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ABSTRACT 
Perturbation methods were used to study the sound wave propagation in several acoustic 
wave guides with weak surface undulations. These methods are highly complicated and 
applicable only in a very narrow domain of the wave guide. Moreover, such solutions 
create singularities in the solution. Singularities in solution of physical problems originate 
due to unrealistic assumptions. Therefore, a much simpler and widely applicable 
analytical method of solution was developed using separation of variables method and 
presented recently to such wave guide problems. In this article, application of that 
solution to find wave propagation in several periodic waveguide structures is enumerated. 

Keywords: Method of separation of variables and wave motion in periodic structures. 

1. Introduction 
Nayfeh [6] had developed the method of multiple scales which is a perturbation method. 
This method of multiple scales is used to analyze the wave propagation in two-
dimensional hard-walled ducts with sinusoidal walls in [7]. For traveling waves, 
resonance occurs whenever the wall wave number is equal to the difference of the 
wave numbers of any two duct acoustic modes. The results show that neither of 
these resonating modes could occur without strongly producing the other. 

Nayfeh and Kandil [8] applied the method of multiple scales to analyze 
the wave propagation in cylindrical hard-walled ducts having weak undulations 
which need not be periodic. Results are presented for two and three interacting 
modes. In the case of modes traveling in the same direction in a uniform duct, two 
interacting, spinning or non spinning modes propagate un attenuated in an 
undulated duct. Moreover, neither of them can exist without strongly exciting the 
other. On the other hand, in the case of modes propagating in opposite directions, 
they may be cut off as a result of the interaction. 

Nusayr [9] applied the method of multiple scales is to analyze the wave 
propagation in a rectangular hard‐walled duct whose walls have weak periodic 
undulations. Interacting modes traveling in the same direction propagate un 
attenuated. The energy is continuously exchanged between the two modes. The 
modes that travel in opposite directions are attenuated and, there, may be cut off. 
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This cutoff will depend upon the geometry of the cross section as well as the 
phase‐angle differences between the undulations of the opposite walls. 

Hawwa [3] considers acoustic wave propagation in ducts with rigid walls 
having square-wave wall corrugations in the context of a perturbation 
formulation. Using the ratio of wall corrugation amplitude to the mean duct half 
width, a small parameter is defined and two levels of approximations are 
obtained. The first-order solution produces an analytical description of the 
pressure field inside the duct. The second-order solution yields an analytical 
estimate of the phase speed of waves transmitting through the duct. The effect of 
wall corrugation density on acoustic impedance and wave speeds is highlighted. 
The analysis reveals that waves propagating in a duct with square-wave wall 
corrugation are slower than waves propagating in a duct with sinusoidal wave 
corrugation having the same corrugation wavelength. 

Anand and George [1] have studied the sound wave propagation in a shallow 
water waveguide with a sinusoidal surface waves by applying the method of multiple 
scales. V.Sundaravadivel [11] studied the sound wave propagation in a three dimensional 
Oceanic waveguide by applying perturbation method.  

All the above mentioned authors used perturbation methods which are applicable 
only to wave guides with low frequency and smaller amplitude surface waves. Moreover, 
perturbation method of solution generates singularity in the solution and complicates the 
determination of solution at points close to the singularity. Therefore, later on John 
Daniel [4] developed a simpler analytical solution based on the method of separation of 
variables. In this article, application of that solution to find wave propagation in several 
periodic waveguide structures is enumerated. First the theory based on the method of 
separation of variables to solve the wave propagation problem in a ocean acoustic 
waveguide with a wavy surface is presented and then the application of the method to 
solve wave propagation problems in several periodic acoustic, radio and optical 
waveguides is explained. 
 
2. Theory 
Consider an oceanic wave guide with a wavy surface as shown in the following Figure-1. 
The surface wave is a single frequency wave propagating in x direction which can be 
expressed mathematically as  

Z = h (x, t) = h0 + a Cos (αx - Ωt)                                                                               (1) 
Where h0 is average channel depth, α is wave number, Ω is circular frequency and a is 
amplitude of the surface wave.  Let   ρi, Ci (i = 1,2) denote respectively the density and 
velocity of sound in the two media.  Medium 2 is assumed to be a semi-infinite one.  The 
interface between medium 1 and medium 2 is assumed to be flat.   
Let us assume that a plane sound wave propagates in the wave guide in the direction x.  
The acoustic pressure P (x, y, z, t) can be determined by solving the wave equation.  
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                                                           Figure - 1 
 
 
 
P (x, y, z, t) = 0 at z = h (x, t)                                                                                    (3a) 
P(x , y, + 0, t) = P (x, y, -0, t)                                                                                    (3b) 
where Vz  is z component of particle velocity P � 0 a  z � - ∞                              (3c) 
 
where +0 and  -0 indicates that the interface z = 0 is approached from the sides z > 0 and 
z < 0 respectively.   
Since there is no variation of pressure in y direction, equation (2) can be written as  
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Let us assume that Ω << ω where ω is angular frequency of sound wave. Therefore, 
equation (4) can be written as 
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Therefore, by separation of variables methods, 
P (x, z) = Ψn(z).Px(x)                                                                                           (7a) 
Px(x) = Sin(ζn.x)                                                                                                  (7b) 

The function Ψn(z)  must satisfy the equation 
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with the boundary conditions  
ψn = 0 at z = h (x, t)                                                                                            (9a) 
ψn (+0, x, t) = ψn (-0, x, t)                                                                                      (9b) 
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Ψn  �  0 as z � -∞                                                                                 (9d) 
The solution to the equation (8) is 
Ψn  = Nn sin χn (z/h – 1) for 0 < z < h 

= Cn eDnz for z < 0                                                                                              (10) 
where Nn, Cn, χn  & Dn, are functions of  x, t, Ψn  must satisfy the orthonormality 

condition. 
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where  ρ(z)    = ρ1 for 0 < z < h 

            = ρ2 for 0 < z < h 

and mnδ  is kronecker delta. 
By substituting the equating (10) into equation (1) and (8) we get  
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Substitution of equation (10) into equations (9b) & (9c) gives, 
-Nn sinχn = Cn       (15) 
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Equations (13) to (16) can be combined to get 
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where q =  ρ2 / ρ1  From equation (12) we get 
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χn can be found by solving the equation (17). 
The solution as in the equation (10) can be expanded using Taylor’s series as in the 
following line. 
Ψn  = Nn sin χn (z/h – 1) = Nn.sinχn(z/h0.(1- (a/h0). Cos(αx – Ωt))-1)                         (19) 
Since a/h0 is less than 1, as per Taylor’s series, F(y) = 1/ (1- y) =  Σ ym where m is an 
integer varies from 0 to ∞ and y =  (a/h0). Cos(αx – Ωt). Therefore, equation (19) could 
be written as,   
Ψn  = Nn.sinχn(z/h0. Σ ((a/h0). Cos(αx – Ωt))m)                                                        (20) 
Similarly, ζn = (K1

2 – (χn/h)2)1/2 and Dn = (ζn
2 – K2

2)1/2 = (K1
2 – K2

2 – (χn/h)2)1/2      (21) 
could be expanded using Taylor’s series and trigonometric expressions. If the summation 
series in the equation (20) is expanded using trigonometric equations, it could equated to 
a Fourier series. Similarly, ζn and Dn could be expressed in Fourier series form. F(y), ζn 
and Dn are periodic functions of φ, where φ = (αx – Ωt). Therefore, F(y), ζn and Dn could 
be expressed in Fourier series form and the frequency spectrum of the acoustic signal 
could be derived.    

Thus the complete analytical solution to the problem finding frequency spectrum 
of sound wave in the waveguide is obtained.  
Cn = 0,  Ψn =  0 at z = 0                                                                                           (22) 
Therefore, sin χn = nπ, where n is a positive integer                                                (23) 
The solution is P (x, z, t) =   sin χn (z/h – 1). Sin(ζn.x - ωt)                                     (24) 
Therefore, the acoustic signal is phase modulated in the direction of z and x by the 
surface wave. In addition there will be an amplitude modulation of normal mode acoustic 
signal by the surface wave. 

If the condition Ω << ω is not satisfied, then the solution can be obtained by 
Fourier transforming Pt(t), if P(x, z, t) = Px(x).Pz(z).Pt(t) is assumed as the solution. Then 
by inverse Fourier transforming Pω(ω) where Pω(ω) is Fourier transformation of Pt(t). 
Therefore, Pt(t) will be directly proportional to ʃ1/ω2.ejωt dω, ω varies from 0 to 2π. 
Acoustic signal is phase modulated in t dimension also by the surface waves. 
 
3. Application 
3.1. Application-I 
Nayfeh [6 7] developed perturbation method to determine acoustic field inside a two 
dimensional acoustic waveguide with weakly undulating hard walls. This method is valid 
only for a waveguide with smaller waveguide undulations and the direct perturbation 
expansion results in solution which contains singularities at certain frequencies. At these 
resonant frequencies, method of multiple scales is used to find solutions at frequencies 
close to singularities. Such solutions are highly inaccurate at frequencies close to the 
singularities. As per the theory presented in this paper, solution to such wave motion 
problems is  
P( x, z, t ) = sin((z/h1-1).γz). sin(γxx – ωt), where γz = nπ./((h2/h1) – 1),  

γx = ((γz)
2 – (ω/c)2)1/2                                  (25) 
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and boundaries are assumed to be at z = h1(x) = a.cos(αx) and z = h2(x) = h0+b.cos(βx+θ), 
where a, b, θ, α, β and h0 are constants                                           (26) 

Nayfeh assumed that h1(x) = a.cos(αx) and h2(x) = a.cos(αx+θ)                           (27) 
Also, h1 and h2 need not be periodic functions of x. Therefore, solution presented here is 
much more generalized solution. 
            
3.2. Application-II 
Nayfeh and Kandil [8] developed perturbation method to find the acoustic field inside a 
circular cylindrical waveguide with weakly undulating waveguide walls. As per theory 
presented in this paper the generalized solution to such wave propagation problems is 
P(r, φ, z, t) = Jn(r.h).(Ancos(n.φ) + Bn.sin(n.φ)). sin(γz.z – ωt) where Jn(r0.h) = 0, r0(x) = a 
+ b.Σ.αm.sin(kmx), γz = ( k2 - h2)1/2 , k = ω/c, m is an integer, αm, km, a and b are constants 
and r0(x) need not be periodic. Jn(r.h) is a Bessel’s function of first kind of order n.                                                                                                                   
 
3.3. Application-III 
Nusayr [9] applied perturbation methods developed by A. H. Nayfeh to solve wave 
propagation problem in a rectangular waveguide with weak hard wall undulations. To 
this wave propagation problem generalized solution is  
P(x, y, z, t) =  sin((z/h1-1).γz).sin((y/h3-1).γy).( sin(γxx – ωt), where γz = nπ./((h2/h1) – 1), 
γy = mπ/((h4/h3) -1), γx = ((γz)

2 +(γy)
2- (ω/c)2)1/2 and boundaries are assumed to be at z = 

h1(x) = a.cos(αx) and z = h2(x) = h0+b.cos(βx+θ), y = h3(x) = c.cos(α1.x) and y = h4(x) = 
w0+d.cos(β1.x+θ1), where a, b, c, d, θ, θ1, α, α1, β, β1, h0 and w0 are constants                         
Waveguide dimensions h1, h2, h3, and h4 need not be periodic functions of x. Therefore, 
solution presented here is much more generalized solution. 
            
3.4. Application-IV 
Hawwa [3] has applied perturbation methods developed by Nayfeh, et al to study the 
wave propagation with a periodic square wall profile. Since the method developed in this 
article is applicable to waveguide with any type of boundary variations, solutions 
developed in sections applications-I, II, III are valid to two dimensional, rectangular and 
circular cylindrical waveguides with any type of boundary variations. 
  
3.5. Application-V[ 1 4 11] 
In the theory presented in the first section, an underwater acoustic waveguide with a 
travelling sinusoidal surface on the top boundary of the waveguide and a semi infinite 
medium from the bottom flat boundary were assumed. However, in practice bottom floor 
of the ocean can’t be flat. Therefore, assumption of variable boundary at the oceanic floor 
will be closer to natural situation. Since the method developed in this article is applicable 
to waveguides with any type of boundary variations, the generalized solution is 
applicable to ocean acoustic waveguides with any type of surface and ocean floor 
variations. 
 
3.6. Application-VI [10 2] 
One dimensional Photonic Band Gap (P.B.G.) materials with periodic defects and bound 
by metal planes on both sides are analyzed for their filtering behavior to develop nano 
scale electronic filters. Since dielectric medium varies periodically in the direction of 
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propagation of electromagnetic wave, the velocity of electromagnetic signal could be 
described in the Fourier series form and the method of separation of variables could be 
applied to determine the solution to the wave propagation problem.  
The solution is E(x, z, t) = sin(γz.z). sin(γxx – ωt), where γz = nπ/h0 , γx = ((nπ/h0)

2- k2)1/2 , 
k = ω/c(x) and c(x) = 1/(ε(x).µ)1/2                                                                                                         (30)  

This solution is applicable to any type of dielectric medium ε(x) variations. The solution 
clearly indicates the dependency of filtering characteristics on dielectric medium 
variations. Therefore, by proper choice of c(x) all types of filters could be constructed. 
  
3.7. Application-VII [10 2 5] 
One and two dimensional PBG materials with air-dielectric interface and periodic defects 
are analyzed for their filtering behavior. The solution for TM wave propagation in one 
dimensional PBG material bound by air-dielectric interface is 

H(x, z, t) = sin(γz.z). sin(γxx – ωt) or cos(γz.z).sin(γx.x -ωt) for 0 < z < h0 and H(x, z, t) 
=H0.e

-γz for z > h0 and = H0e
γz  for z < 0 where h0 is the height of the dielectric material of 

the 1-D PBG material and γx, γz, γ and H0 are constants                       (31) 
The unknown constants could be found by substituting the solution at the boundaries and 
in the wave equation. In the wave equation for inside the wave equation, k = ω/c(x) and 
c(x) = 1/(ε(x).µ)1/2. For outside the waveguide region (air/vacuum), k = ω/c where c = 
3x108 m/s.  This solution is applicable to any type of dielectric medium ε(x) variations. 
The solution clearly indicates the dependency of filtering characteristics on dielectric 
medium variations. Therefore, by proper choice of c(x) all types of filters could be 
constructed.  
 
4. Conclusion 
A much simpler analytical solution to the problem of finding wave propagation in several 
acoustic, radio and optical waveguides with periodic structures is explained which is 
applicable to periodic and non periodic structures of any dimensions and parameter 
values without any singularity in the solution. The method of solution could be extended 
easily to 2 and 3 dimensions also. The method could be extended to analyze the 
ionosphere radio wave propagation and also to analyze the light wave propagation in 
optical waveguides with surface irregularities. 
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