}{x}\right)$$
, $x \neq 0$
= 0, $x = 0$

Show that f(x) is continuous at x = 0 but not differentiable at x = 0.

- (b) (i) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. 3
 - (ii) Examine the convergence or divergence of the series:

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{13}{24} \cdot \frac{x^5}{5} + \dots$$

- (iii) Show that f(x) = |x| + |x-2| is continuous but not derivable at x = 0 and at x = 2.
- (iv) Show that

$$\lim_{n \to \infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right] = 0$$

2. Answer any one question :

1×8

(a) (i) If $u = \phi(H_n)$ where H_n is a homogeneous function of degree n in x, y then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n\frac{F(u)}{F'(u)}$$
 where $F(u) = H_n$.

(ii) If
$$y = \cos(10\cos^{-1}x)$$
 show that $(1-x^2) y_{12} = 21xy_{11}$.

(b) (i) State Rolle's theorem. Prove by example that the conditions of Rolle's theorem are a set of sufficient conditions but not necessary.

2+2

(ii) Evaluate
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$
.

3. Answer any four questions :

- (a) Tangents are drawn from the origin to the curve $y = \sin x$. Prove that their point of contact lie on $x^2y^2 = x^2 y^2$.
- (b) Find the envelope of the straight line $y = mx + \frac{a}{m}$, m being variable parameter $\{m \neq 0\}$.
- (c) Show that maximum value of $x + \frac{1}{x}$ is less than its minimum value.

- (d) Prove that the asymptotes of a cubic $(x^2 y^2)y 2ay^2 + 5x 7 = 0$ form a triangle of area a^2 sq. unit.
- (e) If $u = \log(x^3 + y^3 + z^3 3xyz)$, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 3.$$

(f) Find the radius of curvature and centre of curvature of the curve

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}.$$

4. Answer any three questions:

- (a) Examine whether Lagrange's Mean Value Theorem can be applied to be function f(x) = |x| in the interval [-1, 1] or not.
- (b) Show that the function $u(x, y) = x^3 + y^3 + 3x^2y + 3xy^2$ is a homogeneous function. Hence verify Euler's theorem for this function.
- (c) Prove that the function f(x, y) = |x| + |y| is continuous at (0, 0).
- (d) State Taylor's Theorem with Canchy's form of Remainder. 2
- (e) State Schwarz's theorem on commutativity of mixed partial derivative. 2

Group-B

(Integral Calculus)

[Marks: 27]

5. Answer any one question:

 1×15

A. (a) Evaluate any two:

2×4

(i) $\int e^x \frac{2-\sin 2x}{1-\cos 2x} dx$

4

(ii) $\int \frac{\sqrt{x}}{x-1} dx$

4

(iii) $\int_0^{2\pi} \frac{dx}{5 + 3\cos x} = \frac{\pi}{2}$

4

(b) If $I_n = \int_0^{\pi/2} \sin^n x dx$ show that $I_n = \frac{n-1}{n} I_{n-2}$, where n is a positive integer > 1.

Hence deduce $I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdot \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$,

n is even positive integer.

4+3

B. (a) Answer any two questions:

 2×4

(i) Evaluate

$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right)^2 \dots \left(1 + \frac{n^2}{n^2} \right)^n \right\}^{\frac{1}{n}}.$$

(ii) Show that
$$\int_0^1 \frac{\log(1+x)dx}{1+x^2} = \frac{\pi}{8}\log 2$$
.

- (iii) Express $\int_a^b e^{-x} dx$ as the limit of a sum and hence evaluate it.
- (b) (i) Define Beta function. Show that B(m, n) = 2

$$\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta \,d\theta,$$

 $\forall m, n > 0$ where B(m, n) is a Beta function. 1+2

(ii) Show that
$$\int_0^1 \frac{dx}{(1-x^6)^{\frac{1}{6}}} = \frac{\pi}{3}$$
.

6. Answer any one question:

 1×8

- (a) (i) Find the arc length of the curve $x = t^2$, $y = t^3$ between (1, 1) and (4, 8).
 - (ii) Compute the area of the region enclosed by the graphs of the equations $y = e^x$, $y = e^{-x}$ and x = 2.

4

- (b) (i) Find the volume of the ring generated by revolving the circle $x^2 + (y b)^2 = a^2$ about x-axis.
 - (ii) Find the area of one loop of the curve $\rho = a \cos 2\theta$.

4

7. Answer any one question :

1×4

- (i) Show that $\iint \left(1 \frac{x^2}{a^2} \frac{y^2}{b^2}\right) dxdy = \frac{\pi ab}{8} \text{ over the posi-}$
 - tive quadrant within the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (ii) Evaluate $\iiint z^2 dxdydz$ extended over the hemisphere $z \ge 0$ and $x^2 + y^2 + z^2 \le a^2$.

Group-C

(Differential Equation)

[Marks: 18]

8. Answer any two questions:

(a) (i) Solve:
$$\frac{dy}{dx} + \frac{1}{x}\sin 2y = x^3\cos^2 y$$
.

(ii) Solve:
$$y = p^2 x + p$$
, $p = \frac{dy}{dx}$.

(b) (i) Obtain the general and singular solutions of
$$y = px + p - p^2 \text{ where } p = \frac{dy}{dx}.$$

(ii) Solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 5\cos x$$
, given that $y = 0$ and
$$\frac{dy}{dx} = 0$$
 when $x = 0$.

ax

(c) (i) Find the eigen values and eigen functions of
$$\frac{d^2y}{dx^2} + \lambda y = 0 \quad (\lambda > 0) \text{ where } y(0) = 0 \text{ and } \frac{dy}{dx} = 0$$
 at $x = \pi$.

(ii) Solve the following simultaneous equations:

$$\frac{dx}{dt} + 4x + 3y = t$$

$$\frac{dy}{dt} + 2x + 5y = e^t$$

9. Answer any one question:

- (i) One kilogram of some radioactive element becomes 990 g.m. after 24 hours. Find its half life.
- (b) Deduce the differential equation of a simple pendulum.