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ABSTRACT 
A new configuration of voltage-mode/current-mode (VM/CM) third-order quadrature 
oscillator is proposed in this article. The proposed third-order oscillator employs two 
voltage differencing current conveyors (VDCCs), three grounded capacitors and three 
resistors of which two are grounded. The use of grounded capacitors makes the circuit 
suitable for IC implementation. This particular circuit provides two voltage-mode and 
two current-mode sinusoid signals with 90o phase difference. The frequency of oscillation 
(FO) and condition of oscillation (CO) are independently controllable through single 
grounded passive element. The FO and CO can also be tuned electronically. The 
workability of the oscillator circuit is tested through PSPICE simulation using 0.18 µm 
TSMC CMOS process parameters. The total harmonic distortion is found to be nearly 
1%. The static power dissipation is 1.35 mW for ± 0.9 V power supply. Non-ideal as well 
as parasitic analysis of the designed circuit has been carried out to strengthen the design 
idea. Monte-Carlo analysis result has also been included.  

Keywords: Third-Order Quadrature Oscillator, Current-Mode (CM), Voltage-Mode 
(VM), Voltage Differencing Current Conveyor (VDCC). 

1. Introduction 
Quadrature oscillator is an important block as it provides two sinusoids with 90o phase 
difference and widely used in signal processing, telecommunication, control systems, 
measurement systems and instrumentation [1, 4, 6]. It is well known that the higher-order 
network provides high quality factor, high accuracy and better frequency response with 
minimum distortions. So, third-order quadrature oscillator (TOQO) which has third-order 
polynomial regression is a better choice than the second order quadrature oscillator 
(SOQO).  

Recently, a number of TOQO based on various active building blocks (ABBs) has 
been reported [5, 7, 9–11, 16–21, 24]. These oscillator circuits, however, have some 
limitations and problems. Maheshwari in [19] reported a third-order quadrature oscillator 
circuit. But the circuit uses three current controlled current conveyor (CCCII) blocks. 
Using two second generation current conveyors (CCIIs), three capacitors and three 
resistors, Horng in [10] proposed a VM/CM third-order oscillator but a comparatively 
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large supply voltage is required to drive this circuit. Two quadrature sinusoidal oscillators 
employing CMOS operational transconductance amplifier (OTA) was proposed by Pipat 
Prommee and Kobchai Dekhan in [24]. But their circuits require three and four OTAs for 
first and second circuit respectively and also provide only voltage outputs. Montree 
Kumngern and Ittipol Kansiri in [17] proposed a third-order quadrature oscillator using 
operational transresistance amplifier (OTRA). But they use three OTRAs and all floating 
capacitors and resistors. Nagar et al. also proposed two third-order quadrature oscillator 
circuits employing two OTRAs in [20], but both the circuits utilize three floating resistors 
and three floating capacitors. The circuits also provide only voltage-mode outputs. Based 
on third-order technique Duangmalai et al. reported a quadrature oscillator in [7], but the 
circuit is designed using two different blocks—current controlled current conveyor 
transconductance amplifier (CCCCTA) and operational transconductance amplifier 
(OTA). The circuit also provides only current-mode outputs. Again, Montree Kumngern 
and Somyot Junnapiya reported a third-order quadrature oscillator in [16], but the circuit 
is also designed by using mixed blocks—current-controlled current differencing 
transconductance amplifier (CCCDTA) and operational transconductance amplifier 
(OTA). In addition, this circuit does not provide voltage output. A third-order oscillator 
structure with current/voltage output was proposed by Bhartendu Chaturvedi and 
Sudhanshu Maheshwari using differential voltage current conveyor (DVCC) [5], but the 
circuit requires three active building blocks (ABBs). In [11], Horng et al. proposed a 
VM/CM third-order oscillator circuit using current differencing transconductance 
amplifiers (CDTAs) and three grounded capacitors. But three CDTAs are needed for this 
circuit. Again, Jiun-Wei Horng reported a third-order quadrature oscillator based on 
CDTA [9]. But the circuit employs three CDTAs and provides only current outputs. 
Kritphon Phanruttanachai and Winai Jaikla reported a third-order quadrature oscillator in 
[21], but the circuit uses two different active blocks, namely—voltage differencing 
transconductance amplifier (VDTA) and differential difference current conveyor 
(DDCC). Also, this circuit suffers the limitation of operating only on current-mode. The 
third-order quadrature oscillator reported in [18] also uses mixed building blocks—one 
DDCC and two OTAs. The circuit has also the limitation of operating only on voltage-
mode. A qualitative comparison between the proposed and previously reported oscillator 
circuits is shown in Table 1. 

Lately, the voltage differencing current conveyor (VDCC) has appeared as an 
attractive analog building block reported by Biolek in 2008 [3]. It offers electronically 
tunable transconductance gain along with the capability of transferring both the current 
and voltage to the relevant terminals. Several analog circuits, such as, inductive simulator 
[15, 22, 28], filter [12–14], second order oscillator [8, 23, 27, 29] etc., using VDCC as 
active element are reported in literature, but there is no TOQO based on VDCC. This 
encourages the authors to report a new TOQO employing VDCC as an active element.    

The aim of this paper is to offer a third-order quadrature sinusoidal oscillator circuit 
based on VDCCs and all grounded capacitors, which provides following advantageous 
features, such as: 

� Suitable for monolithic implementation; as all the capacitors used in the circuit 
are grounded. 

� Both the voltage-mode and the current-mode quadrature outputs are available in 
the circuit. 
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� The frequency of oscillation (FO) and condition of oscillation (CO) can be tuned 
independently by the use of single grounded passive element. In spite of that, we 
can also tune electronically the FO and CO under proper condition.  

� All the active and passive sensitivities of the circuit are found to be low. 
 

Table 1: Comparison between the proposed oscillator and previously informed works  

The rest portion of the paper is divided as follows: The proposed circuit has been 
described in Section 2. Performance of the circuit under non-ideal condition has been 
given in Section 3. This section also gives the sensitivity analysis of the circuit. In 
Section 4, the effects of the parasitics of the VDCC on the proposed circuit have been 
discussed.  Sections 5 present the PSPICE simulation results. The conclusion of the paper 
has been presented in Section 6. 
 

Ref. 
No. of 
Active 

element 

No. of R+C 
Grounded (G) 
/Floating(F) 

VM/CM 
output Technology 

Supply 
voltage 

(V) 

Uncoupled 

FO and CO 
THD 
(%) 

[5] 3 DVCC 3(2G,1F) +3(G) both 0.5 µm ± 2.5 V yes ≤2 

[7] 
1 CCCCTA, 

1 OTA 
0+3(G) current NA ± 2 V yes 1.09 

[9] 3 CDTA 0+3(G) current 0.18 µm ± 1.25 yes 2.57 

[10] 2 CCII 3(2G, 1F)+3(G) both 0.18 µm ± 1.25 V yes 2.95 

[11] 3 CDTA 0+3(G) both 0.18 µm ± 1.25 yes 10.39 

[16] 
1 CCCDTA 

1 OTA 
0+3(G) both 0.25 µm ± 1.5 V yes 1.8 

[17] 3 OTRA 5(F)+3(F) voltage 0.25 µm ± 2.5 V yes 4.82 

[18] 
1 DDCC 

1 OTA 
1(G)+3(G) voltage 0.25 µm ± 1.25 yes 1.75 

[19] 3 CCCII 0+3(G) both 0.5 µm ± 2.5 V yes 1.927 

[20] 

Fig.2d. 

2 OTRA 

Fig. 3d. 

2 OTRA 

3(F)+3(F) voltage 0.5 µm ± 1.5 V yes 
1.17 

1.32 

[21] 
1 DDCC 

1VDTA 

1(G) 

+3(G) 
current 0.25 µm ± 1.25 yes 2.95 

[24] 

Fig.7.b. 

3 OTA 

Fig.11. 

4 OTA 

0+3(G) 

1(G)+3(G) 
voltage 

ES-2-
MODEL 

± 3 V yes 
not 

given 

This 

work 
2 VDCC 3(2G,1F)+3(G) both 0.18 µm ± 0.9 yes ≤1 



 

2. Circuit description 
2.1. Voltage differencing current conv
VDCC is a versatile active building block which is basically a 
CCII. It inherits all the properties of current
low power consumption, higher slew rate
the block diagram of the 
output ports. The ports z,
impedance port. The equivalent circuit of 
demonstrated in Fig. 1b.

Figure 1:  

The ideal characteristic equation 

	�� � 0, ��= 0, 
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differencing current conveyor (VDCC) 
a versatile active building block which is basically a combination of OTA and 

It inherits all the properties of current-mode active element, such as
low power consumption, higher slew rate, better linearity etc. [25, 26]. Fig

the VDCC, where p and n are input ports and z, x, 
output ports. The ports z, ��	and ��  offer high impedances whereas x is the low 

he equivalent circuit of this particular active blo
. 

(a) 

(b) 

 The VDCC (a) block diagram (b) equivalent circuit

characteristic equation of VDCC is given by equation (1): 

= 0, �	 � 
��
� �	
��, 
� � 
	 and ��� � �	��� = 

combination of OTA and 
, such as, higher speed, 

Fig. 1a represents 
are input ports and z, x, �� and �� are 

offer high impedances whereas x is the low 
this particular active block has been 

 

 

quivalent circuit 

 

= ��               (1)            
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where 
�  is the transconductance gain
electronically tunable by DC bias current a

where �� is the bias current, ��� is the gate-oxide capacitance per unit area, and 

[23]. The CMOS structure of VDCC has been demonstrated in 

Figure

2.2. Proposed quadrature 
Fig. 3 represents the schematic diagram of the 
circuit. As shown in Fig
resistors of which two are grounded

The characteristic equation of the

����������
From equation (3), 

can be expressed as:  
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is the transconductance gain of VDCC. For CMOS VDCC, 
by DC bias current and defined by 


� � ���μ���� ���                   

is the bias current, µ� is the mobility of the carrier for the NMOS transistor

oxide capacitance per unit area, and 
��  is the aspect ratio of MOS

]. The CMOS structure of VDCC has been demonstrated in Fig. 2 [29]

ure 2: Internal structure of CMOS VDCC [29] 
 

quadrature oscillator circuit  
represents the schematic diagram of the proposed third-order quadrature oscillator 

Fig. 3 it employs two VDCCs, three grounded capacitors
two are grounded.  

The characteristic equation of the proposed oscillator circuit can be expressed as

��� ! ��
���������� 	! �
������ ! 
��
��
 frequency of oscillation (FO) and condition of oscillation (CO) 

                 FO: "# �	 ��П� %&'(')')*                                                    

   CO: 
�� + %&'(*(,),('*)'                                                   

Employing VDCCs and All Grounded Capacitors 

. For CMOS VDCC, 
�  is 

                       (2) 

carrier for the NMOS transistors, 

pect ratio of MOSFET 

]. 

 

order quadrature oscillator 
three grounded capacitors, and three 

circuit can be expressed as: 

�� � 0          (3)         

frequency of oscillation (FO) and condition of oscillation (CO) 

                           (4) 

                              (5) 
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Figure 3: Proposed VM/CM quadrature oscillator circuit 

From the circuit of Fig. 3, the voltage ratio of 
2 & 
1 and the current ratio of I2 & I1 

are found to be as follows: 

-*./0-'./0 � �	%&*/),                                                                 (6) 

1*.201'./0 � �	 �/),(,                                                         (7) 

Under sinusoidal steady state, equations (6) and (7) become 

-*.340-'.340 �	%&*4), 536#7                                                   (8) 

1*.341'.340 � �4),(, 536#7                                                 (9) 

From equations (8) and (9) it is clear that the phase difference between 
�	and	
� 
and ��	&	�� is	90� . This indicates that the circuit can works as a VM/CM quadrature 
oscillator.  From equations (4) and (5) it is also clear that the FO and CO of the reported 
circuit can be tuned independently without affecting each other (FO by using ��  and CO 
by using ��	=>	��	=>	��). In addition to this, it is also clear from equations (4) and (5) 
that we can also tune this circuit electronically if we first tune the value of FO by using 
�� and then adjust the CO by using	
��.  
 
3. Non-ideal and sensitivity analysis 
Considering the non-ideality errors of the VDCC, equation (1) can be rewritten as: 

�� � 0, 	�� � 	0, �	 � ?@
�@�
� �	
��,	
� � A@
	,  ��� � B�@�� 

and  ��� � −B�@��  

where  ?@ , B�@ , B�@  represent the current tracking errors and A@  represents the voltage 
tracking error of the i-th VDCC.  

Reanalysing the circuit of Fig. 3 on the basis of equation (10), the characteristic 
equation becomes:  

������������ ! ��?�A�B����������
�� ! �?�A�B��
������ 		! ?�?�A�B��
��
���� � 0     (11) 

(10) 
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 From equation (11), the 

It is evident from equation
oscillator are slightly deviated under non
still separately controllable

Under non-ideal conditions, the sensitivities with respect to various active and 
passive elements are expressed in equation (1

			�C',D',EF',%&
GH

So, equation (14), confirms that under non

devised oscillator circuit are not more than 

proposed third-order quadratu
From the above discussion it may concluded that the designed circuit can behave 

excellently even under non
 
4. Effects of VDCC parasitics
Fig. 4 displays the parasitic model of VDCC
proposed circuit has been 

In Fig. 5; �I �	��
The characteristics equation of the circuit of 

where ? � �I�����I	,	A
B � J%
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1), the FO and CO of the proposed circuit can be found 

FO: "# �	 ��П�C'D'EF'%&'(')')*                                             

CO: 
�� + C'D'*KF'* (*(,),%&'C*D*KL*('*)'                          

from equations (12) and (13) that the FO and CO of the devised 
oscillator are slightly deviated under non-ideal condition. However, the 

controllable (FO by �� and CO by	��	or	��	or	��	or	?�	or
ideal conditions, the sensitivities with respect to various active and 

elements are expressed in equation (14): 

&' � �	�(',)',)*GH � ��  and �C*,D*,EL',EL*,EF*,(*,(,,),,%&
GH

quation (14), confirms that under non-ideal conditions all the sensitivities of the 

devised oscillator circuit are not more than 
�� in magnitude. Thus, the sensitivity of the 

order quadrature oscillator is under considerable limits.  
From the above discussion it may concluded that the designed circuit can behave 

excellently even under non-ideal conditions. 

arasitics 
parasitic model of VDCC [8].  Including the parasitics

proposed circuit has been replicated in Fig. 5. 

Figure 4:  Parasitic model of VDCC [8] 

! ���, �O �	���||	���	 and �I �	�� ! ��� ! �
equation of the circuit of Fig. 5 can be expressed as: 

?�� ! A�� ! B� ! Q � 0                                             

A � J	�I�� �)R(S ! )*(T ! �� �(R)R(U* ! %&'(*(U'),(S  V,
J%&'(U'(S 		 ��� ! (*(U* �� ! (R(S �),(T ! )R(U* ! (R)*(T(U*V, 

Employing VDCCs and All Grounded Capacitors 

found as: 

                   (12) 

                        (13) 

the FO and CO of the devised 
ideal condition. However, the FO and CO are or	A�	or	B��). 

ideal conditions, the sensitivities with respect to various active and 

%&* � 0        (14) 

ideal conditions all the sensitivities of the 

in magnitude. Thus, the sensitivity of the 

From the above discussion it may concluded that the designed circuit can behave 

s of VDCCs, the 

 

���.                   
                    (15) 

 V, 
V
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and   Q � J%&'(U'(S �%&*(R(W ! �(U* ! (R(T(S(U*V. 

 
Figure 5:  The proposed oscillator circuit with the parasitic of VDCCs 

Thus the expression of FO and CO of the proposed circuit can be modified as:  

FO:	 "# �	 ��ПX %&'��Y Z*ZU' (R)R)* ! %&'(*��Y Z*ZU' (R(U*)R), ! �(S(U*)*), ! �(T(U*)R), ! �(T(S)R)*   (16)   

        CO:
%&'* (*

��Y Z*ZU' *(R)R
��� ! (*)*(U*  !	 %&'��Y Z*ZU'  X+ 

%&'��Y Z*ZU' [ + Z	≥ 	%&'%&*(R��Y Z*ZU' (W                (17)                                     

where                  X = � ),(T)R ! �(*)*(U*(T)R ! (*)*(U** ), , Y =	 �(S ��(*(U* ! ),)* !	 (*),(T)R , 
Z = 

(R(S ] �(T � ),(T)R ! �(U* ! )R(U** ),^ 	! (R(S*)* �),(T ! )R(U*  + 
(R)*(T(U* � �(T)R ! �(U*), , 

�_ =	�� + �	�,	and �` =	�� + ���	. 

It is evident from equations (16) and (17) that the FO and CO of the devised 
oscillator are affected by the parasitics of the VDCCs. However, this is not adverse as the 
value of the parasitic resistances	�	�, �	� and �_ are very high [14]. 
 
5. Simulation results 
The reported third-order quadrature oscillator has been simulated with Cadence OrCAD 
PSPICE simulator using the parameters of a 0.18 µm CMOS technology of Taiwan 
Semiconductor Manufacturing Company, Ltd. [2] to test the theoretical analysis. The 
supply voltages are taken as 
aa = − 
bb = 0.9 V and the biasing currents are taken as   
��1 = 50 cA and ��2 = 100 cA (
d = 277.8 cA/V). The aspect ratios of the MOS 
transistors used in Fig. 2 is presented in Table 2 [29].  

The circuit was simulated using �1 = �2 = �3 = 1 kΩ, ��  =  ��  = 68 pF, and             
�� = 75 pF. The value of theoretical frequency of this design was 1.17 MHz, whereas the 
value of simulated frequency was found as 1.12 MHz. The deviation is just 4.27%. The 
initial and steady state waveforms for the quadrature voltage outputs 
� and 
� are shown 
in Fig. 6a and Fig. 6b respectively. The same for the quadrature current outputs �� and �� 
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are shown in Fig. 7a and Fig. 7b respectively. It is clear from the Fig. 6a and Fig. 7a that 
the circuit takes 17.65 µs to start its steady operation.  

Transistor W/L (µm) 
M1, M2, M3, M4 3.6/1.8 

M5, M6 7.2/1.8 

M7, M8 2.4/1.8 

M9, M10 3.06/1.72 

M11, M12 9.0/1.72 

M13, M14, M15, M16 14.4/1.72 

M17 13.85/1.72 

M18, M19, M20, M21,M22 0.72/0.72 

Table 2: Aspect ratios of the MOS transistors of Fig. 2 [29] 

 
(a) 

 
(b) 

Figure 6: (a) Initial and (b) steady state waveforms of the quadrature voltage outputs 
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(a) 

 
(b) 

Figure 7: (a) Initial and (b) steady state waveforms of the quadrature current outputs 

The frequency spectrum of	
� , 
�	and	��, ��  are depicted in Fig. 8a and Fig. 8b 
respectively. Fig. 8 shows that the total harmonic distortions (THDs) for all current and 
voltage outputs are within 1%. The plot of	
�vs 
�	and	��vs �� in X-Y plane is given in 
Fig. 9a and Fig. 9b respectively. Fig. 9 confirms about the quadrature relationship 
between the simulated outputs. The variation of the oscillation frequency (fo) with respect 
to the variation of the capacitor �� is displayed in Fig. 10. Static power dissipation by the 
reported circuit is found to be 1.35 mW. 
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(a) 

 
(b) 

Figure 8: Frequency spectrum of (a)	
�, 
�	and (b)	��,	�� 

 
(a) 
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(b) 

Figure 9: Lissajous figure showing quadrature relationship between 
(a) voltage 
� and 
�	 and (b) current �� and	�� 

 

Figure 10: Variation of f0 with respect to C2 
 

Monte-Carlo simulation for 100 samples with 5% tolerance in the value of R2, R3 and 
C3 has been performed to verify the robustness of the proposed oscillator circuit. The 
result has been given in Fig. 11. The result shows that the oscillation frequency varies 
from 1.10635 MHz to 1.12820 MHz with mean value 1.11744 MHz and standard 
deviation 5.18351 kHz. Thus the shift in frequency is less than 1% on both side of mean 
value.  
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Figure 11: Monte-Carlo simulation result 
 
6. Conclusion 
A new third-order quadrature oscillator circuit using two VDCC, three grounded 
capacitors, and three resistors (two are grounded) is presented in this manuscript. The 
oscillation condition and oscillation frequency of the proposed quadrature oscillator are 
independently controllable by single grounded passive component, as well as electronic 
tuning is also possible. The circuit is feasible for IC fabrication, as all the capacitors are 
grounded. Both current-mode and voltage-mode quadrature signals can be simultaneously 
obtained in the reported circuit. PSPICE simulation results have confirmed the 
workability of the circuit. THD is within 1%.  Static power dissipation is about 1.35 mW. 
Monte-Carlo simulation result has been included.  
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