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ABSTRACT
This paper deals with the blow-up of solution taass of nonlinear degenerate parabolic
equations

(a(w), = div(b(u)|Du|p'2 Du) +f(u)

under Robin boundary condition. By constructing soappropriate auxiliary functions
and using first-order differential inequality teddure, we derive the sufficient conditions
which guarantee the occurrence of the blow-up. dditeon, lower bound and upper
bound for blow-up time are derived when blow-upgemp

Keywords: Nonlinear parabolic equations; Blow-up; Lower bouodper bound; Robin
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1. Introduction
In this text, we consider the following nonlinearabolic equation

(a(w)), = oliv(b(u)|Du|"'2 Du) +f(u) (1)

with the following Robin boundary condition
du
—+ku=0
on

and the initial condition

u(x,0)=h(x)= 0.

Here i is the unit outer normal vector of @, and % is outward normal derivative
n

of u onthe boundaryd®@ which is assumed to be sufficiently smooth.

If p=2, the phenomena of blow-up for parabolic problemmehbeen extensively
studied in the last 10 years for details, see G{irijp Arunkumar, Agilan and
Ramamoorthy [2], Abdol and Panchal [1], Hakim [B]itra, Datta, and Chanda [9],
Ding and Guo [3], and Zhang [12]. Payne and Schdé&fd have studied the following
problem

U =Au+f) in0x(0,),

%+KU:0 onddx (0 ), @3]

on

u(x,0)=h(x)=0 in@
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where @is a bounded domain iR", Ais the Laplace operatat,is the gradient

operator, n is the unit outer normal vector o, and g_u is outward normal
n

derivative of u on the boundaryo© which is assumed to be sufficiently smooth. By
using a first order differential inequality techun@ sufficient conditions were given to
guarantee the occurrence of the blow-up. In additaolower bound for blow-up time

was also obtained. Zhou (2009) studied the equation

% = udiv(|0ul””* Ou) + y|Ou®
with the boundary and initial value conditions. ératEnache (2011) considered a Robin
boundary value problem for quasi-linear parabaljoations of the form

u, =div(b(u)Ou)+ f(u)  in Px(0,),

?+Ku:0 ond@x (0 ), (©))
n

u(x,0)=hx)=0 in?.

Under the suitable assumptions on functiops and h, the author established sufficient

condition to guarantee the occurrence of the blpwMoreover, a lower bound for
blow-up time was obtained. On the contrary, blowplagnomena of general case (1) has
not been studied in the literature. Our aim in #riicle is to fulfill this gap.

Since the initial datau,(x) in (5) is nonnegative, we have by the parabolic

maximum principles ( see Friedman (1958) and Nieeglf1953)) thatu is nonnegative
in 0><(0,T*). In section 2, we plan to present the sufficieditions which guarantee

the occurrence of the blow-up. In section 3, wd firild a lower bound for the blow-up
time when blow-up occurs.

2. The Blow-up solution
In this section we mainly seek the sufficient ctiedis which guarantee the blow-up. To
this end, we define an auxiliary function of thenfio

G(9) = 2[ yo(y)* PP (y)dy, Alt) = [ G(u(x1))ax,
H(s) = [, y"b(y)"®Mdy, F(s)= [ f(9)b(s)* V" ds, (4)

BO=[, Fox-— [, @[ @uy e ae-k" ], H (u) ok

00

where u(x,t) is the solution of problem (3).
The main result of this section is formulated ia fbllowing theorem:

Theorem 2.1. let u(x,t) be the solution of problem (1). Assume that thia dé problem
(3) satisfy the following conditions:

s (9)b(s)" 7™ 2 p(L+a)F (s), $>0 (5)
where a is a positive constant. We further assume

lim y°b(y)"*® =0 and B(0)=0. (6)

yqoc
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Then, we conclude thati(x,t) blows up as some finite tim& and T" is bounded
above by

A 1—72(1+a)
T < ©

Pra)

(g (1+a) —1] 2p (1+a B (A (0)2

Proof: We first compute
At) = f@G'(u(x,t))u[dx: 2J'aub(u)(p‘1)p'1(a(u ),

=4 ub @ Sp‘l)p'l[div(b 0J0uP* 0u)+ £ )J &

=4 uf ap e o= 4(p- Lp- ) ub ¢ VP ¢ ) Qu )]
-4 b ¥ Qu 3]5 - 27 b(u)*HPurdx

> 2!0uf ap O PPt - :jgb ¢ Y[ Qu 3]5 o Rp-ljwb ¢ §PuP o

Here, we have used the fact thialt< 0. Integrating by parts and taking into account
assumption (6), we have

H(u)= fosyp'lb(y)p""l)dy
=y"b (yf(p—l)J'O“_ - :qosyp_lb ¢ ))(P-l) y-p - :q'jypb ¢ y(p—l)—lbr ¢ )
> YO - (- 1Yy D ¢ ¥ g =ub a7 o= i (u)

Nlo

H (7)

that is
pH (u) = uPb(u)**™ . (8)
Therefore, inserting (8) into (7) and using theuagstion (5), we arrive at

A’(t)22p(1+a)ng(u)dx— 2(1+aj0bg [ Qu f]’g *- D (Fa arp‘lij(u) o
= pa {jOF ¢ )ck—%jgb ¢P ou e d-x, H(u) d} ()

=2pTaBt)
On the other hand, we comput&t) to obtain
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B0 =, 1000w (p-) [ b0) w o [T o
e Pl u T Duou k- H G o
=[, 1 0pUI o= (p= 3 b 690 an[ uj]:

P (10)
_J.mb (J)(p_l)p [(DU)Z]Z DUDUrdX_Kp_l_[wup_lb(u)p(p'l)utdx

:Lbuﬁpﬂ”’*u{f 6)b 0f Ouy): +bu>Ddi{( @uf)gﬂ &

:j@bujp‘l)p‘lu[ (a@), w:jgbgﬁp‘l)p‘la' 0Yu) &= 0
based on the fact tha&'>0. Thus, in view of (6) we conclude thas(t) is a
nondecreasing function of and

B(t) = B(0)= 0. (11)
Furthermore, combining (9) with (10), we use Holmheguality to get

O< I 1 I 2 _ 2 (p—l)p—l r 2

< Q+a)A OB ——(A 1)) _—(j ubu)P Py (u)utdx)
E r ( —l)p—l '
spB t((jgubu(p) a u(u?x[) .

Integrating by parts and using the assumption t#iat0, a'>0 and a"<0, it follows
that

jo s(9)" V" a' (s)ds
= b(9)P V" a(s) jo - jo sb(9)" P (s)ds
~((p-1) p- J)jo b)Y G (s)ds—jo” bl e 6)d
> u?b(u) PP e (u) - jo sb(s) PP ' (s)ds,
that is

G(u) = u?b(u) PP A (u) . {13
Therefore, we insert (13) into (12) to obtain

G BO= - B O], W) =B A, (14)

This leads to
d(  -Pa+a)

E[A 2 szo. (15)

An integration of (15) from O ta leads to

LR
BO [ A) (16)
B(0) | A(0) '

Finally, it follows by combining (9) with (16) that

L(va)

A () 2 2p+ @)BOAO) 2" ALY
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or
' Pia
205 oparapoa© . 17)
A(t)5(1+a)
Noting that p>2, and integrating (17) from O to, we obtain
-Pt+a -P (o Laia
AR 2" < A0) 2" )—(g (1+a)—1) 2p (Ha B (OA (0)2" "t (18)

Since inequality (18) can not hold for
Pwa)y (p _Pliaa)
AO) = - S+ a)-12p (ra BOA )T Tts ¢
that is , for
1—£(1+a)

s A(0) 2

(5 (1+a) -1j 2@ B OA O

Hence, we conclude that the solutian of problem (1) blows up at some finite ting
and T is bounded above by

1-P (+a)

A(0) 2
(5 (1+a) -1j 2@ B OA )"

a)'

T <

a).

3. Lower bound for blow-up time
In this section we seek the lower bound for thevblp time T*. To this end, we define
an auxiliary function of the form

v(s) = I:%dy, E(t) = ja[v(u(x,t))]""*zdy with =1, (19)

Theorem 3.1. Suppose thatw O R, is a bounded convex domain with smooth boundary
d . Further, assume that nonlinear functianf and g satisfy

s -1
0< f(s)sdb(s)(_[ov(y)dy)p , s>0 (20)
where J is a positive constant independent af b and f . Then the blow-up time
T is bounded below by

. dé
T 2.[5(0) 3 2(up+2)-p
A+ AE+ AL+ AL+ Ag A
where,A, A, A and A, are positive constants to be determined lager.
Proof: We first compute
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aw),

d — HUp+l
GE0=tpe 2w T

=(up+2)[ v o )[dlv(b(u)|Du|p 2 Du)+ f (u)J

:—Kp_l(,up+2J. v |u P k- (pp+ 2)( ,up+])j v**0v|0u]”™ Du &

(21)

+(up+2)[ v o e (up+ 9 v L o

In view of the first auxmary function in (19), wget
Ov= 2 Ou. (22)
b(u)
Combining (22) andb’ <0, we remove the non-positive terms in (21) so that

d b(u p-2 Hp+p
EE(‘[)S—(,up+2)(,up+1)_[0 (( ))v”p|Dv| oK+ ,up+2f VAP &k (23)

Using the fact thatb(s)=b, >0 and 0<a'(s)<a;, , we arrive at

9 5 Gn (24)
au) a,
Therefore taking (24) in (23), we have

d b e
S EO==(up+2)(up+1) (u+1) "aM—,f@IDV” '

k+0(up+ Z)J‘@v’”’*pd( (25)

Next, we seek to boundi(yp+2)j0v‘”’”’dx in terms of E(t) and J'0|Dv’“1pdx. By

mean of Holder and Young inequalities twice, weehav

2 Hp*p

[ v <O ([ vee oo e
4 o

2

< " " 2 ,Up"' p V,up+p+2dx
Hp+D

o] +
pp+p+2%e

2p (26)

Hp+2-2p

2 |(7| + HP+P [J- Vg(umz) J/‘F’*Z(J' V,,p+2dx) Up+2
o

< -
CHp+p+l Hp+p+2
<2 _|o| + KP*P__2p v Jwed) o, HP+D #p+2—2pj e,
Hptp+2 Hp+p+2up+279 Up+tp+2 up+2

Using the integral inequality derived in Payne @0®amely

3(up+
J' uz(”p 2)dx — E(t)? +\/§[p1 + j
o 2
2,02 B 0

Et)
4x°

2
Ou 2/lp 2)

+= )(J. cb(} , 27)

we obtain
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3

3
[vrrds—2jo| +HBER__2D T g
< Hp+p+2 Hp+p+2up+2, 3
2p,°
3
pp+p  2p 2 Py E(t)3+_3)(j Dui(ﬂp o . (28)
HP+P+2Up+2 2la " T T

/‘lp+p /'Ip+2 2p-[ V/jp+2 d
Up+Pp+2  up+2 '
For simplicity, let w=v**™. Again by using Holder and Young inequalities, atxtain

p-2

+

1( p+2) 2 M 2p p
o o U o [ i
(up+2) _2p
(up+1)’ f IOwP o p-2(up+2)’ Ny W DD 5y 29)
2p p+1)° P 4+ 97
+2) 2 2(,UP+2) p
(lup+1 I |DV1+/1 dX+ |@| Lpfz)(ﬂp 1) E(t) (p-2)( /1P+2)
2p(;1+1 4 y+])
Therefore, we insert (29) into (28) to arrive at
3(up+2)], W
2(/1p+2) p (30)

< A+ AEQ) + AE®)? + AR + AEDT T 1 xA o |ov| ax
where y is a positive constant to be determined later,
:25(#D+2)|§| Hp+p pp+2-2p
Hp+p+2 Up+p+2 pup+2

3

, A=d(up+2)

3 Up+p  2p
== _5(up+2 ,
& P ) 2 p+2
20,

3
3(up+2) up+p 2p ﬁ(pl ]
ay;  up+p+2up+2 2lp, )’

3
2

A?.:

2(p-2)(up+2)
4

- HP+p+2up+2 p 4(p+1)°

+2)
A = 3ﬁ{p1+1J S(up+2)HPTP__ 20 P2, ey (up 1)

0

3
342 + 2 yp+12
A=, [”wj 3(up+2) ”ﬁ fz ﬁz( )2.

34 HP+P+2up+22p(u+1)
Combining (30) with (25), we obtain

0
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%E(t)s—(up+2)(up+1) w+1)“’:M_'mLIDV”” "d+A+AEL)

(31)
3 2(up+2)-p
+AE(}+AE( j +AE ( 5(9—2)(,up+2) +XASJ'0|DV1+;1 p o
To make (31) useful, we must choose a suitaplesuch that
b
X=(up+2)(up+1) (u+1y° =
(up+2)(up+) s

Thus, (31) becomes

2(up+2)-p

%E(t) < A +AE®M)+ AZE(t)% +AE(t)® + AEM)XPAked (32)

Finally, an integration of the differential ineqital(32) from 0 to t leads to
IE(I) d&

E(0)

2Aup+2-p ~

A AEH AL+ AL AL A
From which we derive a lower bound far , namely

. +oo da&
T 2.[5(0) 2(up+2-p

A+ AEHAE A+ AL 00
Thus, the proof is completd.]

Remark 3.2. Theorem 3.1 remains valid if the Robin boundarmpdition in (1) is
replaced by the following nonlinear boundary coodit

ou
- =0.
6n+g(u)

Here, g is a positive function which belongsitR, ).

4. Conclusion

The main purpose of this paper was to present blpwesults for a nonlinear degenerate
parabolic equation under Robin boundary condittoghlighting the method which has
been used by Payne (2008) to some results. Theitees used to prove our results are a
variety of tools such as differential inequalitgheique. The possible generalization is
plan to present the sufficient conditions whichrginéee the occurrence of the blow-up.
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