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ABSTRACT 
We study nonclassical states of light like squeezing and sub-poissonian in spontaneous 
and stimulated parametric down-conversion process. The amplitude-squared and 
amplitude-cubed squeezing effects of the radiation field in the fundamental mode are 
investigated and found to be dependent on the number of pump photons of the system.  
The photon statistics of the fundamental mode in this process have also been investigated 
and found to be sub-poissonian in nature. It is shown that the amplitude squeezing and 
sub-poissonian photon statistics of light occur simultaneously. It is observed that degree 
of squeezing and occurrence of sub-poissonian is directly associated with photon number 
in the fundamental mode of the optical field. The dependence of the amplitude squeezing 
in terms of signal to noise ratio on the number of photons is studied. It is found that 
maximum signal to noise ratio is possible in lower order i.e. in normal squeezing. 

Keywords: Squeezing of radiation; Parametric down-conversion process; Photon number 
operator; Sub-poissonian photon statistics; Nonclassical light. 

1. Introduction 
Over the past decades, the squeezing [2,17,18,23,33,34] in quantized electro-magnetic 
fields has received a great deal of attention because of its wide applications in many 
branches of science and technology, especially for low noise property [14,30,35] with an 
application in high quality telecommunication [36], quantum cryptography [1,11], and so 
forth. The basic concept of squeezed light is concerned with the reduction of quantum 
fluctuations in one of the quadrature at the expense of increased fluctuations in the other 
quadrature. Squeezing has been focused on theoretical investigations and experimental 
observations in a variety of nonlinear optical processes, such as harmonic generation 
[12,19], multiwave mixing processes [3,4,24,29], Raman [5,15,25], hyper-Raman [16] 
Hong and Mandel [9,10], Hillery [6-8], and Zhan [38] for improving the performance of 
many optical devices and optical communication networks. Squeezing and photon 
statistical effect of the field amplitude has also been reported by Perina [26]. Higher-
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order sub-poissonian photon statistics of light have also been studied by Kim and Yoon 
[13]. Recently, Prakash and Mishra [20,27] have reported the higher-order sub-
poissonian photon statistics and their use in detection higher-order squeezing. Squeezing 
and photon statistical effect of the field amplitude in harmonic generation has also been 
reported by Pratap et.al [28]. More recently, Mukherjee et al. [21] has been reported 
squeezing and entanglement in quadratically-coupled optomechanical system and 
squeezing and antibunching in three-mode atom-molecule Bose-Einstein condensates has 
been studied by Mukhopadhyay et al [22]. 

The aim of this paper is to extend our study the properties of amplitude squeezing 
and sub-poissonian states of the electromagnetic field of the fundamental mode in 
spontaneous and stimulated parametric down-conversion process under short-time 
approximation. The paper is organized as follows: Section 2 gives the definitions of 
squeezing and sub-poissonian states of light. We establish the analytic expression of 
amplitude squeezing including higher-order squeezing and sub-poissonian light in the 
fundamental mode in section 3. The dependence of the amplitude squeezing in terms of 
signal to noise ratio on the number of photons is investigated. The photon statistics of the 
pump mode in this process have also been incorporated in this section and found to be 
sub-poissonian in nature. Finally, we conclude the paper in section 4. 

 
2. Definitions of squeezing and sub-poissonian states of light 
Squeezed states of light are characterized by reduced quantum fluctuations in one 
quadrature of the field at the expense of the increased fluctuations in the other quadrature. 
It is possible to characterize the amplitude by its real and imaginary parts as  

X1 =  
2

1
 (A + A†) and  X2 = 

2i

1
 (A – A†)         (1) 

where A and A† are the slowly varying operators useful in discussing squeezing effects. 

For a single mode of the electromagnetic field with frequency ω and creation 
(annihilation) operators a† (a), they are given by  

 )iexp(A     ),iexp(A †† tata ωω −==      (2) 

The operators defined by equation (1) do not commute and obey the commutation 
relation  

[X 1, X2]  = 
2

i
                                                   (3) 

and, as a result, satisfy the uncertainty relation ( ħ = 1) 

4

1
  2∆X 1∆X ≥                           (4) 
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where ∆X1 and ∆X2 are the uncertainties in the quadrature operators X1 and X2 

respectively. A quantum state is squeezed in the X1 direction if ∆X1<
2

1
 and is squeezed 

in the X2 direction if ∆X2 <
2

1
. 

Amplitude squared squeezing [6-8] is defined in terms of operators Y1 and Y2 as 

 )A(A
2

1
Y †22

1 +=   and  )A(A
2i

1
Y †22

2 −=                         (5) 

These operators obey the commutation relation 
 [Y1, Y2] = i (2NA + 1)                                                (6) 

where A†A = NA is the photon number operator in mode A. 
The commutation relation (6) leads to the uncertainty relation 

 ≥21∆Y∆Y 






 +
2

1
NA      (7)  

where ∆Y1 and ∆Y2 are the uncertainties in the quadrature operators Y1 and Y2 

respectively. A quantum state is squeezed in the Y1 direction if (∆Y1)
2 < 







 +
2

1
NA  

and is squeezed in the Y2 direction if (∆Y2)
2
 < 







 +
2

1
NA . 

Amplitude-cubed squeezing [38] is defined by the operators 

 )A(A
2i

1
 Zand  )A(A

2

1
Z †33

2
†33

1 −=+=                                  (8) 

The operators obey the commutation relation  

         [ ] 6)9N(9N
2

i
Z,Z A

2

A21 ++=  (9) 

which leads to the uncertainty relation  

       〉++〈≥  6)9N(9N  
4
1

∆Z ∆Z A
2
A21         (10) 

Amplitude-cubed squeezing is said to exist if 

 ( ) ( ) 〉++〈<  6)9N(9N  
4
1

∆Zor  ∆Z A
2
A

2

2

2

1        (11) 

The quantum effect of sub-Poissonian photon statistics are the reduction of quantum 
fluctuations in photon number is reflected by an increase of fluctuations of phase of the 
field. Hence the photon number uncertainty [19] is 
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       ( ) A

2

A N∆N <                                                     (12) 

3. Squeezing and sub-poissonian states of light in the fundamental mode  
Parametric-down conversion (PDC) process, shown in fig.1, is a three-wave interaction 

process where a pump of photon of frequency 1ω splits into two, signal and idler, photons 

with lower frequencies 2ω , 3ω  respectively and the corresponding Hamiltonian can be 

written as 

H = ω1a
†a + ω2b

†b + ω3c
†c + g (ab†c† + a†bc)                 (13) 

 
Figure 1: Schematic energy level diagram for PDC process 

where a†(a), b†(b) and c†(c) are the creation (annihilation) operators of the A, B and C 
modes respectively and g is the coupling constant in the interaction Hamiltonian, which is 
assumed to be real, describes the coupling between the two modes of the order of 102–104 
per second and is proportional to the nonlinear susceptibility of the medium as well as the 
complex amplitude of the pump field [31,32]. However, to take care of complex g, we 
have used |g|2 in the place of g2 as we are not considering the phase terms. In the case of 
phase matching, g can also be treated as real [23].  

Using the interaction Hamiltonian of the equation (13) in the coupled Heisenberg 
equation of motion  

[ ] A(t) H,  i  
t

A(t)
 (t)A +

∂
∂=ɺ  (ħ =1)                                   (14) 

where the dot denotes time derivative. 
Equation (14) leads to coupled Heisenberg equations of motion 

†igAB
.
Cand†igAC

.
BigBC,

.
A −=−=−=                                      (15) 

where A, B and C are slowly varying operators because the interaction between modes, 
the operators A(t) and A†(t) induces a slower dependence on time as compared to fast 

variation, which are defined by A = a exp(iω1t), B = b exp(iω2t) and C = c exp(iω3t), with 

the relation  ω1= ω2 + ω3. 
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Note that the system evolution during a short period of time is practically 
relevant because the actual interaction is in fact very short. Hence the interaction time is 
taken to be short, of the order of 10-10 sec and a nanosecond or picosecond pulse laser can 
be used as the pump field. For real physical situation in the short-time scale 

gt 1<< (gt∼10-6) and the number of photons are very large (|α|2>>1), it is possible to 
obtain much simpler approximate analytical formulas describing the variances. 
Expanding A(t) in Taylor’s expansion and keep terms up to second order in gt, we get 

A(t) = A- igtBC-
2

1
|g|2t2 (NBA+NCA+A)                                                     (16) 

and      A†(t) = A† + igtB†C†-
2

1
|g|2t2 (NB A

†+NC A†+ A†)                                        (17) 

Similarly,  B(t) = B – igtAC† - 
2

1
|g|2t2 (NC-NA)B              (18) 

and B†(t) = B† + igtA†C - 
2

1
|g|2t2 (NC-NA)B†                     (19) 

also C(t) = C – igtAB† - 
2

1
|g|2t2 (NB-NA)C                     (20) 

and  C†(t) = C† + igtA†B - 
2

1
|g|2t2 (NB-NA)C†              (21) 

In order to examine the squeezing of the field amplitude of the fundamental mode A as a 
function of time, we define two general quadrature components, 

X1A(t) = 
2

1
[A(t) + A†(t)]                                                                (22) 

and  X2A(t) = 
i2

1
[A(t) - A †(t)]                                                                (23) 

Using equations (16) and (17) in equations (22) and (23), we obtain 

X1A(t) = 
( )












++ )A(A

2

gt
-)A (A  

2

1 †
2

†           (24) 

and X2A(t) = 
( )












−− )A(A

2

gt
-)A (A  

2

1 †
2

†

i
                                   (25) 

Keeping terms up to second order in (gt) and assuming an initial quantum state as a 

product of coherent states |α> for the fundamental mode A, |0> for the signal mode B and 

|0> for the idler mode C, i.e.  

|ψ> = |α>A|0>B|0>C                                                                    (26) 

Using equations (24) and (26), we obtain  
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1)]α2α(αtg1α2α[α
4

1
ψ(t)Xψ 22*22222*22

1A +++−+++=        (27) 

and )]α2α(αtgα2α[α
4

1
ψ(t)Xψ 22*22222*2

2

1A ++−++==             (28) 

 
Hence the field variance is 
 

[ ] 2

1A

2

1A

2

1A (t)X(t)X(t)∆X 〉〈−〉〈= ]tg[1
4

1 22−=                        (29) 

 
From equations (4) and (29) yields 

 [ ]2

1A (t)∆X 




−=− 22 tg

4

1

4

1
                                                                (30) 

To study squeezing in stimulated interaction in PDC process we assume an initial 

quantum state as a product of coherent states |α> for the fundamental mode A, |β> for the 
mode B and vacuum state |0> for the mode C   
i.e.    | ψ > = | α>A  | β>B | 0>C                                    (31) 
We obtain    

=xS  [∆X1A(t)]2- 
4

1
= 






 +





− 122t2g

4

1 β                    (32) 

 

where |α|2 = <NA> and |β|2 = <NB>  are measure of average photon number of the 
coherent part of the single mode squeezed state field.  

The right hand sides of equations (30) and (32) are always negative, showing the 
existence of squeezing in the amplitude of the fundamental mode in spontaneous and 

stimulated interaction respectively. The factor (|β|2 + 1) in equation (32) is the effect of 
stimulated interaction. 

Similarly, for X2A quadrature as  
 

=′xS [ ]2(t)2A∆X 





 +





+=− 122t2g

4

1

4

1 β                (33)  

 
From equations (32) and (33) we infer that only one quadrature can be squeezed at a time 
hence it follows the Heisenberg’s uncertainty principle. 

The variation of Sx and 2gt of equation (32) is shown in fig 2. 
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Figure 2: Variation of first-order squeezing Sx with 2gt  

 The results show the presence of squeezing in fundamental mode in spontaneous 

( 02 =β ) and stimulated PDC process. It is clear from equation (32) that first-order 

(normal) squeezing increases nonlinearly and directly depends upon the coupling of the 
field amplitude and interaction time. The steady fall of the curve shows an increase in the 

degree of squeezing with 2β . 

 Further, in order to measure the degree of amplitude squeezing, we define 
normalized parameter [13] as  






−=

−
= 2t2g

4
1

4
12(t)]1AX [∆

xQ                                             (34) 

 

Figure 3: Degree of squeezing (first-order) Qx with 2gt   

The plot of equation (34) is shown in fig. 3. It shows that the degree of squeezing 
increases with an increase of interaction time in fundamental mode. Hence the maximum 
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reachable degree of squeezing is dependent upon the interaction time and will be limited 
by short interaction time. 

Now, the mean field or coherent signal S carried by a light beam can be defined 
as the expectation value of the field operator in equation (1), hence 

           S = >< (t)1AX = 
2/1

22*22222*2 )α2α(αtgα2αα
4

1










 ++−++     (35) 

and the field variance or quantum noise, is 

          N  =  [ ]2)(1AX t∆  ]tg[1
4

1 22−=         (36) 

Hence the signal-to-noise ratio (SNR) is [31], 

 
[ ]

2
α4

2(t)1A∆X

2
(t)1AX 

N

2S
xSNR ===       (37)      

The variation of SNR with 2α is shown in fig.8.                                                

Similarly for studying the class of higher-order squeezing likes squeezing of 
amplitude-squared of the fundamental mode as a function of time, we define a real 
quadrature component for the pump mode as 

Y1A(t) =  
2

1
[A 2(t) + A†2(t) ]                                                                        (38) 

and  Y2A(t) =  
2i
1

[A 2(t) - A†2(t) ]        (39) 

Using equations (16) and (17) in equation (38), we get 

( ) ( )[ ]†222†22
1A AAgtAA

2

1
(t)Y +−+=                                           (40) 

Using equation (26) in equation (40), we obtain the expectation value as 

2)]α4α2α(αg22α4α2α[α
4

1
ψ(t)Yψ 244*422244*42

1A ++++−++++= t

        (41) 
and  

)]α2α(αg2α2α[α
4

1
ψ(t)Yψ 44*42244*4

2

1A ++−++= t      (42) 

and the expectation value of the time dependent mean photon number is  
2222

A gα(t)N αt−=                                                        (43) 

Using equations (41) and (42) in equation (7), we get 
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[ ] 




 +−=+− 1αg2

1(t)N(t)∆Y 222
A

2
1A t                                      (44) 

Similarly using equation (31) which gives for stimulated process  

[ ] 





 +





 +−=+−= 12

β12
α22g2

1(t)AN2(t)1A∆Y tyS            (45)  

The right hand sides of equations (44) and (45) are always negative, showing the 
existence of squeezing in amplitude-squared of the fundamental mode in spontaneous and 

stimulated interaction respectively. The multiplication factor ( )1α
2 +  and 







 +12β are the nonlinear effect due to strong pump field interaction and the effect of 

stimulated interaction respectively.  
Similarly, we get for Y2A quadrature as  

[ ] 





 +





 ++=+−=′ 1212
α22g2

1(t)AN2(t)2A∆Y βtyS        (46)  

From equations (45) and (46) we infer that only one quadrature can be squeezed at a time 
hence it follows the Heisenberg’s uncertainty principle. 

To study higher-order (amplitude-squared) squeezing, we denote the right hand 
side of equation (45) by Sy and plot with |α|2 as shown in fig.4.  It shows that the 
squeezing increases non-linearly with |α|2 which is directly dependent upon the mean 

number of photons. Squeezing also increases with |β|2 that is squeezing is more in 
stimulated interaction than spontaneous one. A comparison between figs. 2 and 4 show 
greater noise reduction in second-order than in first-order, having same number of 
photons. 
 

 

Figure 4: Variation of second-order squeezing Sy with 2α (when )8102 −=gt  

Now, we define the normalized parameter [13] for amplitude-squared squeezing as,  
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[ ] ( )
( )2

1(t)N

2
1(t)N(t)∆Y

Q
A

A
2

1A
y

+

+−
=                                                  

       
222g

2

12
α

12
α22g

αt

t

−






 +







 +−

=                                                      (47) 

The variation of Qy with 2α is shown in fig.5.  

 

Figure 5: Degree of squeezing (second-order) Qy with 2α (when )8102 −=gt  

The steady fall of the curve shows an increase in the degree of squeezing with 
number of photons. This confirms that the squeezed states are associated with large 
number of photons.  
The signal-to noise ratio in second-order squeezing is obtained as 

          
[ ] 





 +

===
1

2
α

2
α2

2(t)1A∆Y

2
(t)1AY 

N

2S
ySNR                                                       (48) 

The variation of SNR with 2α is shown in fig.8.  

Further, using equations (8), (16) and (17), the real quadrature component for the 
fundamental mode A in third-order squeezing may be written as  

Z1A(t) =  (t)]†3A  (t)3[A 
2

1
+ = )]†3A  3A (2t2|g|

2

3
 - †3A3A [ 

2

1
++      (49) 

Using equation (26) in equation (49), we obtain the expectation value as 

6α18α9α2α[α
4

1
ψ(t)Zψ

2466*62
1A +++++=     
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6)]α18α9α2α(αg3
246*6622 +++++− t   (50) 

and  

)]α2α(αg3α2α[α
4

1
ψ(t)Zψ 66*62266*6

2

1A ++−++= t        (51) 

Using equations (50) and (51), we get 

           2|α|184|α|[9 
4

12
(t)

1A
Z(t)2

1A
Z 2(t)]A1 Z∆[ +=−=  

 6)]2|α|184|α|(92t2|g|3 - 6 +++  (52) 

and 




 +−+= 2422242

A αg2αα(t)N αt    (53) 

Using equations (43) and (53), we get expectation value as, 

 )]|α| 3  |α|(2 t|g|9 - 6  |α|18 |α|9 [
4

1
6  (t)9N(t)9N

4

1 242224
A

2
A +++=++         

(54) 
Hence from equations (52) and (54), 
 

    2]2|α|34|α| [ 2t2|g|
4

9
 -  6  (t)A9N  (t)2

A9N 
4

1
 - 2(t)]1A Z[∆ ++=++                

(55) 
Similarly for stimulated process, using equation (31)  
 

  2]2|α|34|α| [ 2t2|g|
4

9
 -  6  (t)A9N  (t)2

A9N 
4

1
 - 2(t)]1A Z[∆ zS 12

β 





 +++=++=

       (56)  
The right-hand side of equations (55) and (56) are always negative, showing the existence 
of squeezing in amplitude-cubed of the fundamental mode in spontaneous and stimulated 

interaction respectively. The multiplication factor (|β|2+1) is the effect of stimulated 
interaction.  
Similarly, for Z2A quadrature,  
 

  2]2|α|34|α| [ 2t2|g|
4

9
   6  (t)A9N  (t)2

A9N 
4

1
 - 2(t)]2A Z[∆ zS 12

β 





 ++++=++=′

      (57)  
From equations (56) and (57) we infer that only one quadrature can be squeezed at a time 
hence it follows the Heisenberg’s uncertainty principle. 
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Figure 6: Variation of third-order squeezing Sz with 2α (when )8102 −=gt  

The above plotted fig.6 between Sz and 2α of equation (56) shows that the higher order 

squeezing directly depends on number of photons. A comparison between second-order 
and third-order squeezing (figs. 4 and 6) shows greater squeezing in the latter in both 

spontaneous and stimulated processes for same value of |α|2 and |β|2 respectively. It also 
infer that in comparison of first-, second- and third-order that squeezing is maximum in 
amplitude-cubed (third-order) followed by amplitude squared (second-order) and 
amplitude-squeezing (first-order) having the same number of photons.  
The normalized parameter [13] for amplitude-cubed squeezing is as,  

 6  (t)A9N  (t)2
A9N 

4

1
 

 6  (t)A9N  (t)2
A9N 

4

1
 - 2(t)]1A Z[∆

ZQ
++

++
=                                                  

       

)]2|α| 3  4|α|(2 2t2|g|9 - 6  2|α|18 4|α|9 [
4

1

 2]2|α|34|α| [ 2t2|g|
4

9
 -

+++
=

++
                     (58) 

Fig. 7 shows degree of squeezing in third order is more pronounced than second-order, 
having same number of photons. 
For third-order squeezing, signal-to noise ratio [31] is obtained as 

          
[ ] 





 ++

===
6

2
α18

4
α9

6
α4

2(t)1A∆Z

2
(t)1AZ 

N

2S
zSNR                                             (59) 

The variation of SNR with 2α is shown in fig.8. 
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Figure 7: Degree of squeezing (third-order) Qz with 2α (when )8102 −=gt  

  

 

Figure 8: Variation of signal to noise ratio SNR with 2α  (when 8102 −=gt and 

SNRx, SNRy and SNRz represent first, second and third-order signal to noise ratio 
respectively) 
 
From fig. 8, it is evident that maximum signal to noise ratio is possible in lower-order i.e. 
in normal squeezing. The result agrees with the result of Yuen [37]. The steady increase 
of the curve shows the reduction of quantum noise with an increase of the number of 

photons |α|2. Thus, noise reduces and the degree of squeezing increases with the photon 
number in fundamental mode. We also observe that the greater noise reduction in third-
order followed by second-order and first-order, having same number of photons.  
Now, using equation (43), we obtain as 







−= 422g24

α
2

(t)AN αt                                             (60) 

Hence the fluctuation of time dependent mean photon number is 
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[ ] 22222

A
2
A

2
A g2α(t)N(t)N(t)∆N αt−=−=                            (61) 

and the photon statistics of pump mode is found to be sub-Poissonian, as 

[ ] 222g(t)AN2(t)A∆N αtN −=−=           (62) 

The right-hand side of equation (62) is always negative, showing the existence of sub-
poissonian light in the fundamental mode under short-time approximation.  

 

Figure 9: Variation of sub-poissonian states N with 2α (when )8102 −=gt  

For studying sub-Poissonian photon statistics nature in nonclassical state, let us 
take the variations of N with |α|2 as shown in fig 9. In fig 9, sub-poissonian behaviour 
takes place and shows the depth of nonclassicality. It also shows that the sub-poissonian 
statistics properties of light is directly proportional to the number of photons of 
fundamental mode i.e. sub-poissonian statistics of light increases with increasing |α|2. 
Thus we infer that sub-poissonian effects of light appear simultaneously with the 
amplitude squeezing. 

 
4. Conclusion 
In the present paper, the squeezing and sub-poissonian states of light in spontaneous and 
stimulated parametric down-conversion process are investigated.  

It is shown that amplitude, amplitude-squared and amplitude-cubed squeezing as 
well as sub-poissonian photon statistics of light of the initial pump field is directly 
dependent upon coupling of the field amplitude and interaction time as well as the 
number of photons. A comparison between first-, second- and third-order squeezing 
shows greater squeezing in third-order followed by second and first-order squeezing, 
having the same number of photons. It is inferred that higher-order squeezing (amplitude-
squared & amplitude-cubed) makes it possible to achieve significantly larger noise 
reduction than ordinary (normal) squeezing. The occurrence of multiplication factor 
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




 ++ 2234 αα and ( )1α

2 +  in third-order and second-order squeezing respectively 

is the nonlinear effect due to strong pump field interaction, which shows that squeezing is 
found to be maximum in amplitude cubed or amplitude-squared followed by amplitude-

squeezing. The multiplication factor (|β|2+1) is due to the effect of stimulated interaction 
and it shows that squeezing is more in stimulated process than spontaneous one. 

It is found that the degree of squeezing and occurrence of sub-poissonian light is 
directly depends upon the photon number of the fundamental field. It is observed that 
degree of squeezing increases and lowers the depth of classicality of field amplitude with 
photon number. Hence the amplitude squeezing and sub-poissonian photon statistics of 
light appear simultaneously. 

The above results arrived at may help in selecting suitable process to generate 
optimum squeezing in the radiation field and can be useful in optical telecommunication. 
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