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ABSTRACT
In this paper, we study the class of cubic metridsch are used in the theory of

space-time structure and general relativity. Wesimter the homogeneous geodesics in
the homogeneous cubic space. L& ,F ) be a homogeneous cubic space anigfihed

by the Riemannian metri@d and the vector fielX . First, we show thatX is a
geodesic vector of M ,F) if and only if it is a geodesic vector dfM ,8) Also, we
find a condition under which an arbitrary vectoraigieodesic vector of cubic metric if
and only if it is a geodesic vector of Riemanniagtna. Then we show that, for Berwald
type cubic metric, if the underlying Riemannian ritets naturally reductive, then the
cubic metricis naturally reductive. Finally, we find the forrmaulof the flag
curvature of the class ofibic metrics.

Keywords. Homogeneous Finsler spaces, homogeneous geoddisioyariant metric,
cubic metric, (a, £) metric, Berwald metric, flag curvature.

1. Introduction
There are two important classes of Finsler metmznely, the class ofn-th root

metrics and the class ofa, ) -metrics. Let (M ,F)be an n-dimensional Finsler
manifold, TM its tangent bundle anfx',y' ) the coordinates in a local chart @M .

Let F be a scalar function oiM defined by F :”Q/K, where A is given by
A=a_, (x)y"y'"z.y'""such thata_, is symmetric in all its indicesF is called

an m -th root Finsler metric. The theory afn -th root metrics has been developed by
Shimada [10, 11, 14], and applied to Biology asanlogical metric by Antonelli [1]. It
is regarded as a direct generalization of Riemanmatric in the sense that the second

root metric is a Riemannian metriE =,/a, (x)y'y' . The third and fourth root
metrics are called the cubic metri =ga,y'y'y" and quartic metric
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F=¢a,y'y'y"y' respectively [17,18]. The specialm -th root metric

F=9y"y'. .y’ is called Berwald-Moor metric which plays a vemypiortant role in

theory of space-time structure, gravitation andegahrelativity. Recently studies show
that the theory ofm -th root Finsler metrics plays a very importanerol Gravitation,
Cancer and Seismic Ray Theory [13, 15, 17, 19]. (an ) -metric is a Finsler metric of

the form F =a®(s), s=—where ®=P(s)is a C” function on (-b,,b,),
a

a=,/3 (x)y'y! is a Riemannian metric ang® =b, (x)y' is a 1-form on M . These
metrics have important applications in Physics, IMeics and Seismology, etc, see for
instance [1, 19].

In [20], Wegener studied cubic Finsler metrics isfiehsion two and three. The first

half of the third section of Wegeners paper [20flésvoted to making a list of Berwald
spaces and locally Minkowski spaces with cubic medf the normal form. He has
proved that every two and three-dimensional cubigslBr metric with vanishing
Landsberg curvature is Berwaldian. Wegener's papamnly an abstract of his PhD thesis
without almost all calculations. In [8], Matsumattudied cubic Finsler metrics and gave
an improved version of Wegener's results. Thera igteresting relation between an

m -th root metric and an(a, ) -metric. In [9], Matsumoto-Numata studied the clas

cubic metrics and proved the following.

Lemma 1.1. ([9]) Let F :Wbe a cubic Finsler metric on a manifold
of dimension dimM ) > 3. If F is a function of a non-degenerate quadréirm
a= Wand a one-formf =D, (x)y' which is homogeneous i andg of
degree one, then it is written in the followingrfor

F =3ca’B+c,p°

where ¢, and c, are real constants.

Lemma 1.1 shows that the class of Finsler metriaghé form (1.1) is very important in
order to studying of the class of cubic metrics.

A connected Riemannian manifolfM ,g)is said to be homogeneous if a connected
group of isometries G acts transitively on it [uch M can be identified with

(%, g) where H is the isotropy group at a fixed poiat of M . The Lie algebra g of
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G admits a reductive decompositiop =m [Jh, where m[J] gis a subspace of g
isomorphic to the tangent spadgM and h is the Lie algebra dfl [4]. In general,
such a decomposition is not uniqgue. A homogeneoesdegic through the

originodM = %is a geodesicy(t) which is an orbit of a one-parameter subgroup

of G, thatis y(t) =expfz )©), tOR, where Z is a nonzero vector of
A Finsler space(M ,F)is called homogeneous Finsler space if the group of

isometries of (M ,F)i.e., I(M ,F)acts transitively onM . A vector X g —{O}

will be called a geodesic vector if the curydt) =expfX )(p)is a constant speed
geodesic of(M ,F)Let (M ,F)be a Finsler space. As in the Riemannian case, we

have two kinds of definitions of isometry ofM ,F )in terms of Finsler function in the
tangent space and the induced non-reversible distiimction on the base manifold
M . For the distance function induced by Finsler fiom; see [16]. The equivalence of
these two definitions in the Finsler case is altafiDeng-Hou [3]. They also prove that
the group of isometries of a Finsler space is atdansformation group of the underlying
manifold which can be used to study homogeneousidfispaces.

In [5], Kowalski-Vanhecke studied Riemannian mald$ with homogeneous
geodesics and proved that a veciér(1g —{O} is a geodesic vector if and only if holds,
where (,) denotes theAd(H) -invariant scalar product orm induced by the

Riemannian scalar product oh,M and the subscriptsn indicates the projection into

m . In this paper, we study geodesics vectors in fgemeous cubic space and prove the
following.

Theorem 1.2. Let F be the cubic metric (1.1) on a homogeneoasifold M  which is
defined by the Riemannian metr& and the vector fieldX . Then X is a geodesic
vector of (M ,4)if and only if it is a geodesic vector diM ,F).

Let (M :%, g)be a Riemannian homogeneous space, grdm [1 h be a reductive

decomposition. In [4], Kowalski-Vanhecke provedtthd [1gis a geodesic vector if
and only if g([X,y],,X ) =0, Oy Om. In [6], the second author proved a similar
theorem for Finslerian case as follows. More pedgishe proved that a vector
X Og —{0} is geodesic vector if and only iy, ([X,Z],,X,) =0, 0Z Omholds.
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For other progress, see [6], [7] . We find a cdnditunder which an arbitrary vector is a
geodesic vector of cubic metric if and only if & & geodesic vector of Riemannian
metric.

Theorem 1.3. Let F be the cubic metric (1.1) on a homogeneoasifold %which is

defined by the Riemannian metri& and the vector fieldX . Let y Og—{0} such
that 4(X ,y,,)#0and for any Z Om,&a(X,[y,z],) =0.Then y is a geodesic

vector of (%, F) if and only if y is ageodesic vector c(f(l_sl—,é).
Let G be a Lie group andH be a closed subgroup & . The coset spacelcj— has a

unique smooth structure such th@t is a Lie transformation group OHP— It is called

reductive if there exists a subspace m of the Igelaa g of G such thatg =m [ h,
where h is the Lie algebra di and Ad(h)mOm, hOH (see [7]). A Finsler
space (M ,F) is called a Berwald space if the Chern connectiaefficient

F"ij = Fkij (X,y) in natural coordinate systems have no dependemteeovector y. In

this paper, we study natural reductive homogeneol& space.

Theorem 1.4. Let (M :%,F)be a homogeneous Finsler space, whBreis an
invariant cubic metric (1.1) defined by the Riemiannmetric & and the vector field
X which is of Berwald type. If(%,é) is naturally reductive, ther(%,F)is

naturally reductive

Finally, we give the flag curvature formula of imiant cubic metrics which are
induced by invariant Riemannian metrics and invdrigector fields on homogeneous
spaces.

Theorem 1.5. Let (M :%,F)be a naturally reductive cubic space wikh defined

by the Riemannian metric & and the wvector field X .ie,

F(y)=§/clé(X,y)é(y,y)+czé(X ,y) be a flag in m such tha(P,y)is an
orthonormal basis ofp with respect tod. Then the flag curvature of the flag
(P,y)in m is given by
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< (py) =28 g0 au, v, 1X 1) + 50U MWL X 3 D A

4, (AU [T, Y], V) +§|[ u i[9}

2
3DF*®

+

{a(X,u)(afu, yl.[X, yl,) +;11(é([u ol X 9,) Bf,
where
A=c,+3aX uy, B=c,+XAX,y),

D= an(X,y)A—%a(X,u)sz (1.2)

2. Preliminaries
Let M be a n-dimensional C® manifold andTM = UTXM the tangent

xOM
bundle. Let (M ,F) be a Finsler manifold. The following quadratic rforg, on

T,M s called fundamental tensor

g () =+
yae 2 0ot

[F(y+Su+tv)]| o U, VOT,M

Let x UM and F, = F‘TXM To measure the non-Euclidean feature Ff, define
trilinear form C :TM UTM UTM - R by

1 0
C.(uvw)==
i ) 4 9r 0sot

where u,v w UT, M The family C ={C } ,,, is called the Cartan torsion [6]. It

[F2(y +ru+sv +tw)]|

r=s=t=0°

is well known thatC =0 if and only if F is Riemannian.
Given a Finsler manifolfM ,F), then a global vector fields is induced byF on

TM, , which in a standard coordinate(x',y') for TM, is given by

G=y' %—2@ (x,y)ayii where

1 [ 0%FE L oF?
G'—4g[ A

= ,YUT M.
0X“dy ox } Y=

G is called the spray associated (M ,F).
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For a tangent vectory UJTM, define B :T,M OT,M UT,M -T M by

Bi . - aSGI :agrijk
jki ay]aykayl ayl
where [, =T, (x,y) denotes the Christoffel symbols of the Chern (Béiyva

e
B,(uvw)=B", (yu'vw OT|X where

connection of F .
B is called the Berwald curvature. Thek, is called a Berwald metric iB = 0.
Let ¢:(M,F) - (M ,F)be a diffeomorphism. Thernp is called an isometry of

(M,F)if F(ex),dg (x))=F(x,X), OIxOM and xOT,M . The group of
isometries (M ,F ) of a manifold M is a Lie transformation group oM . (M ,F)is
called Finslerian homogeneous space if the groupsafetries, i.e., (M ,F)acts

transitively on M . Hence, in homogeneous Finsler space the tangekohski spaces
(T,M ,F, ) are all linearly isometric to each other.

A homogeneous spacélj—of a connected Lie groufs is called reductive if the

following conditions are satisfied:

(1) In the Lie algebrag of G there exists a subspace m such tigat m+h (direct
sum of vector subspaces),

(2) ad(h)mOm forall h(OH , where h is the subalgebra ofy corresponding to
the identity componentH, of H and ad(h)denotes the adjoint representation of
H ing.

It is remarkable that, condition (2) implig€2) [h,m] O m. Conversely, ifH is
connected, then(2)' implies (2) (For more details, see [4] and [12]).

A homogeneous manlfoIGI'_l—wnh an invariant Finsler metric F is called natlyra

reductive if there exists am\d (H ) - invariant decompositiong = m + h such that
9, ([% Ul V) + 9, ([X Vi W) +2C,([% Y] n V) =0, (2.2)
wherey #0and x,u,v Im (see[5]) .
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For y OTM, , the Riemann curvature is a family of linear tfanmations
R, TM -T,M with homogeneity R, :AzRy, 0A)0 defined by
i 0
— i k
R,(U)=R,(y)u v where
) i 2 ) ) 2i i j
R (y :26%_ 6_Gk yi +2G) 6.Gk _6G. 6Gk
ox‘  ox'oy oy'oy” ody’ ody
The family R ={R(Y)} ,v, is called the Riemann curvature.

(2.2)

For a flag P =span{y, u} OT,M . With flagpoley, the flag curvatureK =K (p,y)
is defined by

9, (U, R, (1))
g,(y,¥)g, (u,u)-g, u,y)’
The flag curvature K(x,y,p) is a function of tangent planes.
P =span{y,u} OT,M . This quantity tells us how curved the space & point. If F

KXy, p)= (2.3)

is a Riemannian metricK (x,y,p) = K(X,p) is independent ofy Op \{0} .
Thus the flag curvature in Finsler geometry is aura extension of the sectional
curvature in Riemannian geometry.

3. Proof of main theorems
Proof of Theorem 1.2. According to Lemma 1.1, we have

F(y) =gea(X ,y)a(y,y)+caX y (3.1)
where ¢, and c, are real constants. Far,sUR, (3.1) can be written as follows

F(y+ru+sv)=[ca(X, y+ru+sv)a(y+ru+sv,y+ru+sv)
2

+C,8(X, y+ru+sv)’]? (3.2)
By (3.2), we get

g, (V) =%{015(X,U)ﬁ(y,v) +ea(X v)a(y,u)+IAX ujaX via.y)

FCAUVEK Y )}~ o lCBX VA Y, ¥) +20E(X YY)

+3c,a(X V)AX, P Hed X W &y, Y) +2ca(X, y)a(y,u) +3cA(X,u)a(X,yy} (3.3)
Forall Z Om, (3.3) implies that

9x (X.,[X,z],) :%{Cﬁ(X, X)aAX,[X, 2]) +e& X,[ X, Z) g X, X) +c & X, X)&A X,[X, Z])
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+3c,a(X, X)a(X,X)a(Xx,[X,z])}

‘9i4{q§( XX A& X X) +2ca X, X)aAX,[X, F) +3c,a(X,[X, D) & X, X)3
{ca& X, X)& X, X) +2ca(X, X)a(X, X)+3c,a(X,X)a(x,x ¥}
Equivalently, we have

. (X [X,21,) =80 [X, 2) Z(CAX, X) +eAX X))

Since c,a(X ,X )+c,a(X ,X )* # Othen it follows thatg, (X ,[X,z],)=0 holds if
and only if a(X ,[X,z],,) =0

Proof of Theorem 1.3. Using (3.3) and after some computations, we get

gy (Ym:ly. 2],) = %{clé( XY &Yl ¥4y *c@ X[V 4 ) &Yy Yo tC&A X V) A Yl % 40)

+302a~(x iym )é(x !ym )a~(x ![y ,Z ]m )}
_9;-4{Claxi[y1 z]m)aym’ yrn) +201§(X, ym)é(yml[y’ z]m) +3025(X l[y’ z]m)é(x’ ym)z}
{CAX, Y ) &Y Vi) +2CAX, Y )AY 1y Vi) + AKX Y XY V)

Since foranyZ Om, a(X,[y,z]) =0 holds, then we have

9y (Yos[¥s 2,) = ;31 80X, Vi) &Y [Ys Z B A X, Vi) & Yoy Vo)

~ 2 ~ ~
+3c,8(X Yy, )’} + ¥{2 cGa( X, o) a&( Ym [ Y, 2 )} (3.4)
Simplifying (3.4) implies that

2 ~ ~
9y, Yo [Y:210n) =5 A2GECX, Vi) &Y [Y: A} (3.5
By (3.5), y is a geodesic vector ofM ,F)if and only if it is a geodesic vector of
(M ,a).
Let (M ,F) be a Finsler space. ThefM ,F)is called a Berwald space if the

Chern connection coeffcientstfkij (X,y) in natural coordinate systems have no

dependence on the vector, or in other words, if the Chern connection dedielinear
connection directly on the underlying manifold.
Proof of Theorem 1.4. Let (M ,4)be a naturally reductive Riemannian manifold. We

show that for allO# y,z ,u v [Im the following holds
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9, ([x Ul V) +9,([X V], W) +2C,([% V], 4 V) =0, (3.6)

Since F is a Berwald metric, thedM ,F) and (M ,a) have the same connection.
Soforall 0#y [Om, we haveda(X ,[y,z]) =0, Oz Om. By (3.3), it follows that

e (L PR E SR REIE PRV ERY)

FLAX VALY P )}+Waw,[z,u1).

9, ([z,u],,v) =a(y.[z,ul}

And

g, (2.ul,.v) =-a(y.[2. v]){M(cax DAy, y) +2¢AX, y)ay,u)

ZaX u)y  xaX.y)

A uAX Yy Y)}- F =

[z V]).

By definition, we get

2c, (Z,U,V):%{&ZQ(X,Z)Q(X uaX v+ xzaX.zatvyrzaX vl z)

¥26A(X V)A(ZU)} - 9;
+2ca(X,u)a(y,z)+ xaX,y i u)Hca(X,v)aly, y) +2ca(X, y)ay,v)
+3C,A(X, yPa(X W)} - 9;4
+2ca(X,yjaf,u)+ecaX, yaX uaX v)Kca(X, 2ay, y) +2ca(x,yay,z)
+3CA(X, Y (X 2}

+6C,a(X, z)a(X,y)a(X VIHc& X, W&y, y) +2¢a(X, y)a(y,u) +3c,a(X,y)*a(xX u)}
27F15{cl6(>< VaA(Y, y) +2¢a(X, y)a(y,v) +3c,a(X,yy aX V)HcA X W& y: y)

+2¢a(X, y)a(y,u)+ L,a(X vya X u)Hca(X, 2)a(y,y)+ 2ca(X,yya(y,z)
+3c,a(X,y)ya(X,z)}

It follows that

¢, ([z,ylnuv) = —a(V [z, yI{A X, )(caAX, )&y, y) +2caX, y)aly,u) +LAX u)a(X .y )

—3F’a(X kg 4a(U [X, yI{a X Y(cd X, )y, ) #2cAX, y)Ay,v) +IAX V)aX ,y))
—3F%&X v)}
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Therefore
a

g, (XUl V) +9, (%], U) +2C, ([X, Y], UV) =W(a«[z, u],v) +&u,[z,V])

2C16~1(X V) _Clé(x Y )( Cld X, V) d Y, y) +2C15(X, y)é(y,V))

3F 9F*4
STAMK VKLY P+ EQ2] y) +a (2, yDy 22 ) CE )
A WY,y )+ TAXK Y B 1)) +TAX WK .y P))

Thus, we get (3.6).
Now, we are going to prove Theorem 1.5.

+@([z,u], y) +a(u,[z, yDA

Proof of Theorem 1.5. Using the explicit expression for the connectidnlMo, a
straightforward lengthy calculation leads to théofeing expression for the curvature

tensor R of (%,F):

RYw)z = (vl 2]~ Jluwd 2 - 29 o+ 2 ¥, for al
v,w,z m UTM . The following holds
9, (Ru,y)y.u)

K(P,y)= .
P.y) g,(y,y)g, u,u)-g,u,yy

Then for r,sOR we get

2
F2(y +ru+sv) =[ca(X,y +ru+sv)a(y +ru+sv,y +ru+sv)+c,a(X ,y +ru +sv)’]3
By a direct computation, we get

gy(U,V)=3£F{Clﬁ(X,U)5(y,V) +ea(X vialy,u)+xAX ujaX viaX.y)

HGAX VA, ¥) +20E(X YAy V)

+3c,a(X v)a(X, yYHed X, W & v y) +2¢a(X, y)a(y, u) +3cA(X u)a(X,y)’}
According to the above formula we have

+cau,v)alx,y)} -

9, (y,y)=F3(y) (3.8)
_AaxXy), . 1 2p 2
g,u,u)= Fy) A 9|:L‘(y)a(x ,u)B“, (3.9)
g,(y,u)= F (y)é(X u), (3.10)
gy(R(u,y)y,u):%(clém(u,y)y WHTARMY Y X BK 1))
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_BZa(X ,u)

F () a(Ru,y)y,x), (3.11)

where A, B and C defined by (1.2). Substituting (3.8), (3.9), (3.20)d (3.11) in (3.7)
completes the proof.
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