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ABSTRACT
Perturbation methods were used to study the soave wropagation in several acoustic
wave guides with weak surface undulations. Thesehads are highly complicated and
applicable only in a very narrow domain of the wayede. Moreover, such solutions
create singularities in the solution. Singularifiesolution of physical problems originate
due to unrealistic assumptions. Therefore, a muahpler and widely applicable
analytical method of solution was developed usiegasation of variables method and
presented recently to such wave guide problemghim article, application of that
solution to find wave propagation in several peidagiaveguide structures is enumerated.

Keywords: Method of separation of variables and wave motiopdriodic structures.

1. Introduction

Nayfeh [6] had developed the method of multipldessavhich is a perturbation method.
This method of multiple scales is used to analyze theewaopagation in two-

dimensional hard-walled ducts with sinusoidal watl§7]. For traveling waves,

resonance occurs whenever the wall wave numbejuial ¢o the difference of the
wave numbers of any two duct acoustic modes. Thelteeshow that neither of
these resonating modes could occur without stropgdgucing the other.

Nayfeh and Kandil [8] applied the method of mukigcales to analyze
the wave propagation in cylindrical hard-walled tdubaving weak undulations
which need not be periodic. Results are preserdgedwio and three interacting
modes. In the case of modes traveling in the sametibn in a uniform duct, two
interacting, spinning or non spinning modes propagan attenuated in an
undulated duct. Moreover, neither of them can exittout strongly exciting the
other. On the other hand, in the case of modesagaimg in opposite directions,
they may be cut off as a result of the interaction.

Nusayr [9] applied the method of multiple scaletoisanalyze the wave
propagation in a rectangular hasglled duct whose walls have weak periodic
undulations. Interacting modes traveling in the sadirection propagate un
attenuated. The energy is continuously exchangédelea the two modes. The
modes that travel in opposite directions are adggdiand, there, may be cut off.
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This cutoff will depend upon the geometry of thess section as well as the
phaseangle differences between the undulations of thmsite walls.

Hawwa [3] considers acoustic wave propagation ictslwith rigid walls
having square-wave wall corrugations in the contet a perturbation
formulation. Using the ratio of wall corrugation glitude to the mean duct half
width, a small parameter is defined and two levelsapproximations are
obtained. The first-order solution produces an wital description of the
pressure field inside the duct. The second-ordéutisa yields an analytical
estimate of the phase speed of waves transmittirmygh the duct. The effect of
wall corrugation density on acoustic impedance wagle speeds is highlighted.
The analysis reveals that waves propagating in @ dith square-wave wall
corrugation are slower than waves propagating duet with sinusoidal wave
corrugation having the same corrugation wavelength.

Anand and George [1] have studied the sound waepagation in a shallow
water waveguide with a sinusoidal surface wavesylying the method of multiple
scales. V.Sundaravadivel [11] studied the soundewmepagation in a three dimensional
Oceanic waveguide by applying perturbation method.

All the above mentioned authors used perturbatiethods which are applicable
only to wave guides with low frequency and smadlmplitude surface waves. Moreover,
perturbation method of solution generates singylami the solution and complicates the
determination of solution at points close to thegsiarity. Therefore, later on John
Daniel [4] developed a simpler analytical solutimased on the method of separation of
variables. In this article, application of thatwgan to find wave propagation in several
periodic waveguide structures is enumerated. Eisttheory based on the method of
separation of variables to solve the wave propagafiroblem in a ocean acoustic
waveguide with a wavy surface is presented and therepplication of the method to
solve wave propagation problems in several pericaioustic, radio and optical
waveguides is explained.

2. Theory
Consider an oceanic wave guide with a wavy suréacghown in the following Figure-1.
The surface wave is a single frequency wave prdpagén x direction which can be
expressed mathematically as

Z=h(x,t)=R+aCosdx - Qt) (1)
Where B is average channel depthjs wave numberQ is circular frequency and a is
amplitude of the surface wave. Lepi, Ci(i = 1,2) denote respectively the density and
velocity of sound in the two media. Medium 2 iswamed to be a semi-infinite one. The
interface between medium 1 and medium 2 is asstonee flat.
Let us assume that a plane sound wave propagathe imave guide in the direction x.
The acoustic pressure P (X, y, z, t) can be detenby solving the wave equation.

0°P 0°P 0°P 1 0°P
+ + -— —=0
ox> ody* 0z> C* ot? @
with boundary conditions
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Py zt)=0atz=h(x,1t) (3a)
Px,y,+0,)=P (X, y,-0,1) (3b)
where Vz is z component of particle velocityPO a z> - o (3¢)

where +0 and -0 indicates that the interface zisdpproached from the sides z > 0 and
z < 0 respectively.
Since there is no variation of pressure in y dioegtequation (2) can be written as

P, 0P _1 0°P_j

ox® 0z° C? ot? 4)
Let us assume th&® << o wherew is angular frequency of sound wave. Therefore,
equation (4) can be written as

2 2
0_|Z+0_|23+kzp =0
ox- 0z (5)
where

w

k=—=k, for0<z<h
“ (6a)
=2 - k, for z<0

€ (6b)

243



John Daniel

Therefore, by separation of variables methods,

P (X, 2) =W¥x(2).B(X) (7a)
P«(X) = Sin€nX) b{7
The functionW,(z) must satisfy the equation
2
00 4 (K2 - 82 (x, ) W, =0
0z (8)
with the boundary conditions
Yo=0atz=h(x1t) (9a)
Wn (+0, X, 1) =W (-0, X, 1) (9b)
i % (+0, x, 1) :i % (-0, X, 1)
p, 0z p, 0z (9¢)
Y,> 0asz> - (9d)

The solution to the equation (8) is
WY, =N,sinx,(zzh—-1)for0O<z<h

=Cné™forz<0 (10)
where N, C, X» & Dy, are functions of x, t¥, must satisfy the orthonormality

h
[p@ v, v, dz=3,,
condition. — (12)
where p(z) =p.for0<z<h
=p,for0<z<h

and Oy is kronecker delta.
By substituting the equating (10) into equationgtyl (8) we get
h

h
N2 pitsit x, = dz+ [, €2 e dz=1
0 -

12)
2
& =K? - {X—}
h (13)
D, = (& ~K3)"? (14)
Substitution of equation (10) into equations (9b{j9&) gives,
-N,, siny, = G, (15)
ERVE (X—) Cos(, =C, 22
Py h P2 (16)
Equations (13) to (16) can be combined to get
Cotyn = - (@)™ (h*(K} ~K3) ~x3)" (17)

where q =p,/ p1 From equation (12) we get
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N, = — CHN— (18)
hpl—l(l_sm )(n)+,01 SIn” X,
2X, D,

¥n €an be found by solving the equation (17).
The solution as in the equation (10) can be exphndegng Taylor's series as in the
following line.
W, = N, sinx, (z/h — 1) = N.sing,(z/h.(1- (a/l). Cosix —Qt)) ™) (19)
Since a/bis less than 1, as per Taylor's series, F(y) €11/y) = = y" where m is an
integer varies from 0 t@ and y = (a/k). Cos@x — Qt). Therefore, equation (19) could
be written as,
W, = Np.sing,(z/ho. £ ((@/hy). Cosfpix —Qt))™) (20)
Similarly, ¢, = (Ki* — (/h)) " and O = (2 - K2 = (K - K2 = /)™ (21)
could be expanded using Taylor's series and trigmtdc expressions. If the summation
series in the equation (20) is expanded usingrdgwtric equations, it could equated to
a Fourier series. Similarly, and D, could be expressed in Fourier series form. R{y),
and D, are periodic functions af, wheree = (ax —Qt). Therefore, F(y), and G, could
be expressed in Fourier series form and the frexyuspectrum of the acoustic signal
could be derived.

Thus the complete analytical solution to the probfanding frequency spectrum
of sound wave in the waveguide is obtained.

C.,=0,¥,=0atz=0 (22)
Therefore, sirx, = t, where n is a positive integer (23)
The solutionis P (x, z, t) = sja (z/h — 1). Sin(,X - wt) (24)

Therefore, the acoustic signal is phase modulatethé direction of z and x by the
surface wave. In addition there will be an ampktudodulation of normal mode acoustic
signal by the surface wave.

If the conditionQ << ® is not satisfied, then the solution can be obthibg
Fourier transforming @), if P(x, z, t) = R(X).P«(2).R(t) is assumed as the solution. Then
by inverse Fourier transforming,(®) where B(w) is Fourier transformation of®.
Therefore, Rt) will be directly proportional tgfl/w®d®" do, » varies from 0 to 2
Acoustic signal is phase modulated in t dimensien by the surface waves.

3. Application
3.1. Application-I
Nayfeh [6 7] developed perturbation method to deiee acoustic field inside a two
dimensional acoustic waveguide with weakly undatatiard walls. This method is valid
only for a waveguide with smaller waveguide undaoled and the direct perturbation
expansion results in solution which contains siagtiés at certain frequencies. At these
resonant frequencies, method of multiple scalasséd to find solutions at frequencies
close to singularities. Such solutions are highmgccurate at frequencies close to the
singularities. As per the theory presented in paper, solution to such wave motion
problems is
P(x, z,t) = sin((z/h1).y,). sinfX —wt), wherey, = ni./((h/hy) — 1),

= (1) — ©Ic))** (25)
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and boundaries are assumed to be at £ h a.cos¢x) and z = K(x) = hytb.cospx+6),
where a, bf, o, p and i3 are constants (26)

Nayfeh assumed that(R) = a.cosgx) and h(x) = a.cos¢x+6) 27)

Also, hy and B need not be periodic functions of x. Therefordutsan presented here is

much more generalized solution.

3.2. Application-I|

Nayfeh and Kandil [8] developed perturbation metkhwmdind the acoustic field inside a
circular cylindrical waveguide with weakly unduladi waveguide walls. As per theory
presented in this paper the generalized solutiGuth wave propagation problems is
P(r, @, z, t) = J(r.h).(Ascos(ne) + Bn.sin(ng)). sinfy,.z —wot) where Jro.h) = 0, p(x) = a

+ bZ.om.sin(kX), 7. = (K - H)*?, k =w/c, m is an integetm, kn, a and b are constants
and (X) need not be periodic,(d.h) is a Bessel's function of first kind of order

3.3. Application-I 1|

Nusayr [9] applied perturbation methods developgdAb H. Nayfeh to solve wave
propagation problem in a rectangular waveguide witak hard wall undulations. To
this wave propagation problem generalized soluson

P(X,y, z, t) = sin((z/A1)y,).sin((y/he-1).yy).( sinfxx — wt), wherey, = nt./((hy/hy) — 1),

vy = ma/((ha/hg) -1), v« = (()* +(1)> (w/c)?) and boundaries are assumed to be at z =
hy(x) = a.cosgx) and z = KX) = hy+b.cospx+0), y = hs(X) = c.cos@,x) and y = R(x) =
Wotd.cosf..x+0,), where a, b, ¢, df, 61, a, as, B, B, hp and w are constants
Waveguide dimensions,hh, h;, and h need not be periodic functions of x. Therefore,
solution presented here is much more generalizedi@o

3.4. Application-1V

Hawwa [3] has applied perturbation methods develdpe Nayfeh, et al to study the
wave propagation with a periodic square wall peoffince the method developed in this
article is applicable to waveguide with any type lmfundary variations, solutions
developed in sections applications-I, Il, lll ardig to two dimensional, rectangular and
circular cylindrical waveguides with any type ofunalary variations.

3.5. Application-V[ 14 11]

In the theory presented in the first section, ademwater acoustic waveguide with a
travelling sinusoidal surface on the top bounddryhe waveguide and a semi infinite
medium from the bottom flat boundary were assurkdvever, in practice bottom floor

of the ocean can't be flat. Therefore, assumptforadable boundary at the oceanic floor
will be closer to natural situation. Since the noetldeveloped in this article is applicable
to waveguides with any type of boundary variatiottse generalized solution is

applicable to ocean acoustic waveguides with ame tgf surface and ocean floor
variations.

3.6. Application-VI [10 2]

One dimensional Photonic Band Gap (P.B.G.) mateviéth periodic defects and bound
by metal planes on both sides are analyzed for fitigring behavior to develop nano
scale electronic filters. Since dielectric mediuarigs periodically in the direction of
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propagation of electromagnetic wave, the velocityelectromagnetic signal could be
described in the Fourier series form and the metifagkparation of variables could be
applied to determine the solution to the wave pgagian problem.
The solution is E(x, z, t) = sip{z). sinf,x —t), wherey, = n/hg , v« = ((n/hg)- k?)
k = w/c(x) and c(x) = 1K(x).p)"2 (30)
This solution is applicable to any type of dielectnediume(x) variations. The solution
clearly indicates the dependency of filtering chtedstics on dielectric medium
variations. Therefore, by proper choice of c(x)tytles of filters could be constructed.

1/2
1

3.7. Application-VI11 [10 2 5]
One and two dimensional PBG materials with airafifgic interface and periodic defects
are analyzed for their filtering behavior. The s for TM wave propagation in one
dimensional PBG material bound by air-dielectrieiface is

H(x, z, t) = sinf,.z). sinfxx —wt) or cost,z sin(y..x -ot) for 0 <z <R and H(x, z, t)
=H,.e"* for z > hy and = He” for z < 0 where fis the height of the dielectric material of

the 1-D PBG material ang, y,, y and H are constants (32)

The unknown constants could be found by substgutie solution at the boundaries and
in the wave equation. In the wave equation fordeghe wave equation, kafc(x) and
c(x) = 1/€(x).n)"% For outside the waveguide region (air/vacuumy; d&/c where ¢ =
3x10° m/s. This solution is applicable to any type @flectric mediume(x) variations.
The solution clearly indicates the dependency bérfng characteristics on dielectric
medium variations. Therefore, by proper choice @) @ll types of filters could be
constructed.

4. Conclusion

A much simpler analytical solution to the problefrfinding wave propagation in several
acoustic, radio and optical waveguides with pedogtructures is explained which is
applicable to periodic and non periodic structuosany dimensions and parameter
values without any singularity in the solution. Tihethod of solution could be extended
easily to 2 and 3 dimensions also. The method cdddextended to analyze the
ionosphere radio wave propagation and also to aedlye light wave propagation in
optical waveguides with surface irregularities.
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