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ABSTRACT

We study nonclassical states of light like squegznd sub-poissonian in spontaneous
and stimulated parametric down-conversion proceBse amplitude-squared and
amplitude-cubed squeezing effects of the radiatield in the fundamental mode are
investigated and found to be dependent on the nuwfeump photons of the system.
The photon statistics of the fundamental mode imhocess have also been investigated
and found to be sub-poissonian in nature. It issghthat the amplitude squeezing and
sub-poissonian photon statistics of light occurudiemeously. It is observed that degree
of squeezing and occurrence of sub-poissoniarrésttly associated with photon number
in the fundamental mode of the optical field. Tlepehdence of the amplitude squeezing
in terms of signal to noise ratio on the numbepbbtons is studied. It is found that
maximum signal to noise ratio is possible in loweter i.e. in normal squeezing.

Keywords: Squeezing of radiation; Parametric down-convergiatess; Photon number
operator; Sub-poissonian photon statistics; Nosaaslight.

1. Introduction

Over the past decades, the squeezing [2,17,18,33]3® quantized electro-magnetic
fields has received a great deal of attention bezaf its wide applications in many
branches of science and technology, especialljofemoise property [14,30,35] with an
application in high quality telecommunication [36ljantum cryptography [1,11], and so
forth. The basic concept of squeezed light is corexd with the reduction of quantum
fluctuations in one of the quadrature at the exparisncreased fluctuations in the other
guadrature. Squeezing has been focused on thedreti@stigations and experimental
observations in a variety of nonlinear optical msses, such as harmonic generation
[12,19], multiwave mixing processes [3,4,24,29]nRRa [5,15,25], hyper-Raman [16]
Hong and Mandel [9,10], Hillery [6-8], and Zhan [38r improving the performance of
many optical devices and optical communication weka. Squeezing and photon
statistical effect of the field amplitude has als®en reported by Perina [26]. Higher-
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order sub-poissonian photon statistics of lightehalso been studied by Kim and Yoon
[13]. Recently, Prakash and Mishra [20,27] haveore the higher-order sub-
poissonian photon statistics and their use in tietetigher-order squeezing. Squeezing
and photon statistical effect of the field ampliud harmonic generation has also been
reported by Pratap et.al [28]. More recently, Mulée et al. [21] has been reported
squeezing and entanglement in quadratically-coupd@tomechanical system and
squeezing and antibunching in three-mode atom-ratddégose-Einstein condensates has
been studied by Mukhopadhyay et al [22].

The aim of this paper is to extend our study tlmperties of amplitude squeezing
and sub-poissonian states of the electromagnetid ©f the fundamental mode in
spontaneous and stimulated parametric down-comrergirocess under short-time
approximation. The paper is organized as followscti®n 2 gives the definitions of
squeezing and sub-poissonian states of light. Wabksh the analytic expression of
amplitude squeezing including higher-order squapand sub-poissonian light in the
fundamental mode in section 3. The dependenceeoaithplitude squeezing in terms of
signal to noise ratio on the number of photonsvestigated. The photon statistics of the
pump mode in this process have also been incogabiiatthis section and found to be
sub-poissonian in nature. Finally, we concludeghger in section 4.

2. Definitions of squeezing and sub-poissonian states of light

Squeezed states of light are characterized by esdwmiantum fluctuations in one
quadrature of the field at the expense of the asmd fluctuations in the other quadrature.
It is possible to characterize the amplitude byetd and imaginary parts as

Xi= S (A+A)  and %= = (A—A) 1)
2 2i

where A and A are the slowly varying operators useful in distupsqueezing effects.
For a single mode of the electromagnetic field wftequency w and creation
(annihilation) operatora' (a), they are given by

A =aexpiat), A'"=a'exp(iat) )
The operators defined by equation (1) do not corermand obey the commutation
relation

[
[X1Xg] =— 3
2
and, as a result, satisfy the uncertainty relatior 1)
1
AX; AX, ZZ (4)
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where AX; and AX, are the uncertainties in the quadrature opera¥arsand %

respectively. A quantum state is squeezed in thdibéction Ifol<§ and is squeezed

in the X% direction ifAX2<% .
Amplitude squared squeezing [6-8] is defined imigof operators Yand Y, as
1 1
YI:E(A2+A*2) and Y, :?(AZ—A*Z) (5)
I

These operators obey the commutation relation

[Y1, Y2] =0 (2Na + 1) (6)
where AA = N, is the photon number operator in mode A.
The commutation relation (6) leads to the uncetyaielation

AY,AY, = <(NA + %]> ()

where AY; and AY, are the uncertainties in the quadrature operatorsand Y,

1
respectively. A quantum state is squeezed in thdiréction if @Y1)2<<(NA + E]>

and is squeezed in the Yirection if @Y2)2<<( N AT %j> .
Amplitude-cubed squeezing [38] is defined by therapors
Z, =%(A3 +A") andz, =%(A3 -A") ®)
The operators obey the commutation relation
[Zl,Zz]:i—z(QNf\ +9N, +6) )
which leads to the uncertainty relation
AZ AZ,> %( (9N2 +9N, +6)) (10)
Amplitude-cubed squeezing is said to exist if
(AZ,) or(AzZ,) < % ((9N? +9N, +6)) (11)

The quantum effect of sub-Poissonian photon stisire the reduction of quantum
fluctuations in photon number is reflected by acréase of fluctuations of phase of the
field. Hence the photon number uncertainty [19] is
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(AN, ) <(N,) 12)
3. Squeezing and sub-poissonian states of light in the fundamental mode
Parametric-down conversion (PDC) process, showligifh, is a three-wave interaction
process where a pump of photon of frequeaggplits into two, signal and idler, photons
with lower frequenciea), ws respectively and the corresponding Hamiltonian loan

written as
H = wa'a + wb'b +wyc’c + g @b'c’ +a'be) (13)

Virtual level

--A-----

()}

O]}
- J- u

(3

Y

Figure 1. Schematic energy level diagram for PDC process

wherea'(a), b'(b) and &c) are the creation (annihilation) operators @ & B and C
modes respectively and g is the coupling constatité interaction Hamiltonian, which is
assumed to be real, describes the coupling bettiheemvo modes of the order of4a¢
per second and is proportional to the nonlineacesptsbility of the medium as well as the
complex amplitude of the pump field [31,32]. Howevi® take care of complex g, we
have used [g|n the place of as we are not considering the phase terms. Inabe of
phase matching, g can also be treated as real [23].

Using the interaction Hamiltonian of the equati®B)(in the coupled Heisenberg
equation of motion

A(t) = ? +i[ H,A(t) ] (h =1) (14)

where the dot denotes time derivative.
Equation (14) leads to coupled Heisenberg equatibrsotion

A = -igBC,B = -igAC 'andC = -igAB T (15)
where A, B and C are slowly varying operators beeathe interaction between modes,
the operators A(t) and '&) induces a slower dependence on time as compiaréabst
variation, which are defined by Aaexp(iwst), B = b exp(i,t) and C = ¢ exp(dt), with
the relationw;= w, + ws.
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Note that the system evolution during a short gkrad time is practically
relevant because the actual interaction is inyacy short. Hence the interaction time is
taken to be short, of the order of#@ec and a nanosecond or picosecond pulse laser can
be used as the pump field. For real physical sdnatn the short-time scale
gt<<1(gtfl0° and the number of photons are very larg’>c1), it is possible to
obtain much simpler approximate analytical formuldescribing the variances.
Expanding A(t) in Taylor's expansion and keep teupgo second order in gt, we get

A(t) = A- igtBC—% lof’t®> (NsA+NA+A) (16)
and  A(t)=A"+ igtBTCT-% lof’t? (Ng AT+Nc AT+ AT (17)
SMNMW,MD=B—©MC-%M¥U%NQB (18)
and ém:BtnmNC-%m¥a%N@BT (19)
also cm:c—@méu%m¥uwwgc (20)

and C®=CU4mNB-%M¥G%NQCT (21)

In order to examine the squeezing of the field st of the fundamental mode A as a
function of time, we define two general quadrattmenponents,

Xult) = % A + A'()] (22)
and  %n(t) = %[A(t) - AT()] (23)
Using equations (16) and (17) in equations (22)(@3), we obtain
2
X1a(t) = %[(A +AT)-%(A +AT)} (24)
2
and  Yea(t) = %[(A—AT)-%(A—AT)] (25)

Keeping terms up to second order at) (and assuming an initial quantum state as a
product of coherent states>| for the fundamental mode A, |0> for the signable® and
|0> for the idler mode C, i.e.

|w> = >a|0>5[0> (26)
Using equations (24) and (26), we obtain
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1 * *
<\|/‘XfA(t)|\u> = Z[uz +a 2+ 2|u|2 +1—|g|2t2((12 +a 2+ 21q|2 +1)] (27)
2 1 * *
and <\|/‘X1A (t)|\|;> ::Z[az +a 2+ 2|a|2 —|g|2t2(a2 +o 2+ 2|a|2)] (28)

Hence the field variance is

2 2 2 1
[AX . OF = (X5 0 = (X, ()7 = [1-[g*t*] @9)
From equations (4) and (29) yields
(A%, OF -3 =-3(1g¢?) (30)
1A 4 4

To study squeezing in stimulated interaction in RPQcess we assume an initial
guantum state as a product of coherent statefof the fundamental mode A5 for the
mode B and vacuum state |0> for the mode C
ie. W >=|a>s [B>s | Ox (31)
We obtain

Sy = [AX 1> %: —211(|g|2t2)(| B +1j (32)

where Jaf’ = <N,> and |Bf = <Ng> are measure of average photon number of the
coherent part of the single mode squeezed stade fie

The right hand sides of equations (30) and (32always negative, showing the
existence of squeezing in the amplitude of the dmental mode in spontaneous and
stimulated interaction respectively. The fact@f(# 1) in equation (32) is the effect of
stimulated interaction.

Similarly, for X;, quadrature as

Sy = [AXZA(t)]Z—:ll=+%(|g|2t2)(|,8|2+1) (33)

From equations (32) and (33) we infer that only qnadrature can be squeezed at a time
hence it follows the Heisenberg’s uncertainty pphe

The variation of $and|gt|20f equation (32) is shown in fig 2.
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Figure2: Variation of first-order squeezing, ®ith |gt|2

The results show the presence of squeezing irafuadtal mode in spontaneous

(|,6’|2 =0) and stimulated PDC process. It is clear from &gna(32) that first-order
(normal) squeezing increases nonlinearly and dyretgpends upon the coupling of the
field amplitude and interaction time. The steadldathe curve shows an increase in the
degree of squeezing wi118|2.

Further, in order to measure the degree of anggitaqueezing, we define
normalized parameter [13] as

2
[AX1A ] -
Qy = Ya_ —(Iglztz) (34)
%
0
-2.x1072!
—4.x1072!
&

—6.x1072!
—-8.x1072
—1.x10720

0 2.x1004x10106x1018x1011.x10710
lgtl?

Figure 3: Degree of squeezing (first-order) Qx w|gt|2

The plot of equation (34) is shown in fig. 3. lbs¥s that the degree of squeezing
increases with an increase of interaction timaumdmental mode. Hence the maximum
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reachable degree of squeezing is dependent upanténaction time and will be limited
by short interaction time.

Now, the mean field or coherent signal S carriecbhight beam can be defined
as the expectation value of the field operatomjnagion (1), hence

S =<X1a(0) >= H 2ra 4 2ol gt @? 40" +2|0t|2)ﬂ1/2 (35)
and the field variance or quantum noise, is
N = [ax 0 0 :%[1—|g|2t2] (36)
Hence the signal-to-noise ratio (SNR) is [31],
SNR, _s? _ (X1a 1) _ 4of?
[ax14

The variation of SNR Witﬂn|2is shown in fig.8.

Similarly for studying the class of higher-orderusgzing likes squeezing of
amplitude-squared of the fundamental mode as atibtmof time, we define a real
guadrature component for the pump mode as

(37)

1 2 12
Y= SA) + A (38)

and  Yoa(t) = 23 [A%() - A™(D) ] (39)
Using equations (16) Iand (17) in equation (38)get
Yia(t) = %[Az +AT2 —(gt)Z(AZ +AT2)] (40)
Using equation (26) in equation (40), we obtaingkpectation value as

l * *
(Y2 Ow) =210+ 0" + 20+ df? +2- 27120 +a™+ 2f* + 4+ 2)

(41)
and
2 1 x *
(¥ O) = lat +a™® + 20" -2 0 + 20" @2)
and the expectation value of the time dependentmpbaton number is
(NA () =[d* ~|g*t?a]? “3)

Using equations (41) and (42) in equation (7), ee g
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(V1A O] ~(Na (0 + ¥5) = 403l +1) (44)

Similarly using equation (31) which gives for stilaied process

sy =[av1A ®)]? —<N A+ %> = —|g|2t2(|a|2 +1)(|B|2 +1j (45)

The right hand sides of equations (44) and (45) aveays negative, showing the
existence of squeezing in amplitude-squared ofithdamental mode in spontaneous and

2
stimulated interaction respectively. The multiplioa factor QOL‘ +1) and

(|,B|2 +1j are the nonlinear effect due to strong pump fiatéraction and the effect of

stimulated interaction respectively.
Similarly, we get for ¥, quadrature as

Sy =[aAY2A O] ~(Na () + 35) = +|g|2t2(|a|2 +1j(|ﬁ|2 +1j (46)

From equations (45) and (46) we infer that only qnadrature can be squeezed at a time
hence it follows the Heisenberg’s uncertainty pphe

To study higher-order (amplitude-squared) squeeziegdenote the right hand
side of equation (45) by,Sand plot with ¢/ as shown in fig.4. It shows that the
squeezing increases non-linearly withf* |which is directly dependent upon the mean
number of photons. Squeezing also increases Bjththat is squeezing is more in
stimulated interaction than spontaneous one. A eoisgn between figs. 2 and 4 show
greater noise reduction in second-order than ist-firder, having same number of
photons.

0.00

-0.001
—0.002]
-
¥ —0.003
—0.004

—0.005

0 10 20 30 40 50
|a]?
. _ " . 2 2 _,n8
Figure4: Variation of second-order squeezing Sy with (when|gt|~ =10"°)
Now, we define the normalized parameter [13] foplimde-squared squeezing as,
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Qu = INEWOIS _<(NA(t) +%)>
’ <(NA )+ }é»

~lgt?(ld? +1)
(2 D) 2212 “0
o2+ )-1g2a

The variation of Qwith |a|2is shown in fig.5.
0
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>
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—0.00001

—0.00001%
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laf?

Figure5: Degree of squeezing (second-order) Qy \4&]‘? (when |gt|2 = 10_8)

The steady fall of the curve shows an increasdéndegree of squeezing with
number of photons. This confirms that the squeestates are associated with large
number of photons.

The signal-to noise ratio in second-order squeeizindptained as

s? _ (Y1a0)° _ 2o)?
N avia ol (|(x|2 +1j

The variation of SNR Witl1|a|2is shown in fig.8.

SNRy = (48)

Further, using equations (8), (16) and (17), thal muadrature component for the
fundamental mode A in third-order squeezing mawhten as

1 1 3
Zu= SRS +AT )= DA%+ AT 2 g2 2(A% AT ag)
Using equation (26) in equation (49), we obtaingkpectation value as

(/25,0y} = 21e +0°+ 2" 49" +16" +6
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—39|2t2((16 +0°+ 2|(1|6 + 9|0L|4 +1E1a|2 +6)] (50)
and
2 9 x x
(MZiaOly) =5le® +a® +2d° -30° 2 +a®+ 2 o)

Using equations (50) and (51), we get

2
2 _/52 _ _1 4 2
(821, 01 =(22,0) (21, 0)” = 51010l +18]0)
+ 6-31g2 29| a[* +18]a ? +6)] (52)
4 2 2 4 2
and (N ) =lof* +lof” ~29%%(|a|* +[a ] 3)
Using equations (43) and (53), we get expectatadnevas,

H(oNE©+oNA ) +6) = 9lal’ +181a T+ 6-91g1 2 @la f +3lu )]
(54)
Hence from equations (52) and (54),

(82101 (9NF O +ONA ©+6)=-7 11”2 [la[* +3la[? +2]

(55)
Similarly for stimulated process, using equatioh)(3

S =1z Q1 -5 (NZ 0 +NA ) +6)=- 1o 1 +3a? 21|57 +1)

(56)
The right-hand side of equations (55) and (56)hrays negative, showing the existence
of squeezing in amplitude-cubed of the fundamemiadie in spontaneous and stimulated
interaction respectively. The multiplication fact@B*+1) is the effect of stimulated
interaction.
Similarly, for Z» quadrature,

S, =[A Zoa (]2 -:11<9N%‘(t)+9NA(t)+6>: +% 1912 t? [ |* +3|a|? +2](|B|2 +1j

(57)
From equations (56) and (57) we infer that only quedrature can be squeezed at a time
hence it follows the Heisenberg's uncertainty pphe
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0 10 20 30 40 50

Figure6: Variation of third-order squeezing Sz W1m|2(when |gt|2 = 10_8)

The above plotted fig.6 between ahd|a'|20f equation (56) shows that the higher order

squeezing directly depends on number of photonsomparison between second-order
and third-order squeezing (figs. 4 and 6) showstgresqueezing in the latter in both
spontaneous and stimulated processes for same ofJup and B respectively. It also
infer that in comparison of first-, second- anddkiorder that squeezing is maximum in
amplitude-cubed (third-order) followed by amplitudmuared (second-order) and
amplitude-squeezing (first-order) having the sammalmer of photons.

The normalized parameter [13] for amplitude-cubgeegzing is as,

[A Z1 A (012 -i<9N% () +9N () + 6>
Qz =

1
4<9N£(t)+9NA (t)+6>

9
102 P llal* +31af® +2)
= 1 (58)
Z[9|a|4+18|a|2+ 6-9|g2 t2 2| a[* + 31 |?)]

Fig. 7 shows degree of squeezing in third ordanase pronounced than second-order,
having same number of photons.
For third-order squeezing, signal-to noise ratit] [8 obtained as
2 70 A (t 2 6
SNRZ :SW = < lA()>2 = 4|Ot|
[az1.4 0] (9|0L|4 +1da]® + 6)

(59)

The variation of SNR Witl1|a|2is shown in fig.8.
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Figure 7: Degree of squeezing (third-order) Qz Mﬂlz(when|gt|2 = 10_8)
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Figure 8: Variation of signal to noise ratio SNR wit|hr|2 (when |gt|2 =10 8and

SNRx, SNRy and SNRz represent first, second andl-thider signal to noise ratio
respectively)

From fig. 8, it is evident that maximum signal mwige ratio is possible in lower-order i.e.
in normal squeezing. The result agrees with thelre$ Yuen [37]. The steady increase
of the curve shows the reduction of quantum noigh an increase of the number of
photonsq 2. Thus, noise reduces and the degree of squeeringases with the photon
number in fundamental mode. We also observe tleagtbater noise reduction in third-
order followed by second-order and first-order,ing\same number of photons.

Now, using equation (43), we obtain as

<N A(t)>2 =|of* - z|g|2t2(|a|4j (60)

Hence the fluctuation of time dependent mean photonber is
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2
[ANA©OF =(NZ )~ (NA ) =[af ~29*%al’ (61
and the photon statistics of pump mode is foursktgub-Poissonian, as
N =[ANA ()2 —<NA (t)> = -9°t?|a|? (62)

The right-hand side of equation (62) is always tiggashowing the existence of sub-

poissonian light in the fundamental mode undertstimie approximation.
0

-5.x107¢

—-0.00001

N

—0.000015

—0.00002

—0.000025

0 10 20 30 40 50
larf?

Figure9: Variation of sub-poissonian states N with |a|2(when |gt|2 :10_8)

For studying sub-Poissonian photon statistics eatumonclassical state, let us
take the variations of N wittaf as shown in fig 9. In fig 9, sub-poissonian behawio
takes place and shows the depth of nonclassictli&yso shows that the sub-poissonian
statistics properties of light is directly proportal to the number of photons of
fundamental mode i.e. sub-poissonian statisticigbt increases with increasingfj.

Thus we infer that sub-poissonian effects of ligigpear simultaneously with the
amplitude squeezing.

4. Conclusion
In the present paper, tisgueezing and sub-poissonian states of light imtspeous and
stimulated parametric down-conversion processrasestigated.

It is shown that amplitude, amplitude-squared amg@laude-cubed squeezing as
well as sub-poissonian photon statistics of lightttee initial pump field is directly
dependent upon coupling of the field amplitude améraction time as well as the
number of photons. A comparison between first-,0oede and third-order squeezing
shows greater squeezing in third-order followedsegond and first-order squeezing,
having the same number of photons. It is inferhed higher-order squeezing (amplitude-
squared & amplitude-cubed) makes it possible toieaehsignificantly larger noise
reduction than ordinary (normal) squeezing. Theugence of multiplication factor
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2
(|a|4 + 3|a'|2 + 2) and Qa‘ +1) in third-order and second-order squeezing respsgti

is the nonlinear effect due to strong pump fiekgiiaction, which shows that squeezing is
found to be maximum in amplitude cubed or amplitadeared followed by amplitude-
squeezing. The multiplication factdBff+1) is due to the effect of stimulated interaction
and it shows that squeezing is more in stimulatedgss than spontaneous one.

It is found that the degree of squeezing and oecge of sub-poissonian light is
directly depends upon the photon number of the dumehtal field. It is observed that
degree of squeezing increases and lowers the déptassicality of field amplitude with
photon number. Hence the amplitude squeezing abgaigsonian photon statistics of
light appear simultaneously.

The above results arrived at may help in selectuitable process to generate
optimum squeezing in the radiation field and camgeful in optical telecommunication.

Acknowledgment. We would like to thank the reviewer for his comngeand valuable
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