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Abstract

In this thesis, different types of m-polar fuzzy graphs have been considered. The
major problems considered in the thesis are generalized m-polar fuzzy graphs and their
properties, operations on m-polar fuzzy graphs, degree of vertices of m-polar fuzzy
graphs, density of m-polar fuzzy graphs, m-polar fuzzy planar graphs, isomorphism
and weak self complement m-polar fuzzy graphs, edge regular m-polar fuzzy graphs,
the applications of m-polar fuzzy graphs, generalized regular bipolar fuzzy graphs and
product bipolar fuzzy line graphs.

This thesis consists of ten chapters. In the first chapter, we provided the basic defi-
nitions of graph and different types of fuzzy graph which are needed in the subsequent
chapters and further, a history of the problems.

In Chapter 2, we introduced generalized m-polar fuzzy graphs. Some operations
have been defined to formulate these graphs. Some properties of strong m-polar fuzzy
graphs, self complementary m-polar fuzzy graphs and self complementary strong m-
polar fuzzy graphs are discussed.

In Chapter 3, we have defined three new operations on m-polar fuzzy graph such
as direct product, semi-strong product and strong product. It is proved that any
of the products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient
conditions are established for each one of them to be strong and also proved that strong
product of two complete m-polar fuzzy graphs is complete. If any of the products of
two m-polar fuzzy graphs GGy and G, are strong, then it is shown that at least G or
G5 must be strong. The degree of a vertex in m-polar fuzzy graphs which are obtained
from two given m-polar fuzzy graphs G; and G5 using the operations of Cartesian
product, composition, direct product, semi-strong product and strong product. At
the end of this chapter, 3-polar fuzzy influence graph is introduced as an application.

In Chapter 4, density of m-polar fuzzy graphs is defined and then introduced the
notion of balanced m-polar fuzzy graphs. Some characterizations of balanced m-polar
fuzzy graphs are given.

In Chaper 5, m-polar fuzzy planar graphs, m-polar fuzzy dual graphs are defined and
some important properties are established. Here, the “degree of planarity” is used to
measure the nature of planarity of an m-polar fuzzy planar graph. Also, we introduced

some terms like m-polar fuzzy multiset, m-polar fuzzy multigraphs, m-polar fuzzy dual



graph. Some theorems have been proved on degree of planarity. Depending on the
degree of planarity, the considerable edge has been introduced.

In Chapter 6, weak self complement m-polar fuzzy graphs is defined. A necessary
condition is mentioned for an m-polar fuzzy graph to be weak self complement. Some
properties of self complement and weak self complement m-polar fuzzy graphs are
discussed. The order, size, busy vertices and free vertices of an m-polar fuzzy graphs
are also defined and proved that isomorphic m-polar fuzzy graphs have same order,
size and degree. Also, we have proved some results of busy vertices in isomorphic and
weak isomorphic m-polar fuzzy graphs. A relative study of complement and operations
on m-polar fuzzy graphs have been made. Some real life problems have been modeled
using the concepts of m-polar fuzzy graphs.

In Chapter 7, the concept of edge regular, strongly regular and biregular m-polar
fuzzy graph are introduced. Some properties of them are studied. Also, the concept
of partially edge regular m-polar fuzzy graph and fully edge regular m-polar fuzzy
graph are introduced with suitable illustrations. The notion of strongly edge irregular
and strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are
also studied to characterize strongly edge irregular and strongly edge totally irregular
m-polar fuzzy graphs.

In Chapter 8, we used m-polar fuzzy sets to introduce the notion of m-polar -
morphism on m-polar fuzzy graphs. The action of m-polar ¥»-morphism on m-polar
fuzzy graphs is studied and we established some results on weak and co-weak isomor-
phism. ds-degree and total do-degree of a vertex in m-polar fuzzy graphs are defined
and studied (2, k)-regularity and totally (2,k)-regularity. A real life situation of a
company has been modeled in terms of 4-polar fuzzy graphs as an application.

In Chapter 9, we introduced generalized regular bipolar fuzzy graphs and investi-
gated some its properties. Then, we define a product bipolar fuzzy intersection graph
of a product bipolar fuzzy graph and the product bipolar fuzzy line graphs. Some
characterizations of product bipolar fuzzy line graphs are also made.

Finally, Chapter 10 contains some concluding remarks and scopes of further research

on the problems that have been studied in the thesis.
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Chapter 1

Introduction

Graphs can be used as a modeling tool for many problems of practical importance.
For instance, a network of cities, which are represented by vertices, and connections
among them make a graph. The well-known traveling salesman problem asks for the
shortest possible tour, which visits all the cities exactly once. There are numerous
applications like this. Graph theory was born in 1736 with Euler’s paper in which he
solved the Konigsberg bridge problem. This problem lead to the concept of Eulerian
graph. In 1840, Mobious gave the idea of complete graph and bipartite graph and
Kuratowski proved that they are planar by means of recreational problems. Graphs
are very convenient tools for representing the relationships among objects, which are
represented by vertices. In their turn, relationships among vertices are represented
by connections. In general, any mathematical object involving points and connections
among them can be called a graph or a hypergraph. For a great diversity of problems
such pictorial representations may lead to a solution. Examples of such applications
include databases, physical networks, organic molecules, map colorings, signal-flow
graphs, web graphs, tracing mazes as well as less tangible interactions occurring in
social networks, ecosystems and in a flow of a computer program. Thus, graphs can
serve as a mathematical models to solve an appropriate graph-theoretic problem, and
then interpret the solution in terms of the original problem. At present, graph theory

is a dynamic field in both theory and applications.

There are several types of graphs which represent real world problems. These are

discussed below.
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1.1 Some preliminaries on graphs
Pictorial representation of a graph consists of vertices (representing objects) and

edges (representing connections) between them. Formal definition is as follows:

Definition 1.1.1. (Graph) A graph is an ordered pair G = (V, E) of two sets V' and
E, where V' is the set of vertices, nodes or points each representing the objects and E
1s the set of edges, arcs or lines which is a subset of VX V', i.e. a relation defined on
V.

A multigraph [15] is a graph that may contain multiple edges between any two ver-
tices, but it does not contain any self loops. A drawing of a geometric representation

of a graph on any surface such that no edges intersect is called embedding [15].

Graph has many variations such as directed graph, undirected graph, simple graph,
finite graph, infinite graph, etc. In a directed graph the relation defined on V' is not
symmetric but in undirected graph the relation defined on V' is symmetric. In a graph,
loops may occur that is, a vertex has a relation to itself. Also, there may have more
than one edges between two vertices, called parallel edges. Simple graphs have no
multiple edges and loops at all. If in a graph, there are finite number of vertices
and finite number of edges, the graph is called finite. Otherwise, it is infinite. Most
commonly, unless stated otherwise, graph means undirected simple finite graph.

In a directed graph 8 = (V, ﬁ), a walk in 8 is an alternating sequence W =
vle_l>vze_2> .. .vk,le_;zvk of vertices v; and arcs E? of 8 such that tail of E-) is v; and head
is v;1 for every ¢ = 1,2,...,k — 1. A walk is closed if v; = vg. A trail is a walk in
which all arcs are distinct. A path is a walk in which all vertices are distinct. A path
vy, Vs, ..., with & > 3 is a cycle if v; = vg. The length of a path or a cycle is the
number of its edges.

When a vertex v; is an end vertex of some edge e;, v; and e; are said to be incident
with (on or to) each other. Two nonparallel edges are said to be adjacent if they are
incident on a common vertex. Similarly, two vertices are said to be adjacent if they
are the end vertices of the same edge. The number of edges incident on a vertex v;
with self-loops counted twice, is called the degree d(v;) of vertex v;. The degree of
a vertex is sometimes also referred to as its valency. Let us now consider a graph G

with e edges and n vertices vy, vs,...,v,. Since each edge contributes two degrees,
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the sum of the degrees of all vertices in G is twice the number of edges in G. That is,
> d(v;) = 2e.
i=1

Definition 1.1.2. A graph in which all vertices are of equal degree is called a reqular
graph (or simply a reqular).

A wvertex having no incident edge is called an isolated vertex. In other words, isolated
vertices are vertices with zero degree. A reqular graph of degree 0 has no lines at all. If
G is regular of degree 1, then every component contains exactly one line; if it is reqular

of degree 2, every component is a cycle.

The minimum degree among the vertices of G is denoted §(G) while A(G) is the
largest such number. If §(G) = A(G) = r, then all points have the same degree and
G is called regular of degree r.

In geometry two figures are thought of as equivalent (and called congruent) if they
have identical behavior in terms of geometric properties. Likewise, two graphs are
thought of as equivalent (and called isomorphic) if they have identical behavior in
terms of graph-theoretic properties. More precisely, two graphs G; and G are said
to be isomorphic (to each other) if there is a one-to-one correspondence between their
vertices and between their edges such that the incidence relationship is preserved.
In other words, suppose that edge e; is incident on vertices v; and vy in GGy then the
corresponding edge e; in Gy must be incident on the vertices vs and v4 that correspond

to v; and vy respectively.

Definition 1.1.3. A graph G is planar if it can be drawn in the plane with its edges
only intersecting at vertices of G. So the graph is non-planar if it can not be drawn

without crossing.

In 1930, Kuratowski [64] invented some important results on planar graphs. A planar
graph with cycles divides the plane into a set of regions, also called faces. The length
of a face in a plane graph G is the total length of the closed walk(s) in G bounding the
face. The portion of the plane lying outside a graph embedded in a plane is infinite
region. In graph theory, the dual graph of a given planar graph G is a graph which has
a vertex corresponding to each plane region of G, and the graph has an edge joining
two neighboring regions for each edge in G, for a certain embedding of G. Whitney’s

planarity criterion [134] gives a characterization based on the existence of an algebraic
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dual. MacLane’s planarity criterion [66] gives an algebraic characterization of finite
planar graphs. Fraysseix Rosenstiehl’s [44] planarity criterion gives a characterization
based on the existence of a bipartition of the co-tree edges of a depth-first search tree.
Schnyder’s theorem [129] gives a characterization of planarity in terms of partial order
dimension.

In mathematical area of graph theory, an intersection graph is a graph that repre-
sents the pattern of intersection of family of sets. An interval graph is the intersection
of multiset of intervals on real line. Interval graphs are useful in resource alloca-
tion problem in operations research. Besides, interval graphs are used extensively in
mathematical modeling, archaeology, developmental psychology, ecological modeling,
mathematical sociology and organization theory. Tolerance graph [54] is another im-
portant graph. Tolerance graphs were introduced in order to generalize some well
known applications of interval graphs. The main motivation was to model resource
allocation and certain scheduling problems, in which resources, such as rooms and
vehicles, can tolerate sharing among users. Tolerance graphs find in a natural way for
applications in biology and bio informatics. The tolerance graphs find numerous other
applications in constrained-based temporal reasoning, data transmission through net-
works to efficiently scheduling aircraft and crews, as well as contributing to genetic

analysis and studies of the brain. The definition of tolerance graph is given below.

Definition 1.1.4. [54] Tolerance graphs are generalization of interval graphs in which
each vertex can be represented by an interval and a tolerance such that an edge occurs
if and only if the overlap of corresponding intervals is at least as large as the tolerance
associated with one of the vertices. Hence, a graph G = (V, E) is a tolerance graph
if there is a set I = {I, : v € V'} of closed real intervals and a set {T, : v € V'} of
positive real numbers such that (x,y) € E if |1, N 1,| > min{T,,T,}. The collection

(I,T) of intervals and tolerances is called tolerance representation of the graph G.

Bogart [26] et al. introduced proper and unit tolerance graphs. Brigham et al. [28§]
investigated different properties of tolerance competition graphs. Mertzios and Zaks
[77] recognized of tolerance and bounded tolerance graphs.

Threshold graphs play an important role in graph theory as well as in several applied
areas such as psychology, computer science, scheduling theory, etc. These graphs can

be used to control the flow of information between processors, much like the traffic
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lights used in controlling the flow of the traffic. Acharya and Vartak [2] introduced
open neighbourhood graphs. Chvatal and Hammer [39] solved set-packing problems
and introduced threshold graphs. Andelic and Simic [12] discussed some notes on the

threshold graphs. The definition of threshold graph is given below.

Definition 1.1.5. [39/ A graph G = (V, E) is a threshold graph when there exists
non-negative reals w,,v € V. and t such that W(U) <t if and only if U C V is stable
set where W(U) = > w,.

veU

So, G = (V, E) is a threshold graph whenever one can assign vertex weights such
that a set of vertices is stable if and only if its total weight does not exceed a certain
threshold. The threshold dimension, ¢(G) of a graph G is the minimum number k
of threshold subgraphs 77,75, ..., T} of G that cover the set of edges G. Threshold
partition number, denoted by ¢tp(G), is the minimum number of edge disjoint threshold
subgraphs needed to cover E(G).

Formally, an edge cover of a graph G is a set of edges C' C E such that each vertex

is incident with at least one edge in C'. The set C' is said to cover the vertices of G.

Definition 1.1.6. [98] Ferrers digraph is a related digraph to threshold graph. A
digraph 8 = (V, B) is said to be a Ferrers digraph if it does not contain vertices
x,Y, z,w, not necessarily distinct, satisfying m, m € E and m, m ¢ E
For a digraph 8 = (V, E), the underlying loop less graph U(a) = (V,E), where
E ={(u,v) : u,v E‘/,u#v,m € ﬁ}

A split graph is a graph in which the vertices can be partitioned into a clique and
an independent set.

Alternating 4-cycle of a graph G = (V, E) is a configuration consisting of distinct
vertices a, b, ¢,d such that (a,b), (¢,d) € E and (a,c),(b,d) ¢ E. By considering the
presence or absence of edges (a, d), (b, ¢), we see that the vertices of alternating 4-cycle
induce a path Py, a square Cy, or a matching 2K,.

For the graph G = (V, E) with distinct positive vertex degrees d; < dy < ... < dy,
and dp = 0 (even no vertex of degree 0 exists), d,,41 = |V| — 1 degree partition is the
sequence D; = {v € V : deg(v) = ¢;} for i =0,1,...,m.

Two vertices u and v are incomparable if they do not belong to the same tree or if

there is no path from u to v and no path from v to w.
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Directed graphs are similarly defined except they have directed edges. The formal

definition is given below.

Definition 1.1.7. A directed graph (digraph) 8 1s a graph which consists of non-
empty finite set V(a) of elements called vertices and a finite set 3(8) of ordered

pairs of distinct vertices called arcs.

The out-neighborhood [57] of a vertex v is the set N*(v) = {u € V—v : (v,u) €
ﬁ} Similarly, the in-neighborhood [57] N~ (v) of a vertex v is the set {w € V — v :
m € E} The open neighborhood of a vertex is the union of out-neighborhood
and in-neighborhood of the vertex. A walk in 8 is an alternating sequence W =
$1€—1>I'26—2> .. .xk_le_;zxk of vertices z; and arcs E) of 8 such that tail of ?f is x; and
head is x;,q for every i = 1,2,... k — 1. A walk is closed if 1 = x. A trail is a walk
in which all arcs are distinct. A path is a walk in which all vertices are distinct. A
path zq1,x9, ...,z with k > 3 is a cycle if 7 = xy.

For an undirected graph, open-neighborhood [2] N(x) of the vertex x is the set of
all vertices adjacent to x in the graph. Open neighborhood graph [2] N(G) of G is a
graph whose vertex set is same as G' and has an edge between two vertices x and y
in N(G) if and only if N(xz) N N(y) # ¢ in G. Closed neighborhood N[z| of z is the
set N(xz) U {z}. Closed neighborhood graph N[G] of a graph G is similarly defined,
except has an edge in N[G] if and only if N[z| N N[y] # ¢ in G. (p)-neighborhood
graph (read as open p-neighborhood graph) [27], N,(G) of a graph G is a graph whose
vertex set is same as G and has an edge between two vertices = and y if and only if
|IN(z) N N(y)| > p (note that | X| is the number of elements in the crisp set X) in G.
Similarly [p/-neighborhood graph (closed p-neighborhood graph) N,[G] [27] is defined
except there is an edge if and only if |[N[z] N N[y]| > p in G.

In 1968, Cohen [41] introduced the notion of competition graphs in connection with
a problem in ecology. Let B = (V, E) be a digraph, which corresponds to a food web.
A vertex = € V(B) represents a species in the food web and an arc (Ax,—s—g € B(B)
means that x preys on the species s. If two species z and y have a common prey
s, they will compete for the prey s. Based on this analogy, Cohen defined a graph
which represents the relations of competition among the species in the food web.
The competition graph is also applicable in channel assignment, coding, modelling

of complex economic and energy systems, etc. [101]. Cable et al. [38] introduced
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niche graphs to represent ecological problems. Lundgren and Maybee [71] introduced
food webs with interval competition graph. The large research on competition graphs
can be found in [59-61,122]. Cho et al. [37] introduced m-step competition graph
of a diagraph. Raychaudhuri and Roberts [101] introduced generalized competition
graphs and their applications. Sano [119,120] investigated several properties on the
competition-common enemy graphs of digraphs.

Now, the competition graph is defined below.

Definition 1.1.8. [/1] The competition graph 0(3) of a digraph 8 =(V, E) is an
undirected graph G = (V, E) which has the same vertex set V and has an edge between
distinct two vertices x,y € V if there exist a vertex a € V and arcs m, (3;75 € B
mn 8 We say that a graph G is a competition graph if there exists a digraph 8 such

that C(C) = G.
Another kind of competition graph is given below.

Definition 1.1.9. [60] If p is a positive integer, the p-competition graph C’p(a)
corresponding to the digraph 8 1s defined to have a vertex set V. with an edge be-

tween x and y in V if and only if, for some distinct vertices ay,as,...,a, in V,

(z,a1), (y, 1), (z, as), (y, as), . . ., (x, apﬁ, (v, ap5 are arcs in G.
The m-step competition graph of a digraph is defined below.

Definition 1.1.10. [37] Let 8 be a digraph. Suppose 8 represents a food web, where
an arc from x to y implies that x is a predator of y. Let m be a positive integer. If
there is a path from x to z of length m, then we say that x is an m-step predator of
z, and z 18 its m-step prey. The m-step competition graph Cm(a) 15 a graph with the
same vertices as 8; the vertices x and y are joined by an edge in C’m(a) if they share
a common m-step prey in 8 We say that x and y are in m-step competition if they

share an edge in Cm(a)

As is the case with most mathematical entities, it is convenient to consider a large
graph as a combination of small ones and to derive its properties from those of the
small ones. Since graphs are defined in terms of the sets of vertices and edges, it is

natural to employ the set-theoretical terminology to define operations between graphs.
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Definition 1.1.11. [55] Let G = (Vi, E1) and G5 = (Va, Es) be two simple graphs.

The Cartesian product G* = Gt x G5 = (V, E) of graphs G5 and G5. ThenV =V} x
Vo and E = {(z,22)(x,y2) : * € V1, 29ys € Eo} U{(21,2)(y1,2) : 2 € Vo, z1y1 € E7}.

The composition of the graph Gi with G is denoted by Gi[G3] = (V4 x Va, EY),
where E° = E U {(z1,%2)(y1,%2) : T1y1 € E1, 9 # yo} and E is defined in G x G3.
Note that G7|G3] # G3[G7].

The union of two simple graphs G5 = (Vi, E1) and G5 = (Va, Es) is the simple graph
with the vertex set Vi UV, and edge set Ey U Es. The union of G5 and G35 is denoted
by G* =G UGS = (Vi UV, By U Ey).

The join of two simple graphs G = (V1, E1) and G5 = (Va, Es) is the simple graph
with the vertex set Vi UV, and edge set By U Ey U E', where E' is the set of all edges
joining the nodes of Vi and Vy and assume that Vi N'Vy = 0. The join of G and G5
is denoted by G* = G; + G5 = (VU VL, Ey UE, UE).

A (crisp) hypergraph on a set X is a pair H* = (X, E) where X is a finite set and £
is a finite family of nonempty subsets of X which satisfy the condition: Every member
of X is contained in some member of E. X is called the vertex set and F is the edge set
of H*. Multiple or repeated edges are allowed. A hypergraph H* = (X, F) is simple if
E contains no repeated edges and whenever Fy, Fy € E and F, C Es,, then F, = F.
A hypergraph H* = (X; Ey, Es, ..., Ey) where X = {x1,29,...,2,} can be mapped
to a hypergraph H** = (E;z1,xs,...,x,) whose vertices are the points ey, es, ..., e
(corresponding to Ei, Es, ..., Ey), and whose edges are the sets X, Xs,..., X, (cor-
responding to xy, Za, . .., T, respectively) where X; = {z; € E;,i <k}, j=1,2,...,n.
The hypergraph H** is called the dual hypergraph of H.

Suppose Hf = (X3, E1) and Hi = (X, E5y) are crisp hypergraphs. Then Hf is
partial hypergraph of Hi if Ey C Es, this relationship is denoted by Hy < Hj. A
sequence of crisp hypergraphs Hf = (X;, E;), 1 < ¢ < n is said to be ordered if
H, < Hy < ...< H,. The sequence {H}|1 < i < n} is simply ordered if it is ordered
and if whenever F € F; 1\ E;, then £ € X;.

Almost all of our traditional tools for formal modeling, reasoning and computing are
crisp, deterministic and explicit in character. Explicitness accepts that parameters of a
system either belong to the system or not. In reality, if complexity of systems increases,

the explicitness of systems reduces. Uncertainty has a pivotal role in any efforts to
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maximize the usefulness of parameters of systems or models. One of the meanings
attributed to the term ‘uncertainty’ is “vagueness”, i.e. the difficulty of making sharp
or precise distinction. This applies even to many terms used in our day to day life,
such as ‘tall’; ‘nice’, ‘congested’, etc. It is important to realize that this imprecision
or vagueness that are characteristic of natural language does not necessarily imply
a loss of accuracy or meaningfulness. A mathematical frame work to describe this
phenomena was suggested by Zadeh [138-141] in his seminal paper entitled “Fuzzy
Sets”. Kosko [65], in his book, calls this as mismatch problem: The world is gray
but science is black and white. Thus, the membership in a fuzzy set is not a matter
of affirmation or denial, but rather a matter of degree. The research on fuzzy sets
is increasing till the date due to its wide applications. Major applications of fuzzy
set include image processing, optimization of networks, video traffic modelling and

classification, shortest path problem, neural networks, etc.

1.2 Fuzzy Sets

In 1965, fuzzy set theory was introduced by Zadeh, Iranian-American Mathematician
and Professor of computer science, as a generalization of Cantor’s set theory. In the
literature of fuzzy sets, the word fuzzy often stands for the word vague (formless,

unclear).

Definition 1.2.1. (Crisp set) A classical set is a collection of well defined objects
with a crisp boundary. A crisp set A is characterized by a characteristic function which

is denoted by x4 and is defined by

1, ifze A
xa(z) =
0, otherwise.

The idea of membership function of a fuzzy set is coming from the characteristic

function of crisp set.

Definition 1.2.2. (Fuzzy set) A fuzzy set A on a set X is characterized by a mapping
m : X — [0,1], which is called the membership function. A fuzzy set is denoted by
A= (X, mA).

In the theory of fuzzy sets the membership degrees of elements range over the interval

[0,1]. The membership degree expresses the degree of belongingness of elements to a
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fuzzy set. The membership degree 1 denote that an element completely belongs to
its corresponding fuzzy set and the membership degree 0 denote that an element does
not belong to the fuzzy set. The membership degrees in the interval (0, 1) denote the
partial belongingness to the fuzzy set.

A (crisp) multiset over a non-empty set V' is simply a mapping d : V' — N, where
N is the set of natural numbers. Yager [135] first discussed fuzzy multisets, although
he used the term “fuzzy bag”. An element of nonempty set V may occur more than
once with possibly the same or different membership values. A natural generalization
of this interpretation of multiset leads to the notion of fuzzy multiset, or fuzzy bag,
over a non-empty set V' as a mapping C:Vx [0,1] — N. The membership values of
v € V are denoted by v,;,j = 1,2,...,p where p = max{j : v,y # 0}. So the fuzzy
multiset can be denoted as M = {(v,v,5),j =1,2,...,plv € V}.

Operations on fuzzy sets

The fuzzy set theory is extended with definitions for set theoretic operations. Zadeh
first defined basic operations. Over time, other authors have suggested additional and
alternative operations. The following definitions provide an overview of a selection of
fundamental operations on fuzzy set and characteristics in order to provide a general
understanding of fuzzy set theory. Furthermore, different types of set operations that

combine fuzzy sets are presented.

Definition 1.2.3. [138] Let A = (X, ma) and B = (X, mp) be two fuzzy sets in X.
Then,

(1)) A C B if and only if ma(x) < mp(x) (sometimes A C B is denoted as A < B)
forallz e X,
(i) A= B if and only if ma(z) = mp(x) for all x € X,
(iii) the union of two fuzzy sets A and B is denoted by AU B and is defined by the
membership function mayup(xr) = max{ma(z),mg(z)} for allz € X,
(iv) the intersection of two fuzzy sets A and B is denoted by AN B and is defined by

the membership function manpg(x) = min{ma(x), mg(z)} for all z € X.

Definition 1.2.4. (Cut level set) [85] Let A = (X, ma) be a fuzzy set. The t-cut
level set of A is the crisp set Ay = {x : ma(x) > t}.
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The support of A is supp(A) = {z € X | ma(z) # 0}. The core of A is the crisp
set of all members whose membership values are 1. A is non trivial if supp(A) is
nonempty. The height of A is h(A) = max{ma(z) | x € X}. A is normal if h(A) = 1.
The family of all fuzzy subsets is denoted by F(z).

A fuzzy set A = (X, my) is said to be convex if its membership value satisfies the
following condition m4[Az1+ (1 —N)xo] > min[ma(z1), ma(zs)] for any z1, 2o € X and
A € [0,1]. The families of sets most often considered in connection with intersection
graphs are families of intervals of a linearly ordered set. Let X be a linearly ordered
set. A fuzzy interval Z on X is normal, convex fuzzy subset of X. A fuzzy number
is a real fuzzy interval. The cardinality of a fuzzy set [140] A = (X, m,) is a positive

real number ¢(A) or |A| is the sum of membership values of the elements of X.

1.3 Fuzzy graphs

Nowadays, graphs do not represent all the systems properly due to the uncertainty
or haziness of the parameters of systems. For example, a social network may be repre-
sented as a graph where vertices represent an account (person, institution, etc.) and
edges represent the relation between the accounts. If the relations among accounts
are to be measured as good or bad according to the frequency of contacts among the
accounts, fuzziness should be added to representation. This and many other problems
lead to define fuzzy graphs. Rosenfeld [102] first introduced the fuzzy graphs consider-
ing fuzzy relations on fuzzy sets in 1975. Using this concept of fuzzy graph, Koczy [63]
used fuzzy graphs in the evaluation and optimization of networks. After that fuzzy
graph theory is a vast research area. Applications of fuzzy graph include data mining,
image segmentation, clustering, image capturing, networking, communication, plan-
ning, scheduling.

The definition of a fuzzy graph is given below.

Definition 1.3.1. (Fuzzy graph) [102] A fuzzy graph & = (V, 0, 1) is a non-empty
set V' together with a pair of functions o : V. — [0,1] and pp : V x V' — [0, 1] such
that for all xz,y € V, u(x,y) < min{o(z),o(y)}, where o(z) and p(z,y) represent the
membership values of the vertex x and of the edge (x,y) in & respectively.

A loop at a vertex x in a fuzzy graph is represented by u(x,x) # 0. An edge is
non-trivial if p(x,y) # 0.
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An example of a fuzzy graph is shown in Figure 1.1.

s(1)

(1)

Figure 1.1: An example of fuzzy graph

Some terminologies of fuzzy graphs
Fuzzy subgraph of a fuzzy graph is a fuzzy graph whose vertex set is a subset of the

vertex set of the given fuzzy graph. The formal definition is given below.

Definition 1.3.2. (Fuzzy subgraph) [83] The fuzzy graph & = (V',7,v) is called a
fuzzy subgraph of £ if T(x) < o(x) for allx € V' and v(z,y) < p(z,y) for all z,y € V'
where V' C V.

For the fuzzy graph & = (V, o, u), an edge (z,y) is called strong [42] if

1
glo(@) Aa(y)} < ulz.y)
and it is called weak, otherwise. The strength of an edge (u,v) is denoted by

pu, v)
o(u) No(v)

L) =

An underlying crisp graph of a fuzzy graph ¢ = (V,o,u) is a crisp graph & =
(V,o*, u*) where o* = {u € V(§)|o(u) > 0} and p* = {(u,v) | u(u,v) > 0}.

A path P in a fuzzy graph £ = (V, 0, 1) is a sequence of distinct vertices vy, va, . . .,
vp(n > 2) such that p(v;,vi41) > 0,0 =1,2,...,(n—1). Here, (n — 1) is called the
length of the path P. A path P is a cycle if v; = v, and n > 4. That is P = (V, 0, p)
is a cycle in € if and only if (V,o*, u*) is a cycle in £*. A cycle P = (V, 0, u) is a fuzzy
cycle if it contains more than one weak edge (i.e., there is no unique (z,y) € v* such
that u(x,y) = AN{u(u,v) : (u,v) € v*}). Notice that, if a fuzzy graph is complete then
the fuzzy graph is strong, but not vice versa. A fuzzy subgraph ¢ = (V' ,7,v) of a
fuzzy graph £ = (V, 0, p) is said to be a fuzzy clique if (£')* is a clique and every cycle

in £ is a fuzzy cycle.
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The union of two fuzzy graphs & = (Vi,01,11) and & = (V, 09, o) is denoted
by & U& = (ViU Vo, 00 U og, g U ), where for all z € V3 U Vs, (07 Uoy)(z) =
o1(z) V oz(x) with o1(x) = 0 whenever x ¢ of and o9(z) = 0 whenever x ¢ o3, for
all (z,y) € ViUVa x ViU Va, (i1 U po)(z,y) = pu(z,y) V po(z,y) with pi(z,y) =0
whenever (z,y) ¢ i and po(z,y) = 0 whenever (x,y) & us.

The strength of connectedness between two vertices u and v is

p>(u,v) = sup{pF(u,v)|k = 1,2, }, where p*(u,v) = sup{p(u,us) A pu(u, uz) A
oo A p(ug—1,0) U, ug, .. ug—y € Vi In a fuzzy graph, an arc (u,v) is said to be

strong arc [73] or strong edge, if p(u,v) > p™(u,v) and otherwise it is weak.

Definition 1.3.3. A fuzzy graph & = (V, o, 1) is said to be bipartite if the vertex set
V' can be partitioned into two nonempty sets Vi and Vo such that p(vy,ve) = 0 if
v1, vy € Vi or vy, vy € V. Further, if p(vy,vy) = min{o(vy),0(vs)} for all vy € Vi and

vy € Vi, then & s called a complete bipartite fuzzy graph.

If an edge (x,y) of a fuzzy graph satisfies the condition u(x,y) = min{o(z),o(y)},
then this edge is called effective edge [86]. Two vertices are said to be effective adjacent
if they are the end vertices of the same effective edge. Then the effective incident degree
of a fuzzy graph is defined as number of effective incident edges on a vertex v. If all
the edges of a fuzzy graph are effective, then the fuzzy graph becomes complete fuzzy
graph. A pendent vertex in a fuzzy graph is defined as a vertex of an effective incident
degree one. A fuzzy edge is called a fuzzy pendant edge [113], if one end vertex is fuzzy
pendant vertex. The membership value of the pendant edge is the minimum among
the membership values of the end vertices.

A fuzzy graph £ = (V,o,u) is said to be regular [85] if d(v) = k, a positive real
number, for all v € V. If each vertex of £ has same total degree k, then ¢ is said to
be a totally reqular fuzzy graph. A fuzzy graph is said to be irregular [88], if there is
a vertex which is adjacent to vertices with distinct degrees. A fuzzy graph is said to
be neighbourly irregular [88], if every two adjacent vertices of the graph have different
degrees. A fuzzy graph is said to be totally irreqular, if there is a vertex which is
adjacent to vertices with distinct total degrees. If every two adjacent vertices have
distinct total degrees of a fuzzy graph then it is called neighbourly total irreqular [88].
A fuzzy graph is called highly irregular [88] if every vertex of G is adjacent to vertices

with distinct degrees.
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Like complete graph, the definition of complete fuzzy graph is given below.

Definition 1.3.4. (Complete fuzzy graph) [10] A fuzzy graph £ = (V,o,u) is
complete if p(u,v) = min{o(u),o(v)} for all u,v € V, where (u,v) denotes the edge

between the vertices u and v.

The complement of fuzzy graph & = (V, o, u) [83] is the fuzzy graph & = (V, o', /)

where o'(u) = o(u) for all u € V' and

0, if p(u,v) >0
o(u) Ao(v), otherwise.

Operations on fuzzy graphs

Many operations are defined on fuzzy graphs. Some of them are introduced here.

Definition 1.3.5. [10] The semi-strong product of two fuzzy graphs G1 = (V4, 01, i11)
and Gy = (Va, 09, i2) of the graphs G = (Vi, Ey) and G5 = (Va, Es) respectively, where
it is assumed that ViNVy = 0, is defined to be the fuzzy graph G1eGy = (o109, 111 @ i)
of the graph G* = (Vi x Vo, E) such that E = {(u,v1)(u,v2)|u € V3,009 € Ep} U

{(u1,v1)(ug, ve)|urus € Ey,v109 € Es} and

(1) (o1 @ 02)(u,v) =o1(u) Aos(v) for all (u,v) € Vi x Vs,
(i3) (p1 @ pi2)((u,v1)(u,v2)) = o1(u) A pa(v1va),
(1i1) (p1 @ pi2)((ur, v1)(uz,v2)) = pa(wruz) A pz(v1vs).

Definition 1.3.6. [10] The strong product of two fuzzy graphs Gy = (Vi, 01, p1) and
Go = (Va, 09, u2) of the graphs Gt = (V4, E1) and G5 = (Va, Ey) respectively, where it is
assumed that Vi NV, = (), is defined to be the fuzzy graph Gh @ Go = (01 ® 09, 11 ® fi2)
of the graph G* = (Vi x Vo, E) such that E = {(u,v1)(u,ve)|lu € Vi,viv9 € Eo} U
{(uy, w)(ug, w)|w € Vo, ugus € E1} U {(u1,v1)(ug, v2)|ujus € Ey,v1v3 € Ex} and
(1) (o1 (u,
(1) (1 @ p2)((u, v1)(u, v2)) = o1(u) A p2(v1v2),
(i) (pn @ p2)((ur, w)(uz, w)) = oa(w) A p (uruz),
(v) (1 @ p2)((ur, v1)(uz, v2)) = pa(wruz) A pa(viva).

® 09)(u,v) = oy(u) A oa(v) for all (u,v) € Vi x Vs,

Definition 1.3.7. [10] The direct product of two fuzzy graphs Gy = (Vi,01,111) and
Go = (Va, 09, o) of the graphs G = (Vi, E1) and G5 = (Va, Es) respectively such that
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ViNVy =1, is defined to be the fuzzy graph G111 Gy = (01T 09, 1 M pa) of the graph
G* = (V} x Vo, E) such that E = {(uy,v1)(u2, ve)|usus € Ey,v1v9 € Es} and

(1) (o1 M o2)(u,v) = o1(u) A oa(v) for all (u,v) € Vi x Va,
(i) (g1 11 pa2) ((ur, v1) (U2, v2)) = pa(urug) A pa(vive).
Directed fuzzy graphs (or simply fuzzy digraph) are the fuzzy graphs in which the
fuzzy relations between edges are not necessarily symmetric. The definition of directed

fuzzy graph is as follows:

ﬁ
Definition 1.3.8. (Directed fuzzy graph) /82] Directed fuzzy graph & = (V, o, ) is
a non-empty set V' together with a pair of functionso : V- — [0,1] and pu : VXV — [0, 1]
such that for all x,y € V, p(x,y) < o(z) Ao(y).

Since ﬁ is well defined, a fuzzy digraph has at most two directed edges (which
must have opposite directions) between any two vertices. Here 7(u,v) is denoted
by the membership value of the edge m The loop at a vertex x is represented
by 7(%17) £ 0. Here 7 need not be symmetric as ﬁ(m,y) and ﬁ(y,m) may have
different values. The underlying crisp graph of a directed fuzzy graph is the graph
similarly obtained except the directed arcs are replaced by undirected edges.

There are many variations in fuzzy graphs such as (i) Fuzzy intersection graph,
(i) Fuzzy hypergraph, (iii) Fuzzy threshold graph, (iv) Fuzzy tolerance graph, (v) Fuzzy
planar graph, (vi) Interval-valued fuzzy graph, (vii) Intuitionistic fuzzy graph, (viii) Bipo-
lar fuzzy graph, (ix) m-polar fuzzy graph, etc.

We now briefly describe these one by one as follows:

1.3.1 Fuzzy intersection graph
McAllister [76] first introduced the fuzzy intersection graph. The definition of fuzzy

intersection graph is given below.

Definition 1.3.9. Let F= {A; = (X,m1), Ay = (X, ma),..., A, = (X,m,)} be a
finite family of fuzzy sets defined on a set X and consider F as crisp vertex set V =
{v1,v9,...,v,}. The fuzzy intersection graph of F is the fuzzy graph Int(F)= (V, o, u)
where o : V. — [0, 1] is defined by o(v;) = h(A;) and p: V x V. — [0, 1] is defined by

h(A;NAj), ifi#y
0, ifi=j.

M(Uiv Uj) =
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1.3.2 Fuzzy hypergraphs
Goetschel [51] introduced fuzzy hypergraphs. The definition of fuzzy hypergraph is

given below:

Definition 1.3.10. Let X be a finite set and let £ be a finite family of nontrivial
fuzzy sets on X (or subsets of X ) such that X = |J{suppA|A € E}. Then the pair
H= (X, &) is a fuzzy hypergraph on X.

X and & are respectively vertex set and fuzzy edge set of H. The height of H,
h(H), is defined by h(H) = max{h(A)|A € £}. A fuzzy hypergraph is simple if £
has no repeated fuzzy edges and whenever A, B € £ and A C B, then A = B. A
fuzzy hypergraph H= (X, &) is support simple if whenever A, B € £, A C B and
supp(A) = supp(B), then A = B. Suppose A = (X1,p) € £, X7 € X and ¢ € (0,1].
The c—cut of A is defined by A° = {z € X|u(z) > c}. If £ = {A°| € £/{¢}} and
X =J{AA € &}. If E° # ¢, then the (crisp) hypergraph H¢ = (X¢, E°) is the c¢—
level hypergraph of H.

Suppose H; = (X, 1) and Hy = (X, &) are fuzzy hypergraphs. Then H; is partial
hypergraph of Hs if £, C &, A fuzzy set A = (X, pu) with p: X — [0,1] is an ele-
mentary fuzzy set if p is constant function or p has range {0,a},0 # a. An elementary
fuzzy hypergraph is a fuzzy hypergraph in which all fuzzy edges are elementary.

A fuzzy hypergraph H= (X, &) is a m tempered fuzzy hypergraph of a crisp hyper-
graph H* = (X, E) if there exists a fuzzy set A = (X, m) such that m : X — (0, 1]
and E= {yg,|E; € E} where

min{m(e)le € E;} ifz € E;
,}/Ez(l‘) =
0, otherwise
A fuzzy transversal T= (X, ) of H is a fuzzy set defined on X with the property
that 7,4) N pn(a) # ¢ for each A € £ (recall that h(A) is the height of A). A minimal
fuzzy transversal T for H is a transversal of H with the property that if T} < T', then

T7 is not a fuzzy transversal of H.

1.3.3 Fuzzy threshold graph

Multi-processor scheduling, bin packing, and the knapsack problem are the different
variations of set-packing problems and are being very well studied problem in com-

binatorial optimization. These problems have large impact on design and analysis of
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fuzzy threshold graph. All of these problems involve packing items of different sizes
into bins of finite capacities. Consider a parallel system consists of a set of independent
processing units each of which has a set of time-sharable resources such as CPU, one
or more disks, network controllers, etc. Here all units have variable capacities as well

as resources. Fuzzy threshold graph is defined as follows.

Definition 1.3.11. (Fuzzy threshold graph) [109] A fuzzy graph G = (V, 0, ) is
called a fuzzy threshold graph if there exists a mon-negative real number t such that

Za(u) <t if and only if U C V is an independent set in G.

uelU

1.3.4 Fuzzy tolerance graph

Fuzzy tolerance of a fuzzy interval is denoted by 7 and is defined by an arbitrary
fuzzy interval whose core length is a positive real number. If the real number is taken
as L and |ig — ix_1| = L where iy, i,_; € R, a set of real numbers, then the fuzzy
tolerance is a fuzzy set of the interval [if_1, i].

Fuzzy tolerance graph is defined by Samanta and Pal in [108]. They defined the
fuzzy tolerance graph G = (V,o,u) as the fuzzy intersection graph of finite family
of fuzzy intervals Z = {Z;,Z,,...,Z,} on the real line along with tolerances 7 =
{T1, T3, ..., T} associated to each vertex of v; € V', where, o : V' — [0, 1] is defined by
o(v;) =h(Z;) =1forall v; € Vand p: V x V — [0,1] is defined by

(

1, if «(Z; N Z;) > min{c(7;), o(T;)}
s(Z;NZ;)—min{s(7;),s(7T; :
_ S s(m{:zj.() I N, elseif (M) >
M(Uia U]) - :
min{s(7;),s(7;)}
0, otherwise.

\

1.3.5 Fuzzy planar graph

Day by day, the necessity of flyovers, subway tunnels, pipelines, metro lines increases
due to demand in human kind. Number of crossing of routes increases the chance of
accident. The cost of crossing of subways in underground is also high. But, the under-
ground routes reduce the traffic jam. The system of routes without crossing is ideal for
a city. But, lack of space and money often requires crossings of routes. It is true that,

two congested crossing of routes is more safer than a congested and non-congested road
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crossing. The term “congested” has no specific meaning and measurement. To under-
stand the exact load of a route we generally use the terms for routes like “congested”,
“very congested”, “highly congested” routes, etc. These linguistic terms can be dealt
in mathematics by giving some positive membership values and negative membership
values in fuzzy sense. In mathematical sense, strong route means highly congested
route and weak route means low congested route. Thus crossing between a strong
route and a weak route is better than the crossing between two strong routes. That
is, in city planning, crossing between strong routes and weak routes are allowed. The
terms “strong route” and “weak route” lead strong edge and weak edge of a bipolar
fuzzy graph respectively. And the approval of using the crossing between strong and
weak edges lead to the concept of bipolar fuzzy planar graph. Abdul-jabbar et al. [1]
and Nirmala and Dhanabal [94] introduced the concept of fuzzy planar graph. Re-
cently, Samanta and Pal [114,115] introduced fuzzy planar graph in a different way

where crossing of edges are allowed and studied different properties of it.

1.3.6 Fuzzy competition graph

Fuzzy competition graph is a generalization of competition graph. This graph is
related to fuzzy digraph. Fuzzy k-competition graph and m-step competition graph
are the variations of fuzzy competition graph. Before defining fuzzy competition graph,
we define some related terms.

Fuzzy out-neighbourhood [112] of a vertex v € V of a directed fuzzy graph D=
(V,0,v) is the fuzzy set Nt (v) = (X}, m}), where X;* = {u|v(0,4) > 0} and m;" :
X = [0,1] is defined by m;} = v(, 7).

Fuzzy in-neighbourhood [112] of a vertex v € V of a directed fuzzy graph D —
(V,0,v) is the fuzzy set N~ (v) = (X;,m;), where X; = {u|v(u,0) > 0} and m; :
X, — [0,1] is defined by m; = v(u,0).

Fuzzy neighbourhood [112] of a vertex v € V of a fuzzy graph G = (V, 0, ) is the
fuzzy set N(v) = (X,,m,), where X, = {u|u(u,v) > 0} and m, : X, — [0,1] is
defined by m, = u(u,v).

The m-step fuzzy out-neighbourhood [115] of a vertex v € V of a directed fuzzy

graph D= (V,0,v) is the fuzzy set Nt (v) = (X, m}), where X = {u|fm (v, 4) =
(U, @)

min{v(v,a}), vy, ), ... v } > 0, vujug ... uynu is a path from v to u} and

m} : X} — [0,1] is defined by m} = ju.(v,4). If there is more than one fuzzy
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path of length m then we should take the path which has minimum membership value
fion (0,1).

The definition of fuzzy competition graph is as follows.

Definition 1.3.12. (Fuzzy competition graph) [112] The fuzzy competition graph
of a fuzzy digraph D= (V,o,v) is an undirected graph C(B) = (V, o, 1) which has the
same fuzzy vertex set as in B and has a fuzzy edge between two vertices u,v € V in
C(Z_)>) if and only if N*(u) NNt (v) is non-empty fuzzy set in 2_5 The membership
value of the edge (u,v) in C(B) is p(u,v) = (o(u) A o(v))R(NT(u) "N NT(v)).

The m-step fuzzy competition graph [115] of a digraph 2_5 = (V,0,v) is denoted by
Cm(B) and is defined by Cm(B) = (V, 0, 1) where p(u,v) = (o(u) A o(v))h(N}(u) N
Nt (v)) for all u,v € V.

There is another variation of fuzzy competition graph, called p-competition fuzzy

graph which is defined below.

Definition 1.3.13. (p-competition fuzzy graph) [112] Let p be a positive integer.
The p-competition fuzzy graph Cp(?) = (V,o,v) of a fuzzy digraph ? = (V, o, 7) is an
undirected fuzzy graph which has the same fuzzy vertex set as in E) and has a fuzzy edge
€) if and only if | supp(N* (2) N (3))] = .

”_—W[(,(x) A

between two vertices x andy of V in CP(
The edge membership value of the edge (z,y) in C’p(?) isv(x,y) =
o(y)|h(NT(x) NN (y)) where n = | supp(NT(z) "N T(y))].

Therefore, fuzzy p-competition graphs are graphs with edges between the vertices,
if the vertices have exactly p number of common neighbourhoods. On the other hand,
there is another variation of competition graph known as fuzzy k-competition graph
[112], where edges between two vertices exists if the minimum membership value of
the common out-neighbourhoods of the vertices is more than positive real number k.

Formal definition is given below.

Definition 1.3.14. (Fuzzy k-competition graph) [112] Let k be a non-negative
number. The fuzzy k-competition graph Ck(a) = (V,o,v) of a fuzzy digraph 8 =
(V,o, 1) is an undirected fuzzy graph which has the same vertex set as in 8 and has a
fuzzy edge between two vertices x,y € V in C’k(a) if and only if INT(2) NN (y)| > k.
The edge membership value between x and y in Ck(a) is v(z,y) = - k[U(.CE) A

o()IMNT (x) YN (y)) where k' = IN*(z) N N (y)].

k/
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1.3.7 Interval-valued fuzzy graph
An interval number [3] D is an interval [a~,a™] with 0 < a~ < a* < 1. For two

interval numbers D; = [ay,a]] and Dy = [a; , af |, we have the following:

(1) Dy+ Dy = oy, af] + [a5, 03] = [ar +ay —ay - a5, 0] +a5 —af -ag],
(ii) min{Dy, Dy} = [min{a;,a; }, min{a], a3 }],
(iii) max{D;, Dy} = [max{ay,a; }, max{a;,aj }|,
(iv) D1 < Dy & a] <ay and af <ag,
) D
)
)

- = e
=Dy < a; =a, and af = a;,

(v
(1 D1<D2(:)D1<D2butD17éD2,

(vii) kDy = [kay, kay], where 0 < k < 1.

An interval-valued fuzzy set A on a set X is a mapping p4 : X — [0, 1] X [0, 1], called
the membership function, i.e. pa(x) = [u,(z), p}(z)]. The support of A is supp(4) =
{z € X|p,(z) # 0} and the core of A is core(A) = {z € X|u,(x) = 1}. The support
length is s(A) = | supp(A)| and the core length is ¢(A) = | core(A)|. The height of A is
h(A) = max{pa(z)|x € X} = [ (A),h"(A)] = max{p,(z)}, max{u}(z)}],Vz € X.

Let FF = {A;, Ay, --- , A, } be a finite family of interval-valued fuzzy subsets on a
set X. The intersection of two interval-valued fuzzy sets (IVFSs) A; and A, is an

interval-valued fuzzy set defined by

Ay 1 Ay = { (a, [minyiy, (2), wy, (0)}, min{us, (o), 15, (2)}]) s @ € X}

The union of two IVFSs A; and A, is a IVFS defined by

430 Ay = { (x, [max{u, (2), i, ()}, max{ysf, (). 15, (2)}]) 7 € X}

An interval-valued fuzzy relation B on a set X is denoted as ugp : X x X —

[0,1] x [0, 1] such that

pg(,y) < minfpy(x), py(y)}
pp(z,y) < min{uh(z), wi(y)}
An interval-valued fuzzy graph [4] of a crisp graph G* = (V| E) is a graph G =

(V, A, B), where A = [, ] is an interval-valued fuzzy set on V and B = [up, u}] is

an interval-valued fuzzy relation on F. An edge (z,y), =,y € V in an interval-valued
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fuzzy graph is said to be independent strong if pg(z,y) > %min{,uz(x), pa(y)}. An
interval-valued fuzzy digraph 8 = (V, A, ?) is an interval-valued fuzzy graph where
the fuzzy relation § is antisymmetric.

An interval-valued fuzzy graph G = (V, A, B) is said to be complete interval-
valued fuzzy graphif p=(z,y) = min{o~ (z),0” (y)} and pu* (x,y) = min{o™(x),0" (y)},
Ve,yeV.

1.3.8 Intuitionistic fuzzy graph

An intuitionistic fuzzy set [13,14] A on the set X is characterized by a mapping
m : X — [0,1], which is called as a membership function and n : X — [0, 1], which
is called as a non-membership function. An intuitionistic fuzzy set is denoted by
A = (X,ma,n4). The membership function of the intersection of two intuitionistic
fuzzy sets A = (X, ma,n4) and B = (X, mp,np) is defined as manp = min{ma, mp}
and the non-membership function nang = max{na,np}. We write A = (X, ma,ns) C
B = (X,mp,ng) if and only if ma(z) < mp(x) and na(x) > np(x) for all z € X.

Parvathi and Karunambigai [97] defined the intuitionistic fuzzy graph as below.

Definition 1.3.15. [97] An intuitionistic fuzzy graph is of the form G = (V, o, )

where 0 = (01,03), i = (p1, p2) and V = {vg, vy, ...,v,} such that

(i) o1 : V = [0,1] and o5 : V — [0,1], denote the degree of membership and non-
membership functions of the vertex set V respectively and 0 < o1(v;) +o2(v;) < 1
for everyv; €V (i =1,2,...,n),

(it) 1 : VXV —[0,1] and ps : VXV — [0, 1], where p11(v;, v5) and pa(vi,v;) denote
the the degree of membership and non-membership value of the edge (v;,v;) respec-
tively such that pi1(v;, v;) < min{oy(v;), o1(vj)} and po(vi, vj) > max{oa(v;), o2(v;)},
0 < p1(vi,v;) + pa(vi,v5) <1 for every (v;,v;) € V x V.

1.3.9 Bipolar fuzzy graph

In 1994, the concept of bipolar fuzzy set is introduced by Zhang [143] as a general-
ization of fuzzy set. A bipolar fuzzy set is a generalization of Zadeh’s fuzzy set. The
range of the membership value of a bipolar fuzzy set is [—1,1]. In a bipolar fuzzy
set, the membership value 0 of an element means that the element is not connected

with the corresponding property, the membership value within (0, 1] of an element
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implies that the element satisfies the property with certain negotiations (higher the
value indicates that there is lower amount of negotiations), and the negative member-
ship value within [—1,0) of an element means that the element satisfies the implicit
counter-property to some extent.

Let X be a non-empty set. A bipolar fuzzy set [142,143] B in X is characterized
by B = {(x, uh(x), u%(x))|z € X}, where ph : X — [0,1] and py : X — [—1,0] are
positive membership function and negative membership function respectively. The
positive membership value ph(x) is used to denote the amount which the element
x satisfies the property corresponding to a bipolar fuzzy set B, and the negative
membership value p (z) denotes the amount which the element z satisfies the implicit
counter-property to some extent corresponding to a bipolar fuzzy set B.

For every two bipolar fuzzy sets A = (&, pY) and B = (u5, uy) on X,

(AN B)(z) = (min(p}(x), pi(x)), maz () (), p3 ().

(AU B)(z) = (maz(ps(z), g (x)), min(p (), pg ().

Akram [3,5, 6] introduced bipolar fuzzy graphs, regular bipolar fuzzy graphs and
investigated some properties of it. Later on, Yang et al. [136] modified their definition
of bipolar fuzzy graphs and introduced generalized bipolar fuzzy graphs. The definition

is given as follows.

Definition 1.3.16. (Generalized bipolar fuzzy graph) [136] A bipolar fuzzy graph
of a graph G* = (V, E) is a pair G = (V, A, B) where A = (uk;, 1Y) is a bipolar fuzzy
set in'V and B = (uh, u) is a bipolar fuzzy relation on V2 such that ph(zy) <

man{pk(x), ph ()}, ny(zy) > max{pl (x), 1 (y)} for all zy € V2 and pp(ry) =
i (zy) =0 for all xy € (\75 — E).

1.3.10 m-polar fuzzy graph

In 2014, Chen et al. [36] introduced the notion of m-polar fuzzy set as a generaliza-
tion of bipolar fuzzy set and showed that bipolar fuzzy sets and 2-polar fuzzy sets are
cryptomorphic mathematical notions and that we can obtain concisely one from the
corresponding one. The idea behind this is that “multipolar information” (not just
bipolar information which correspond to two-valued logic) exists because data of real
world problems are sometimes come from multiple agents. For example, the exact de-

gree of telecommunication safety of mankind is a point in [0, 1]" (n ~ 7 x 10?) because
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different persons have been monitored different times. There are many other exam-
ples such as truth degrees of a logic formula which are based on n logic implication
operators (n > 2), similarity degrees of two logic formulas which are based on n logic
implication operators (n > 2), ordering results of a magazine, ordering results of a
university, and inclusion degrees (accuracy measures, rough measures, approximation
qualities, fuzziness measures, and decision preformation evaluations) of a rough set.
Here [0, 1]™ (m-power of [0,1]) is considered to be a poset with point-wise order <,
where m is a natural number. < is defined by © < y < for each ¢ = 1,2,...,m;
pi(x) < pi(y) where x,y € [0,1]™ and p; : [0,1]™ — [0,1] is the i-th projection

mapping.

Definition 1.3.17. (m-polar fuzzy set) [36] An m-polar fuzzy set (or a [0,1]™-set)
on X is a mapping A : X — [0,1]™. The set of all m-polar fuzzy sets on X is denoted
by m(X).

Definition 1.3.18. (Operations) [/5] Let A and B are two m-polar fuzzy sets in X.
Then AUB and AN B are also m-polar fuzzy sets in X defined by: fori=1,2,...,m
and z € X,
o (AU B)(x) = maz{p; 0 A(x), p; 0 B(x)},
Di

o (AN B)(x) = min{p; o A(x),p; o B(x)},
A C B if and only if p; o A(x) < p; o B(x) and
A = B if and only if p; o A(x) = p; o B(x).

Definition 1.3.19. (m-polar fuzzy relation) [45] Let A be an m-polar fuzzy set on
a set X. An m-polar fuzzy relation on A is an m-polar fuzzy set B of X x X such that
B(z,y) < min{A(z), A(y)} forallz,y € X, i.e. pjoB(z,y) < min{p;0A(z),picA(y)}
forallz,y € X,1=1,2,...,m. Anm-polar fuzzy relation B on X is called symmetric

if B(x,y) = B(y,x) forall x,y € X.
Chen et al. [36] defined m-polar fuzzy graph in the following way:

Definition 1.3.20. (m-polar fuzzy graph) [36] An m-polar fuzzy graph with an un-
derlying pair (V, E) (where E C VXV is symmetric) is defined to be a pair G = (A, B),
where A -V — [0,1]™ and B : E — [0,1]™ satisfying B(xy) < min{A(zx), A(y)} for
all xy € E.
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1.4 Review of literature

After introduction of fuzzy graphs, several researches have been done. McAllis-
ter [76] characterised the fuzzy intersection graphs. After that Craine [40] charac-
terized fuzzy interval graphs. Then, Goetschel [51] introduced fuzzy hypergraphs as
an extension of crisp hypergraphs. He also described another important branch of
fuzzy hypergraph theory in his paper “Fuzzy colorings of fuzzy hypergraphs” [52].
In another paper, Goetschel and Voxman introduced the intersection in fuzzy hyper-
graphs [53]. Somasundaram et al. [123] discussed domination in fuzzy graphs. Morde-
son and Nair [81] defined successor and source of (fuzzy) finite state machines and
(fuzzy) directed graphs. Mordeson and Nair [83] has given the details of fuzzy graphs
and hypergraphs. After that, fuzzy line graphs, the operations on fuzzy graphs and
cycles and cocyles of fuzzy graphs was introduced by Mordeson and Peng [78-80]. Nair
et al. [89-91] introduced triangle and parallelogram laws on fuzzy graphs, cliques and
fuzzy cliques in fuzzy graphs, perfect and precisely perfect fuzzy graphs. Bhutani and
Battou [22] described M- strong fuzzy graphs. Bhutani and Rosenfeld [20] introduced
strong arcs in fuzzy graphs. Mathew and Sunitha [73,75] defined different types of arcs
in fuzzy graphs and studied Mengers theorem for fuzzy graphs. In another paper [74],
they analyzed node connectivity and arc connectivity of a fuzzy graph. Bhutani et
al. [24] presented some results on degrees of end nodes and cut nodes in fuzzy graphs.
Eslahchi and Onaghe [42] introduced vertex strength of fuzzy graphs. They also de-
fined strong fuzzy edges in fuzzy graphs. After that, Nagoorgani and Radha [85, 88]
introduced regular and irregular fuzzy graphs. Nagoorgani et al. [86,87] also studied
fuzzy effective distance k-dominating sets and isomorphism properties of strong fuzzy
graphs. Jabbar et al. [1] introduced fuzzy dual graph. Nirmala and Dhanabal [94]
introduced special planar fuzzy graph configurations. To put an emphasis on real
problem, Samanta and Pal [114,115] studied fuzzy planar graph in a different way.

There are several variations of competition graphs in Cohen’s literature [41]. After
Cohen, some derivations of competition graphs have been found. Such as, Cho et
al. [37] introduced the m-step competition graph of a digraph. The p-competition
graph of a digraph has been defined by Kim et al. [60]. Brigham et al. [28] introduced
the tolerance competition graphs. The competition hypergraphs have been found in

Sonnatag et al. [124]. A recent work on fuzzy k-competition graphs and p-competition
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fuzzy graphs is available in [112].

Tolerance graphs [54] are generalization of interval graphs in which each vertex can
be represented by an interval and a tolerance such that an edge occurs if and only if the
overlap of corresponding intervals is at least as large as the tolerance associated with
one of the vertices. The original motivation of the paper was to solve the scheduling
problems. After that, ¢-tolerance competition graph was introduced by [28] as the

generalization of p-competition graph.

Nayeem and Pal [93] have worked on shortest path problem on a network with
imprecise edge weight. Surveys of the large literature related to competition graph
can be found in [38]. To find shortest path in a complex network is a very emerging
work in this modern edge. There are various techniques to find shortest paths in a
network. The bipolar fuzzy hypergraph is a hypergraph in which each vertex and edge
are assigned bipolar fuzzy sets. Samanta and Pal [110] have introduced the bipolar

fuzzy hypergraphs which has emerge importance in complex networking systems.

Rosenfeld [102] introduced the concept of p-distance in fuzzy graphs. Concepts of
eccentricity and centre in fuzzy graphs are introduced by Bhattacharya [18] using pu-
distance. Sameena and Sunitha [117,118] have further studied on the g-distance of
fuzzy graphs. Automorphism, fuzzy end nodes, geodesics in fuzzy graphs are studied
by Bhutani et al. [19,21,23]. The g-eccentric nodes, g-boundary nodes and g-interior
nodes of a fuzzy graph are introduced by Linda and Sunitha [70].

Bershtein et al. [17] defined the cliques fuzzy set. Then, cliques and clique covers
in fuzzy graphs is introduced by Sun et al. [125]. Another variation of clique cover is
edge clique cover which is studied by Javadi and Hajebi [56]. In most research work

of clique cover, the main task is to find the clique cover number.

Chvatal and Hammer [39] first introduced the threshold graph. In 1979, Manca [72]
has derived an efficient matrix method for testing a given graph to see whether or not
it is a threshold graph. There is a great introduction to threshold graphs and their
applications in [98]. Due to the importance of fuzzy graphs, Samanta and Pal have
introduced the fuzzy threshold graphs in [109].

The reader may found the works on various extensions of fuzzy graphs in [29-

34,103-106]. For further studies on fuzzy graphs and its variations the literatures
[7-9,11,17,25,43,50,111,113-116] may be very helpful.
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1.5 Motivation of the work

In many real world problems, sometimes data come from n agents (n > 2), i.e.
“multipolar information” exists. These information can not be represented well by
means of fuzzy graphs or bipolar fuzzy graphs. Therefore m-polar fuzzy set is applied
to graphs to describe the relationships among several individuals. In this direction
Chen et al. [36] first defined m-polar fuzzy graph. We then introduced generalized m-
polar fuzzy graphs in Chapter 2. Some operations have been defined to formulate these
graphs. Some properties of strong m-polar fuzzy graphs, self complementary m-polar
fuzzy graphs and self complementary strong m-polar fuzzy graphs are discussed.

In Chapter 3, we have defined three new operations on m-polar fuzzy graph such
as direct product, semi-strong product and strong product. It is proved that any
of the products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient
conditions are established for each one of them to be strong and also proved that strong
product of two complete m-polar fuzzy graphs is complete. If any of the products of
two m-polar fuzzy graphs GG; and G5 are strong, then it is shown that at least G or
G5 must be strong. The degree of a vertex in m-polar fuzzy graphs which are obtained
from two given m-polar fuzzy graphs G; and G5 using the operations of Cartesian
product, composition, direct product, semi-strong product and strong product. At
the end of this chapter, 3-polar fuzzy influence graph is introduced as an application.

In Chapter 4, density of m-polar fuzzy graphs is defined and then introduced the
notion of balanced m-polar fuzzy graphs. Some characterizations of balanced m-polar
fuzzy graphs are given.

There are many real world applications like design problems for circuits, subways,
utility lines with a graph structure in which crossing between edges is a nuisance. This
is not a big problem for electrical wires but it creates extra expenses for some types of
lines, i.e. burying one subway tunnel under another. These applications are designed
using the concept of planar graphs. In a city planning, subway tunnels, pipelines,
metro lines, etc. are all essential. There are chances of accident due to crossing. Routes
without crossing are preferable, but due to the lack of space crossing of such lines are
allowed. Crossing between congested and non-congested routes are more preferable
than the crossing between two congested routes. The term “congested” has no definite

meaning. We generally use “congested®, “very congested”, “highly congested” routes,
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etc. These terms are called linguistic terms and they have some membership values.
A congested route may be termed as strong route and low congested route may be
termed as weak route. Thus, crossing between strong and weak route may be allowed
in a city planning with certain amount of safety. The terms “strong route” and “weak
route” lead to strong edge and weak edge of an m-polar fuzzy graph respectively and
the permission of crossing between strong and weak edges leads to the concept of
m-polar fuzzy planar graphs. The m-fuzzy planar graph is introduced in Chapter 5.
m-polar fuzzy dual graphs and some subclasses of m-polar fuzzy planar graph are also

introduced here. Besides, some relations between these graphs are established.

Self complement m-polar fuzzy graphs have many important significance in the
theory of m-polar fuzzy graphs. If an m-polar fuzzy graph is not self complement
then also we can say that it is self complement in some weaker sense. Simultaneously,
we can establish some results with this graph. This motivates us to define weak self
complement m-polar fuzzy graphs in Chapter 6. A necessary condition is mentioned
for an m-polar fuzzy graph to be weak self complement. Some properties of self
complement and weak self complement m-polar fuzzy graphs are discussed. The order,
size, busy vertices and free vertices of an m-polar fuzzy graphs are also defined and
proved that isomorphic m-polar fuzzy graphs have same order, size and degree. Also,
we have proved some results of busy vertices in isomorphic and weak isomorphic m-
polar fuzzy graphs. A relative study of complement and operations on m-polar fuzzy
graphs have been made. Some real life problems have been modeled using the concepts

of m-polar fuzzy graphs.

In Chapter 7, the concept of edge regular, strongly regular and biregular m-polar
fuzzy graph are introduced. Some properties of them are studied. Also, the concept
of partially edge regular m-polar fuzzy graph and fully edge regular m-polar fuzzy
graph are introduced with suitable illustrations. The notion of strongly edge irregular
and strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are
also studied to characterize strongly edge irregular and strongly edge totally irregular

m-polar fuzzy graphs.

An m-polar fuzzy model is useful for multi-polar information, multi-agent, multi-
attribute and multi-object network models which gives more precision, flexibility, and

comparability to the system as compared to the classical, fuzzy and bipolar fuzzy
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models. In Chapter 8, we used m-polar fuzzy sets to introduce the notion of m-
polar y-morphism on m-polar fuzzy graphs. The action of m-polar ¥-morphism on
m-polar fuzzy graphs is studied and we established some results on weak and co-weak
isomorphism. ds-degree and total ds-degree of a vertex in m-polar fuzzy graphs are
defined and studied (2, k)-regularity and totally (2, k)-regularity. A real life situation
of a company has been modeled in terms of 4-polar fuzzy graphs as an application.
In Chapter 9, we introduced generalized regular bipolar fuzzy graphs and investi-
gated some its properties. Then we define a product bipolar fuzzy intersection graph
of a product bipolar fuzzy graph and the product bipolar fuzzy line graphs. Some
characterizations of product bipolar fuzzy line graphs are also made.

Chapter 10 is devoted to the conclusion of the thesis followed by the bibliography.

1.6 Summary

This chapter introduces and discusses some preliminary notions used in the rest
of the Thesis. Several types of graphs and fuzzy graphs are discussed. Some fuzzy
set theoretic definitions and notations are also focussed. Motivation of the work and

survey of related works of the thesis are discussed in this chapter.



Chapter 2

Fundamentals of m-polar fuzzy

graphs®

2.1 Introduction

In 2014, Chen et al. [36] introduced the notion of m-polar fuzzy set as a generaliza-
tion of bipolar fuzzy set. The idea behind this is that “multipolar information” (not
just bipolar information which correspond to two-valued logic) exists because data
of real world problems are sometimes come from multiple agents. For example, the
exact degree of telecommunication safety of mankind is a point in [0, 1]" (n ~ 7 x 109)
because different persons have been monitored different times. There are many other
examples such as truth degrees of a logic formula which are based on n logic implica-
tion operators (n > 2), similarity degrees of two logic formulas which are based on n
logic implication operators (n > 2), ordering results of a magazine, ordering results of
a university, and inclusion degrees (accuracy measures, rough measures, approxima-
tion qualities, fuzziness measures, and decision preformation evaluations) of a rough
set. An m- polar fuzzy model is useful for multi-polar information, multi-agent, multi-
attribute and multi-object network models which gives more precision, flexibility, and
comparability to the system as compared to the classical, fuzzy and bipolar fuzzy mod-
els. Chen et al. [36] first defined m-polar fuzzy graphs. In this chapter, we modified
their definition and introduced generalized m-polar fuzzy graph. Cartesian product,

composition, union and join of two m-polar fuzzy graphs are defined. Some important

*A part of the work presented in this chapter is published in Pacific Science Review A: Natural
Science and Engineering, 18(1) 38-46 (2016).
29
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properties of isomorphisms, strong m-polar fuzzy graphs, self complementary m-polar

fuzzy graphs and self complementary strong m-polar fuzzy graphs are discussed.

2.2 Generalized m-polar fuzzy graphs

Chen et al. [36] defined the m-polar fuzzy graph in the following way:

An m-polar fuzzy graph with an underlying pair (V,E) (where E C V x V is
symmetric) is defined to be a pair G = (A, B) where A : V — [0,1]™ and B : £ —
[0, 1]™ satisfying B(zy) < min{A(x), A(y)} for all xy € E.

According to the above definition, B is actually an m-polar fuzzy set in £ C V x V.
However, when the definition is used, B is actually an m-polar fuzzy set defined in V2
satisfying B(zy) = 0 = (0,0,...,0) for all zy € (175 — E). The above definition will
cause problems in calculating the complement of an m-polar fuzzy graphs. Therefore,
a generalized m-polar fuzzy graphs is defined below.

Before defining generalized m-polar fuzzy graph, we assume the following:

For a given set V, define an equivalence relation ~ on V x V — {(z,z) : x € V'}
as follows: (x1,11) ~ (22,y2) < either (x1,11) = (2,92) or 1 = y2 and y; = ws.
The quotient set obtained in this way is denoted by V2 and the equivalence class that
contains the element (z,y) is denoted as xy or yz.

Throughout the chapter, G* = (V, E') represents a crisp graph and G = (V, A, B) is

an m-polar fuzzy graph of G*.

Definition 2.2.1. An m-polar fuzzy graph (or generalized m-polar fuzzy graph) of
G* = (V,E) is a pair G = (V, A, B) where A : V. — [0,1]™ is an m-polar fuzzy set
inV and B : V2 — [0,1]™ is an m-polar fuzzy set in V2 such that pi o B(zy) <
min{p; o A(z),p; o A(y)} for all xy € 175, i =1,2,...,m and B(xy) = 0 for all
xy € (‘75 —E), (0=(0,0,...,0) is the smallest element in [0,1]™).

Here, p; o A(z) denotes the ith degree of membership of the vertex x and p; o B(xy)
denotes the ith degree of membership of the edge xy. A is called the m-polar fuzzy
vertex set of G and B as the m-polar fuzzy edge set of G.

Example 2.2.1. Let X = {F}, Fy, F3, Fy} and M = {M,, My, M3} be the set of four
friends and three movies respectively. Suppose they planed to watch movie. This sit-

uation can be represented as a 4-polar fuzzy graph G by considering the vertex set
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as M and the edge set as M x M. Let A be a 4-polar fuzzy set of M. The mem-
bership value of M; represents the preference degrees of the movie M; corresponding
to the friends. Suppose A(M;) =< 0.9,0.4,0.6,0.1 >, A(Ms) =< 0.5,0.3,0.8,0.1 >,
A(M3) =< 0.8,0.9,0.8,0.2 >. This means the preference degrees of My corresponding
to F1, Fy, F5 and Fy are 0.9, 0.4, 0.6 and 0.1 respectively. Similarly, for the others.
An edge between any two nodes represents the degrees of common features (i.e., love
story, comedy, fighting, horror) of the nodes. Let B(M;M;) =< 0.4,0.2,0.2,0.1 >,
B(MyM3) =< 0.4,0.2,0.2,0.2 >, B(M3M;) =< 0.4,0.2,0.3,0.1 >. This means the
degrees of common features (i.e., love story, comedy, fighting, horror) of the movies
My and My are 0.4, 0.2, 0.2 and 0.1. In other words, both the movies My and My are
40% love story, 20% comedy, 20% fighting and 10% horror. Similarly for the others.
It is easy to verify that G of Fig. 2.1 is a 4-polar fuzzy graph.

<0.9,0.4,0.6,0.1 > < 0.5,0.3,0.8,0.1 >
M1 M2

<0.4,0.2,0.2,0.1 >

0.4,0.2,0.2,0.2
<0.4,0.3,0.2,0.1 > < Z

M3
< 0.8,0.9,0.8,0.2 >

Figure 2.1: Example of 4-polar fuzzy graph G

Here after, we assume an m-polar fuzzy graph to be a generalized m-polar fuzzy

graph.

2.3 Cartesian product, composition, union and join

on m-polar fuzzy graphs
In this section, four types of operations such as Cartesian product, composition,
union and join have been defined on m-polar fuzzy graphs to construct new types of

m-polar fuzzy graphs.

Definition 2.3.1. The Cartesian product Gy x Gy of two m-polar fuzzy graphs Gy =
(Vi, A1, By) and Go = (Va, Ag, Bs) of the graphs G; = (Vi, E1) and G5 = (Va, Es)
respectively is defined as a triplet (Vi x Vo, Ay X Ay, By X By) such that fori=1,2,...,m

(i) pio (Ar X Ap)(w1,12) = mm{pi o Ay(z1),pi0 A2($2)} for all (x1,22) € V1 x Va.
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(it) pi o (B1 X Ba)((z,22)(2,y2)) = min{p; o Ai(z),p; © Ba(zay2)} for all x € Vi,
Toys € Eo.

(iii) pi o (Br X Ba)((21,2)(y1,2)) = min{p; o Bi(z1y1), pi © Az(2)} for all z € V5,
r1y1 € By

(i0) pi o (By x Ba)((e1,02) (1, 92) = 0 for all (z1,22) (1, 2) € Vi X Vo — .

Example 2.3.1. Let G5 = (Vi, E1) and G5 = (Va, E3) be two graphs such that Vi =
{a,b0},Vo = {¢,d}, Ey, = {ab} and Ey = {cd}. Consider the 3-polar fuzzy graphs
G1 = (Vi, Ay, By) and Gy = (Va, Ag, Bs) of the graphs G and G respectively where

A, {<0‘3,0(.14,0.6>’ <o.3,ol.)5,o.7>} B, {<0.1,0.2,0.5>} A, {<0.1,0(.:4,0.5>7 <O.2,00.l6,0.6>}

By = {W}. Then it is easy to verify the following:
(By x By)((a,¢)(a,d)) =< 0.1,0.3,0.4 >, (B, x By)((a,c)(b,¢)) =< 0.1,0.2,0.5 >,
(By x By)((b,c)(b,d)) =< 0.1,0.3,0.4 >, (B; x By)((a,d)(b,d)) =< 0.1,0.2,0.5 >,
(B1 x Bs)((a,c)(b,d)) =< 0,0,0 >, (By x Bs)((b,¢)(a,d)) =< 0,0,0 >.
Hence, G1 x Gy is a 3-polar fuzzy graph of G5 x G5 (see Fig. 2.2).

<0.3,04,0.6 > <0.1,0.4,0.5 > <0.1,0.4,0.5 > <0.2,0.4,0.6 >

@ c@ (a,c) @ @ (a.9)

<0.1,0.3,0.4 >

<0.1,0.2,0.5 >| <0.1,0.3,04 > <0.1,0.2,0.5 > <0.1,0.2,0.5 >
<0.1,0.3,0.4 >
'@ i@ (0.0 @ O
<0.3,0.5,0.7> <0.2,0.6,0.6 > <0.1,0.4,0.5 > <0.2,0.5,0.6 >
G1 Go G1 X Ga

Figure 2.2: Cartesian product of two 3-polar fuzzy graphs G; and Gs

Proposition 2.3.1. The Cartesian product G1 x Gy = (V} x Vo, A} X A, By X By)
of two m-polar fuzzy graphs of the graphs G5 and G3% is an m-polar fuzzy graph of
G7 x G3.

Proof. Let x € Vi, xoys € E5. Then fori=1,2,...,m
pi© (B x By)((z, 22) (7, 12))
= min{p; o Ay(z), p; o Ba(z2y2)}
< min{p; o Ay(x), min{p; o Az(x2),pi © A2(2)}}
= min{min{p; o A1(z), pi o Az(x2)}, min{p; o Ai(x), p; o As(y2)}}
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= min{p; o (A1 X As)(x, x2),p; 0 (A1 x As)(w,y2)}.

Let z € Vo, xyyy € Ey. Then fori=1,2,...,m

pio (Br x Ba)((z1,2)(y1,2))

= min{p; o By(x1y1), pi 0 As(2)}

< min{min{p; o Ai(z1), pi o Ai1(y1)},p; 0 A2(2)}}

= min{min{p; o A1(x1),p; 0 A2(2)}, min{p; o A1(y1), pi © A2(2)}}

= min{p; o (A1 X As)(x1,2),p; o (A1 X As)(v1,2)}

Let (x1,x2)(y1,y2) € \/1/\></V22 — E. Then fori=1,2,...,m

pio(B1X Ba)((1, 22) (Y1, y2)) = 0 < min{p;o (A1 X Az)(x1, x2), pio (A1 X Az) (Y1, y2) }-
]

Definition 2.3.2. The composition G1[Gs] = (V1 x Vi, Aj0 Ag, Byo Bs) of two m-polar
fuzzy graphs G1 = (V1, Ay, B1) and Gy = (Va, As, By) of the graphs G = (Vi, Ey) and
G5 = (Vi, Ey) respectively is defined as follows: fori=1,2,...,m

(1) p; o (Ay 0 Ag)(x1,x2) = min{p; o A1(x1),p; 0 Ag(x2)} for all (z1,x4) € Vi X Vs.

(it) p; o (By o Ba)((x,ma)(x,y2)) = min{p; o Aj(x),p; o Ba(way2)} for all x € Vi,
ToYo € Fo.

(111) p; o (By o By)((x1,2)(y1,2)) = min{p; o Bi(x1y1),p; © As(2)} for all z € Vs,
T1y1 € By

() pio (B o By)((w1,22)(y1,y2)) = min{p; o Az(x2), pi 0 Aa(ya),pi © Bi(z1y1)} for
all (z1,72)(y1,y2) € E° — E, where E = {(x,25)(x,9) : ¥ € Vi, 20y2 € Eo} U
{(x1,2)(y1,2) : 2z € Vo,muys € E1} and E° = E U {(x1,22)(y1,42) : 711 €
Ey,z9 # Yo}

(1) pio (Bro Ba)((ra, ) (31, 2)) = 0 for all (04,90, ) € Vi X Vo — B

<0.2,0.4,0.5 >
(a,d)

<0.2,04,0.5> <0.1,0.4,0.5 > < 0.1,0.4,0.5 >

a. c . (a,c)

< 0.1,0.2,0.3 >

<0.1,0.3,0.4 >

<0.2,0.3,04>| <0.1,0.2,0.3> <0.1,0.3,0.4 > <0.2,0.3,0.4 >

< 0.1,0.3,0.4 >

b b, b,d
| <@ () <0.1,02,03 > (0,d)
<0.3,0.5,04> <0.20.7,0.6> <0.1,0.4,0.4 > <0.2,0.5,0.4 >

G1 G2 G1 [G2]

Figure 2.3: Composition of two 3-polar fuzzy graphs G; and G,
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Example 2.3.2. Let G} and G5 be same as in Example 2.3.1. Let G; = (V1, Ay, By)
and Gy = (Va, Ao, By) be two 3-polar fuzzy graphs of the graphs G} and G% respectively

)

where A, _{<0.2,0.4,0.5> <0.3,0.5,0.4>} B, _{<0.2,0.3,0.4>} A, _{<0.1,o.4,0.5> <0.270.7,0.6>}’

By = {=0L02032 " Then we have,
(By o By)((a,¢)(a,d)) =< 0.1,0.2,0.3 >, (By 0 B)((b,¢)(b,d)) =< 0.1,0.2,0.3 >,
(By o By)((a,c)(b,c)) =< 0.1,0.3,0.4 >, (By o By)((a,d)(b,d)) =< 0.2,0.3,0.4 >
(By o Bs)((a,c)(b,d)) =< 0.1,0.3,0.4 >, (B o B2)((b,¢)(a,d)) =< 0.1,0.3,0.4 >.
It can be easily checked that G1[|G3] is a 3-polar fuzzy graph of G5|G3] (see Fig. 2.3).

Proposition 2.3.2. The composition G1[Gs] of two m-polar fuzzy graphs Gi and Gy

1s an m-polar fuzzy graph.

Proof. Let x € Vi, xoys € Fy. Then for each i =1,2,...,m
o (B1 x Ba)((x, x2)(w,y2))
= min{p; o A1(x),p; o Ba(x2y2)}
< min{p; o Ai(x), min{p; o As(xs),p; © As(y2)}}
= min{min{p; o A1(x), p; o As(x2)}, min{pi o A1(x), pi 0 A2(y2)}}
= min{p; o (A1 X As)(x,x3),p; 0 (A1 X As)(z,y2)}.
Let z € Vs, x1y1 € Eq. The proof is similar to the above.
Let (z1,91)(22,v2) € E° — E.
So x1y; € Ey and x4 # ys.
Then we have for each i =1,2,...,m
o (B o Ba)((w1, x2)(y1,2))
= min{p; o As(z2), p; © A2(y2), pi © Bi(z1y1)}
< min{p; o Az(x2), pi © Az(y2), min{p; o Ai(x1),pi o Ar(y1)}}
= min{min{p; o A1(z1),pi 0 Az(x2)}, min{p; o A1(y1), pi 0 A2(y2)}}
= min{p; o (A1 x Ag)(1,22),pi 0 (A1 X Az)(y1,2)}-

Hence G1[Gs] is an m-polar fuzzy graph. O

Definition 2.3.3. The union G1 U Gy = (Vi x Vo, Ay U Ay, By U By) of two m-polar
fuzzy graphs Gv = (Vi, Ay, B1) and Gy = (Va, Ay, By) of the graphs G = (Vi, Ey) and
G35 = (Va, Ey) respectively is defined as follows: fori=1,2,...,m
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35
pio Ay(z) if veVi—V,
(i) pio (AU Az)(21,22) = pi 0 Ag(x) if reVa-W
maz{p; o Ai(x),p; 0 Ap(z)} if x€VINVa

pi o Bi(xy) if xy € By — Ey

(it) pio (B1U By)(xy) = p;i © Ba(zy) if wye€ E,—E;

max{p; o Bi(zy),pi o Ba(zy)} if xy € BN Es.

2

<0.2,0.4,0.3 > <0.4,0.5,06> <03,06,0.2>

« @

<0.1,0.3,02> /p <0.2,0501> ¢

< 0.2,0.3,0.2 > < 0.3,0.4,0.5 >

d G
<0.3,0.7,0.8 >
<0.2,0.4,0.7 > <0.2,0.5,0.6 > <0.3,0.6,0.7 >

[

® <0.2,0.3,0.5 > <0.2,0.5,0.4 >

a

<0.2,0.5,0.3 >
<0.1,0.4,0.3 >

G <0.4,0.5,0.3 >

< 0.3,0.6,0.7 >

<0.2,04,0.7 > <0.4,0.5,0.6 >
@

a
<0.2,0.5,0.4 >

<0.2,0.3,0.5 >

<0.2,0.5,0.3 >

<0.2,0.3,0.2 > <0.3,0.4,0.5 >

<0.1,0.4,0.3 >

[ B
G1UG> <0.4,0.5,0.3 >
<0.3,0.7,0.8 >

Figure 2.4: Union of two 3-polar fuzzy graphs G and G,

Example 2.3.3. Let G} and G5 be two graphs such that Vi = {a,b,c,d}, Ey =
{ab,be,ad,bd}, Vo = {a,b,c, f} and {ab,be,bf,cf}. Consider the two 3-polar fuzzy
graphs G = (V1, Ay, By) and Gy = (Va, A, Bs) (see Fig. 2.4) where
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A, = <0.2,0.4,0.3> <0.4,0.5,0.6> <0.3,0.6,0.2> <0.3,0.7,0.8>
1= { }7

a ) b ’ c ’ d
B, = {<0L0302> <020501> <020302> <030405> <000> <000>
1= ab ) be ) ad ) bd > cd 7 ac ’
A, — [<020407> <020506> <030.607> <040.503>
2 — { a ) b ) c ) f }7
B _{<0.2,0.3,0.5> <0.2,0.5,0.4> <0.2,0.5,0.3> <0.1,0.4,0.3> <0,0,0> <0,0,0>
2= ab ) be ) cf ) bf > af 7 ac

Clearly, Gy U G5 is a 3-polar fuzzy graph.

Proposition 2.3.3. The union G1 UGy = (Vi x Vo, A1 U Ay, By U By) of two m-polar
fuzzy graphs of the graphs G7 = (Vi, E1) and G = (Va, Ey) respectively is an m-polar
fuzzy graph.

Proof. Let xy € By N Ey. Then fori=1,2,...,m
pi© (B1U By)(xy)
= max{p; o Bi(xy),p; o Ba(xy)}
< maz{min{p; o Ai(x), pi o A1(y)}, min{p; o As(x), pi 0 Aa(y)}}
= min{p; o (A1 U A3)(z),pi o (A1 U A2)(y)}.
Similarly, if xy € Ey — E5, then
pio (BiU By)(xy)
< min{p; o (A1 U Az)(), pi o (A1 U A2)(y)}
and if zy € Fy — Ey, then
pi o (B U By)(zy)
< min{p; o (A1 U Ay)(x), pi o (A1 U A2)(y)}-
This completes the proof. O

Definition 2.3.4. The join G1 + Gy = (V1 U Vo, Ay + Ay, By + Bs) of two m-polar
fuzzy graphs Gi = (Vi, Ay, B1) and Gy = (Va, Ay, By) of the graphs G = (Vi, Ey) and
G5 = (Va, Ey) respectively is defined as follows:

(i) pio (A1 + Az)(x) = p;o (A1 U As)(z) if x € V1 U Va.
(11) p;o (B + Bs)(xy) = p; o (B1 U By)(zy) if vy € F1 U Es.
(111) p; o (By + Bs)(xy) = min{p; o A1(x),p; o Ax(y)} if xy € E’, where E' is the set
of all edges joining the nodes of Vi and V,, assuming that Vi NV, = ().
(iv) pso (By+ Bo)(xy) = 0 if wy € Vi X Vs — Ey UE, UE.

Proposition 2.3.4. The join G1 + Gy = (V1 U Vo, Ay + As, By + Bsy) of two m-polar
fuzzy graphs of the graphs G = (Vi, E1) and G = (Va, Ey) respectively is an m-polar
fuzzy graph of G + G3.
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Proof. Follows from the definition. O

Proposition 2.3.5. Let G} = (Vi, Ey) and G5 = (Va, Ey) be two underlying graphs
and Vi NVy = 0. Let Ay, Ay, By and By be m-polar fuzzy subsets of Vi, Va, \715 and ‘A/;Q
respectively. Then Gy U Gy = (Vi x Vo, A; U Ay, By U By) is an m-polar fuzzy graph
of G5 UGS if and only if Gy = (Vi, Ay, By) and Gy = (Va, Ag, By) are m-polar fuzzy
graphs of G} and G%, respectively.

Proof. Suppose G U G5 is an m-polar fuzzy graph of G} U G3.
Let zy € Ey. Then 2y ¢ Ey and z,y € V; — Vo and fori = 1,2,...,m
pio Bi(zy)
= p; o (By U By)(zy)
< min{p; o (A1 U Az)(x), pi o (A1 U A2)(y)}
= min{p; o A1(x),p; o A1(y)}.
Let zy € (‘A/P — Fyp). Then for i =1,2,...,m
pi© Bi(zy) = pi o B1 U By(xy) = 0.
This shows that Gy = (Vi, Ay, By) is an m-polar fuzzy graph of G;.
Similarly, we can show that Gy = (V3, Ag, By) is an m-polar fuzzy graph of G. The

converse follows from Proposition 2.3.3. O

Proposition 2.3.6. Let GT = (Vi, Ey) and G = (Va, Ey) be two underlying graphs
and let ViN'Vy = 0. Let Ay, Ay, By and By be m-polar fuzzy subsets of Vi, Va, ‘715 and
‘725, respectively. Then G1+ Gy = (ViU Vi, A1+ Ay, By + Bs) is an m-polar fuzzy graph
of G} + G5 if and only if Gy = (V1, A1, By) and Gy = (Va, As, By) are m-polar fuzzy
graphs of G} and G%, respectively.

Proof. Follows from Propositions 2.3.4 and 2.3.5. [

2.4 Isomorphisms of m-polar fuzzy graphs

In this section, different types of isomorphisms are defined on m-polar fuzzy graphs.

Definition 2.4.1. Let Gy = (V4, Ay, By) and Gy = (Va, Ay, Bs) be two m-polar fuzzy
graphs of the graphs Gt = (V1, Ey) and G5 = (Va, Ey) respectively. A homomorphism
between Gy and Gy is a mapping ¢ : Vi — Va such that fori=1,2,...,m

(i) pio Ai(x1) < p;o As(op(xy)) for all xq € V7,
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(i) p; © Bi(z1y1) < pi o Ba(6(a1)d(y1)) for all ziys € V.

Definition 2.4.2. Let Gy = (Vi, A1, By) and Gy = (Va, A, By) be two m-polar fuzzy
graphs of the graphs G7 = (Vi, Ey) and G = (Va, Ey) respectively. An isomorphism
between Gy and Go is a bijective mapping ¢ : Vi — Vo such that fori=1,2,....m

(i) pio Ai(x1) = pi o As(P(x1)) for all x1 € Vi,
(ii) pi o Bi(z1y1) = ps o Ba(d(x1)d(wn)) for all z1yy € V2.

In this case, we write G1 = (5.

Remark 2.4.1. If Gy = (Vi, A1, By) and Gy = (Va, Ay, By) are two m-polar fuzzy
graphs. Then the canonical projection maps m : Vi x Vo — Vi and mg : Vi X Vo — V4
are indeed homomorphisms from G X Gy to G1 and G1 X Gy to Gy respectively. This
can be seen as follows:

PiO(Al XAQ)(I1,$2) = min{pioA1($1);pioA2($2)} < pioA1(I1) = pioAl(ﬂ'l(xth))
for all (z1,x5) € Vi x Vo and p; o (By X Bs)((x1, 2)(y1, 2)) = min{p; o Bi(x1y1),p; ©
Ay(2)} < pio Bi(xyyr) = pi o Bi(mi(xy, 2)mi(y1, 2)) for all z € Vo and x1y; € Ey. In
a similar way we can check the other conditions also. This shows that the canonical

projection maps m : Vi X Vo — Vi is a homomorphism from G1 x G5 to G;.

Definition 2.4.3. Let Gy = (Vi, Ay, By) and Gy = (Va, A, By) be two m-polar fuzzy
graphs of the graphs G = (Vi, E1) and G5 = (Va, Ey) respectively. A weak isomorphism
between G1 and Gy is a bijective mapping ¢ : Vi — Vo which satisfies the following

conditions:

(i) ¢ is a homomorphism, and

(11) p; o A1(x1) = p; o As(p(xq)) for all zy € Vi, i=1,2,...,m.

In other words, a weak isomorphism preserves the weight of the nodes but not

necessarily the weights of the arcs.

<0.2,04,0.5> <0.3,0.5,0.7 > <0.3,0.5,0.7 > <0.2,0.4,0.5 >

2@ @ c@ C X

<0.1,0.4,0.3 > <0.2,0.4,0.4 >

Gl GQ
Figure 2.5: Weak isomorphism of G; and G,
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Example 2.4.1. Consider two 3-polar fuzzy graphs Gy and Gy (see Fig. 2.5) of
the graphs G = (V1,Ey) and G5 = (Va, Ey) respectively, where Vi = {a,b}, Vo =
{¢,d}, By = {ab} and Ey = {cd}. Let us define a map ¢ : Vi — Vy such that ¢(a) =
d, $(b) = c¢. Then we have
P10 Av(a) = 0.2 = py o As(d) = pr 0 Ax(6(a),
pao Aj(a) = 0.4 = pyo Ay(d) = py o As(g(a)),
ps o Ai(a) = 0.5 = p3 0 Ay(d) = p3 o Az(¢(a)).
pro Ai(b) = 0.3 =p; 0 Ay(c) = p1 o As(g(b))
) = 0.5 = py 0 Ay(c) = p 0 A(0(b))
b) = 0.7 = p3 0 Ay(c) = p3 o Az(4(b)).

(
(
(
p2o Ai(b
p3 o Ay
(
(
(

p1 o Bi(ab) = 0.1 < 0.2 = p; 0 By(dc) = py 0 Ba(d(a)p(b)),
p2 0 Bi(ab) = 0.4 = py 0 By(dc) = py o Bo(d(a)p(h)),

p3 0 Bi(ab) = 0.3 < 0.4 = p3 0 By(dc) = p3 0 Ba(¢(a)p(D)).
Hence, By(ab) # Ba(¢(a)d(b)).

This shows that the map ¢ is a weak isomorphism but not an isomorphism.

Definition 2.4.4. Let Gy = (V4, A1, By) and Gy = (Va, Ay, Bs) be two m-polar fuzzy
graphs of the graphs G = (Vi, Ey) and G = (Va, Ey) respectively. A co-weak iso-
morphism between Gy and Gy is a bijective mapping ¢ : Vi — Vo which satisfies the
following :

(i) ¢ is a homomorphism,

(”') pi© 31(55191) =pi© B2(¢($1y1)) for all x1y, € V12> i=1,2,...,m.

In other words, a co-weak isomorphism preserves the weight of the arcs but not

necessarily the weights of the nodes.

<0.2,04,0.5 > <0.3,0.5,0.7 > < 0.4,0.5,0.6 > < 0.3,0.6,0.5 >

2 @ @ c@ X

<0.1,0.4,0.2 > <0.1,0.4,0.2 >

Gl G2

Figure 2.6: Co-weak isomorphism of G; and G5

Example 2.4.2. Let G} = (V4, E1) and G5 = (Va, Ey) be two crisp graphs defined
in Example 2.4.1. Consider the 3-polar fuzzy graphs G; = (Vi, A1, By) and Gy =
(Va, A, Bs) of G and G5 (see Fig. 2.6). Consider the map ¢ : Vi — Vi defined by
¢(a) = d,¢(b) = c. Then we have the following:
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proAi(a) =02 <0.3=p;0As(d p1 o Ax(¢(a)),

)=
peo Aj(a) =0.4 < 0.6 =pgo Ay(d) = pyo Ax(p(a)),
) = p3 0 Az(¢(a)).

psoAi(a) =0.5=0.5 = py o As(d
Therefore, Ai(a) # Az(d) = Az(¢(a)).

Similarly, A;(b) # As(c) = Aa(p(b)).

But, p o By(ab) = 0.1 = p; o By(dc) = py o Ba(p(a)p (D)),

b)),
)

p2 0 Bi(ab) = 0.4 = py 0 By(dc) = pa o By(¢p(a)d(
(b)).

p3 o Bi(ab) = 0.2 = p3 0 By(dc) = p3 o Ba(é(a)d
Therefore, By(ab) = By(dc) = Ba(¢p(a)p(h)).

Hence, the map ¢ is a co-weak isomorphism but not an isomorphism.

2.5 Some properties of m-polar fuzzy graphs
The strong m-polar fuzzy graph is defined below.

= (V, A, B) of the graph G* = (V, E) is

Definition 2.5.1. An m-polar fuzzy graph G
1,2,...,m.

called strong if p; o B(xy) = min{p; o A(x),p; 0 A(y)} for allzy € E, i =

<0.3,0.5,0.6 > <0.4,0.3,0.1 >
®:

< 0.3,0.3,0.1 >

<0.2,0.3,0.1 >

<0.2,0.4,0.5 >

<0.2,0.4,0.5 >

Figure 2.7: Strong 3-polar fuzzy graph G

Example 2.5.1. Consider a graph G* = (V| E) such thatV = {x,y, z}, E = {zy, yz, zx}.
Let G = (V, A, B) be the 3-polar fuzzy graph of G*, where

<0.2,0.4,0.5> <0.3,0.5,0.6> <0.4,0.3,0.1>
A= (0204052 0305062 0405012}
<0.2,0.4,0.5> <0.3,0.3,0.1> <0.2,0.3,0.1>
B = { Ty ) Yz ’ zT }

Hence, G is a strong 3-polar fuzzy graph (see Fig. 2.7).

Proposition 2.5.1. If G; and G5 are the strong m-polar fuzzy graphs of the graphs

Gy = (Vi, Ey) G = (Va, Ey) respectively, then Gy x Gy, G1][G3] and G+ Gy are strong

m-polar fuzzy graphs of the graphs G} x G5, Gi[G5] and G} + G3.
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< 0.3,0.5,0.7 > < 0.4,0.7,0.8 > <0.6,0.3,0.4 > < 0.7,0.5,0.9 >
a b b c
. < 0.3,0.5,0.7 > ‘ < 0.6,0.3,0.4 >
< 0.2,0.4,0.5 > <0.2,0.4,0.2 >
c a
(1 is strong < 0.2,0.4,0.5 > Ga is strong < 0.2,0.4,0.2 >
< 0.3,0.5,0.7 > < 0.6,0.7,0.8 >

<0.3,0.5,0.7 >

<0.2,0.4,0.2 > <0.6,0.4,0.5 >

G'1 UG is not strong
<0.7,0.5,0.9 >

Figure 2.8: Union of two strong 3-polar graphs GGy and G5 is not strong

Proof. Follows from the Propositions 2.3.1, 2.3.2 and 2.3.4. O]

Remark 2.5.1. The union of two strong m-polar fuzzy graphs is not necessarily a
strong m-polar fuzzy graph. For example, let us consider the 3-polar fuzzy graphs G

and Gy as shown in Fig. 2.8.

Proposition 2.5.2. If G; x Gy is a strong m-polar fuzzy graph, then at least G or

G5 must be strong.

Proof. Suppose that both G; and G5 are not strong m-polar fuzzy graphs. Then there

exists at least one x1y; € F; and at least one x5y, € E5 such that

(i) Bi(z1y1) < min{A;(x1), A1(y1)} and Ba(z2y2) < min{As(xa), As(ya)}-

Without loss of generality, we assume that

(ii) Ba(z2y2) < Bi(ziyr) < min{Ai(z1), Ai(y1)} < Ai(z1).

Let E = {(z,x9)(x,y2) : © € Vi,x9ys € Eo} U{(x1,2)(y1,2) : 2 € Vo,myy € Ey}.
Consider (z,z3)(x,y2) € E. Then, by definition of G; x G5 and inequality (i) we have
(B1 X Bs)((z, 22)(,12))
= min{A;(z), Ba(waya)} < min{Ai(x), As(xz), As(y2)}
and (A; X Ag)(x,x9) = min{A;(x), As(z2)},
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(A1 x As)(z,y2) = min{Ai(z), As(y2)}-

Thus, min{(A4; X Ay)(x,z3), (A1 X As)(x,y9)}

= min{A;(x), As(xs), A2(y2)}-

Hence, (By X Bsy)((z, z2)(x,y2))

= min{A;(z), Ba(22y2)} < min{(Ar X Az)(z,x2), (A1 X A2)(z,92)},

i.,e. G; X (G5 is not strong m-polar fuzzy graph, which is a contradiction. Hence if
GG x G is strong m-polar fuzzy graph, then at least G; or G must be strong m-polar

fuzzy graph. O]

Proposition 2.5.3. If G1[G3] is strong m-polar fuzzy graph, then at least Gy or Gy

must be strong.
Proof. Follows from the previous Proposition. O

Proposition 2.5.4. Let G = (V, A, B) be a strong m-polar fuzzy graph of a graph
G*=(V,E). If G = (V, A, B) satisfies A= A and B defined as follows:
for all:z:ye\ﬁ, 1=1,2,...,m
— 0 if 0<pioB(zy) <1
pio B(xy) = , .
min{p; o A(x),pio A(y)} if  pioBlay) =0.
Then G is a strong m-polar fuzzy graph of G* = (V, V2 E).

Proof. Obviously, the m-polar fuzzy sets A and B satisfy

p; o B(wy) < min{p; o A(z),p; o A(y)} for all 2y € V2, i=1,2,...,m.

Now, let $y€1//v2—(175—E):E.

As G is strong m-polar fuzzy graph, therefore p; o B(xy) = min{p;o A(z),p; 0 A(y)}
fori=1,2,...,m.

If B(xy) =0, then p; o B(zy) =0fori=1,2,...,m.

Therefore, p; o B(zy)

= min{p; o A(z),pi o A(y)}

=p;oBxy)=0,i=1,2,...,m.

Hence, B(ry) = 0.

If fori =1,2,...,m, 0 < p;o B(zy) < 1 then p; o B(xy) =0, i.e. B(zy) = 0.

Hence, for all 2y € V2 — (‘75 — E) = E, B(zy) = 0. Therefore, G is an m-polar
fuzzy graph of G* = (V, V2 E).
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On the other hand, for all zy € (‘75 — E), we have by Definition 2.2.1, B(zy) = 0,
i.e. pjoB(zy) =0foreachi=1,2,...,m. Then p;oB(xy) = min{p;o A(x), p;o A(y)},
i=1,2,...,m. So, G is a strong m-polar fuzzy graph of G* = (V, V2 E). ]

Definition 2.5.2. The strong m-polar fuzzy graph G = (V, A, B) defined above is

called the complement of the strong m-polar fuzzy graph G = (V, A, B).

Definition 2.5.3. A strong m-polar fuzzy graph G is called self complementary if
G=G.

<0.1,0.2,0.3 > <0.1,0.2,0.3 > <0.1,0.2,0.3 > <0.1,0.2,0.3 >

@

' Y
<0.1,0.2,0.3 > .
<0.1,0.2,0.3 >

<0.1,0.2,0.3 > <0.1,0.2,0.3 >

@ <0.1,0.2,0.3 > ®: .

<0.1,0.2,0.3 > G <0.1,0.2,0.3 > <0.1,0.2,0.3 > rel <0.1,0.2,0.3 >

Figure 2.9: Self-complementary 3-polar fuzzy graphs

Example 2.5.2. Let G* = (V,E) be a graph, where V. = {a,b,c,d} and E =
{ab,ac,cd} and G = (V, A, B)(see Fig. 2.9) be a strong 3-polar fuzzy graph of G*,

where
A = {S010205> <010203> <<0.10203> <0.10.203>)
- a ) b ’ c ’ d
B = { <0.1,0.2,0.3> <0.1,0.2,0.3> <«0.1,0.2,0.3> <0,0,0> <0,0,0> <0,0,0>
’ ac ? cd ’ bd ad be

Then G is self complementary.

Let G = (V, A, B) be the complement of G, where A = A,

E <0,0,0> <0,0,0> <0,0,0> <0.1,0.2,0.3> <0.1,0.2,0.3> <0.1,0.2,0.3>
ab ’ ac cd 7 bd ’ ad ? be :

Let us now define a mapping ¢ : V. —V by ¢(a) = b, ¢(b) = ¢, ¢(c) =d, ¢(d) = a.

Then clearly, ¢ is a bijective mapping and

Aa) = A(¢(a)), A(b) = A(()). Alc) = A(6(c)), A(d) = A(¢(d)).

B(ab) =< 0.1,0.2,0.3 >= B(¢(a)¢(b)), Blac) =< 0.1,0.2,0.3 >= B(¢(a)p(c)),
B(ed) =< 0.1,0.2,0.3 >= B(¢(c)p(d)), B(bc) =< 0,0,0 >= B(p(b)p(c)),
B(bd) =< 0,0,0 >= B(¢(b)¢(d)), B(ad) =< 0,0,0 >= B(¢(a)¢(d)).

Hence, ¢ is an isomorphism from G onto G, i.e. G = G.



2.5. SOME PROPERTIES OF M-POLAR FUZZY GRAPHS 44

Proposition 2.5.5. Let G = (V, A, B) be a strong m-polar fuzzy graph of the graph
G* = (V,E) and G = (V, A, B) be the complement of G. Then,
p; o B(zy) = min{p; o A(z),p; o A(y)} — pi o B(wy) for all vy € V2, i=1,2,...,m.

Proof. Let xy € V2,
If 0 < p;oB(zxy) <1 for each i =1,2,...,m then by Definition 2.2.1, zy € E.
As G is strong, min{p;o A(x), p;io A(y)} —p;o B(zy) = 0 = p;oB(zy), i = 1,2,...,m.
If p; o B(zy) =0 for i =1,2,...,m then
min{p; o A(x),pi o A(y)} — pi © B(zy)
= min{p; o A(z),pi o A(y)}
= pi o B(xy).
Hence the result. O

Proposition 2.5.6. Let G be a self complementary strong m-polar fuzzy graph. Then
> uzy Pi 0 B(ay) = i D ay Mind{p; 0 A(x), pio A(y) } for all zy € V2, i=1,2,...,m.

Proof. Let G = (V, A, B) be a self complementary strong m-polar fuzzy graph. Then
pio B(zy) = min{p; o A(z),p; 0 A(y)}} for all zy € E, i =1,2,...,m and there exists
an isomorphism ¢ : G — G such that p; o A(x) = p; o A(¢(z)) for all x € V and
pi 0 B(xy) = pi o B(¢(x)d(y)) for all zy € V2.

Let zy € V2. Then by Proposition 2.5.5, fort =1,2,....m

pi o B(p(x)d(y)) = min{pi o A((x)), pi 0 A(¢(y))} — pi o B(o(2)8(y)),

ie. pio Blay) = min{p o A(6(x)), pi 0 AG())} — pi o BO(x)o()).

Therefore,

DwnyPio Blxy) + 32,2, pio B(d(x)d(y)) = >, min{pi o A(¢(x)),pi o A(o(y))}

= Zm#y min{p; o A(z),p; o A(y)},

Le. 23 . pioBlay) =3, min{p; o A(z),pi o A(y)},

ie. zx?éy pio B(xy) = % Zx#y min{p; o A(z),p; o A(y)}. ]
Proposition 2.5.7. Let G = (V, A, B) be a strong m-polar fuzzy graph of G* = (V| E).
If p; o B(zy) = tmin{p; o A(z),p; o A(y)} for all zy € V2, i=1,2,...,m then G is

self complementary.

Proof. 1t G = (V, A, B) is a strong m-polar fuzzy graph satisfying
pi o B(zy) = smin{p; o A(z),p; o A(y)} for all zy € V2, i =1,2,...,m then the

identity mapping I : V — V is an isomorphism from G to G.
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Clearly I satisfies the first condition for isomorphism, i.e. A(z) = A(I(z)) for all
x € V and by Proposition 2.5.5, we have for all zy € V2 1=1,2,...,m
pio B(I(x)I(y))
= pio B(xy)
} = pio B(zy)
= min{p; o A(z),pi o A(y)} — gmin{p; o A(z),pi o A(y)}
= ymin{p; o A(z), pi o A(y)}
= p; o B(xy).
i.e. p;o B(I(x)I(y)) = p; o B(xy) for all xy € V2 i=1,2,....m,

= min{p; o A(x),p; o Ay

)
)

i.e. I also satisfies the second condition for isomorphism.

Therefore, G = G, i.e. G is self complementary. n
From Propositions 2.5.6 and 2.5.7, we have the following.

Corollary 2.5.1. Let G = (V, A, B) be a strong m-polar fuzzy graph of G* = (V, E).
Then G is self complementary if and only if p; o B(zy) = %min{pi o A(z),p; o Ay)}
for all zy € ‘75, i1=1,2,...,m

Proposition 2.5.8. Let G; and G5 be two strong m-polar fuzzy graphs. Then G1 = G
if and only if G1 = Gy

Proof. Assume that, G; = Gs.

Then there exists a bijective mapping ¢ : Vi — V5 satisfying A;(z) = As(¢(x)) for
all z € V; and p; o Bi(zy) = p; o Ba(d(x)d(y)) for all zy € V2, i=1,2,...,m

Let xy € ‘715

If p; o By(xy) =0 for i = 1,2,...,m then

pi © Bi(zy)

1(y)}

= min{p; o Ay(¢(x), pi © A2(o(y)}
= pi 0 Ba(0(2)o(y)).
If 0 < p; 0 By(axy) < 1fori=1,2,...,m then, 0 < p; o Ba(d(2)o(y)) < 1.
Therefore, p; 0 By(zy) = 0 = p; o Ba(6(x)6(y).
So, G1 = Go.
Conversely, let G~ Gs.

= min{p; o Aj(x),p; 0 A
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Then there exists a bijective mapping v : Vi — V; satisfying A,(z) = Ay(y(x)) for
all 2 € Vi and p; o Bi(wy) = pi o Ba(th(w)i(y)) for all zy € V2.

Let zy € ‘f/?

If p; o By(xy) =0 for i = 1,2,...,m then

pi o Ba((x)¢(y))

= p; 0 Bi(zy)

= min{p; o A1(x),p; o A1(y)}

= min{p; o Ai(z),p; o A1(y)}

= min{p; o Ay(¥(x)), pi o A2 (V(y))}
= min{p; o A2(¢¥(x)),p; o Aa(¢(y))}
Again, p; o By(1(x)¢(y))

= min{p; o Ay (¢ (x)), pi o A3(¥(y))} — pi o Ba((x)3(y))
So, pio Ba(¥(x)(y)) =0 =p; 0o Bi(xy)), i =1,2,...,m
If 0 <pioBi(xy) <1fori=1,2,...,m then

pi o Ba(¢(2)d(y))

= pi o Bi(¥(2)¥(y)) = 0.

Thus we have,

pi © Ba(¥ ()i (y))

= min{p; o A>(¢(x)), pi o A2(¢(y))} — 0

= min{p; o Az(¥(x)), pi 0 A2(¥(y))}

= min{p; o Ai(¢(x)), pi o A1 (¥ (y))}

= pi © Bi(zy).

Hence, G1 = Gs. O

2.6 Applications

1-polar fuzzy graphs is nothing but the most familiar fuzzy graphs which has many
applications in cluster analysis, solving fuzzy intersection equations, database theory,
problem concerning group structure, etc. The further possible applications of m-polar
fuzzy graphs in real world problems can be viewed in case of bipolar fuzzy graphs, i.e.
2-polar fuzzy graphs. Bipolar fuzzy graphs has many applications in social networks,
engineering, computer science, database theory, expert systems, neural networks, arti-

ficial intelligence, signal processing, pattern recognition, robotics, computer networks,
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medical diagnosis, etc. Also, m-polar fuzzy graphs (m > 2) is very useful in many
decision making situations. This happens when a group of friends decides which movie
to watch, when a company decides which product design to manufacture, and when
a democratic country elects its leader. For instance, consider the case of a company.
In a company, a group of people decides which product design to manufacture. In
such case, different product design can be taken as nodes. An edge is drawn between
two nodes if there is some m-polar fuzzy relationship between them. We assume that
the membership value of each node represents the degrees of preference of the product
design corresponding to the group of people of the company. The degrees of prefer-
ence (within [0,1]) represent the individual preference of the peoples. Thus, a node
has multi-preference degrees corresponding to a product design. Similarly, the degree
of relationship between the nodes measures the edge relationship value. Between two
product designs, one design may have better looks, may be very demandable, may be
cheap, etc. So, there are multipolar information between two product designs. This
type of network is an ideal example of m-polar fuzzy graphs. It is very important for a
company to decide which product design to manufacture so that they can make profit
as much as possible. A very good product design is gladly acceptable to the peoples if
it is also cheap in price. The determination of which product design to manufacture
is called the decision making problem. By taking the very good decision (very good
product design), one company can spread their product all over the world keeping in
mind that the product design is very good, demandable, cheap, easily accessible, etc.
Moreover, the results of m-polar fuzzy graphs can be applicable in various areas of
engineering, computer science, artificial intelligence, neural networks, social networks,

ete.

2.7 Summary

Graph theory is an extremely useful tool in solving the combinatorial problems
in different areas including algebra, number theory, geometry, topology, operations
research, optimization and computer science. Since researches or modelings on real
world problems often involve multi-agent, multi-attribute, multi-object, multi-index,
multi-polar information, uncertainty, or and limits process, therefore m-polar fuzzy

graphs is very useful. The m-polar fuzzy models gives more precision, flexibility and
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comparability to the system as compared to the classical, fuzzy and bipolar fuzzy
models. Therefore, the concept of generalized m-polar fuzzy graph is introduced and

studied several important results of it.



Chapter 3

Operations and degrees of m-polar

fuzzy graphs®

3.1 Introduction

Graph operations are very important topic in graph theory. Also, they are conve-
niently used in many combinatorial applications, computer science, geometry, algebra,
number theory and operation research. In various situations they present a suitable
construction means. For examples, in partition theory, we deal with complex objects.
A typical such object is a fuzzy graph and fuzzy hypergraph with large chromatic
number that we do not know how to compute exactly the chromatic number of these
graphs. In such cases, these operations have the main role in solving problems. Hence,
in this chapter, three new operations are defined on m-polar fuzzy graph such as di-
rect product, semi-strong product and strong product. It is proved that any of the
products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient con-
ditions are established for each one of them to be strong and also proved that strong
product of two complete m-polar fuzzy graphs is complete. If any of the products of
two m-polar fuzzy graphs G; and Gj are strong, then it is shown that at least G} or
G5 must be strong. We study about the degree of a vertex in m-polar fuzzy graphs
which are obtained from two given m-polar fuzzy graphs G; and G, using the op-
erations of Cartesian product, composition, direct product, semi-strong product and

strong product. Finally, the concept of product m-polar fuzzy graph is introduced

*A part of the work presented in this chapter is published in Pacific Science Review A: Natural
Science and Engineering 17(1) 14-22 (2016).
49
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and proved that every product m-polar fuzzy graph is an m-polar fuzzy graph. Some
operations like union, direct product, ring sum are defined to construct new product

m-polar fuzzy graphs.

3.2 Products on m-polar fuzzy graphs

Here direct product of two m-polar fuzzy graphs is defined.

Definition 3.2.1. Let Gy = (Vi, Ay, By) and Gy = (Va, A, By) be two m-polar fuzzy
graphs of the underlying graphs G; = (Vi, Ey) and G5 = (Va, Ey) respectively such
that Vi N'Vy = (. The direct product of G and Go is defined to be the m-polar
fuzzy graph Gy M Gy = (A M A, By M Bs) of the graph G* = (Vi x Vi, E) where,

—_—— 2
E = {(u1,v1)(ug, vo)|uguy € Ey,v1v9 € By} C Vi x Vo and for eachi=1,2,...,m

(1) pio (A1 M Ay)(u,v) = p; 0 Aj(u) Ap; o As(v) for all (u,v) € Vi x Vs,
(ii) p; o (By M By)((u1,v1)(ug,v2)) = p; © By(uguz) A p; o Ba(vivs) for all ujus € E;
and vy € B,

(iii) ps o (B M Ba)((w,2)(y, 2)) = 0 for all (w,2)(y,2) € (Vi X Vo — E).

Below, the direct product of m-polar fuzzy graphs is explained by an example.
<0.3,05,04> <050203> <0.3,0.2,0.3> <0.3,0.3,0.4 >

u‘ w. (u, w) (u, )

<0,3,04,0.2> <04,0.2,0.2>

< 0.3,0.2,0.2 > <0.3,0.2,0.2 >

v . X . (v,w) (U’x)

<0.6,0.7,03> <04,03,07> <05,0203> <0.4,0.3,0.3 >
G1 Go G1MGo
Figure 3.1: Direct product of G; and Go

Example 3.2.1. Let G7 = (Vi, Ey) and G5 = (Va, Es) be two crisp graphs such that
Vi = {u,v}, Vo = {w,z}, By = {w} and Ey = {wx}. Consider two 3-polar fuzzy
graphs Gh1 = (V4, A1, B1) and Gy = (Va, A, By) of the graphs GF = (Vi, Ey) and
G35 = (Va, Ey) respectively. Using the definition of direct product, G1MGy is constructed
(see Fig. 3.1). It is easy to see that Gy M Gy is a 3-polar fuzzy graph.

Theorem 3.2.1. The direct product G, T Gs of two m-polar fuzzy graphs G1 and G

15 an m-polar fuzzy graph.
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Proof. Let (u1,v1)(ug,vy) € E. Then ujus € Ey and vjvg € Es.
Hence for each t =1,2,...,m
pi o (B By)((ur, v1)(uz, v2))
= p; 0 By(uyuz) A p; o Ba(vivg)
< pioAi(ur) Ap;o Ai(uz) A p;o Ag(v) A p; o Agx(vs)
= p; o (A1 M Ag)(ug,v1) A p; o (A M Ag)(uz, vs)
Also, for all (w,x)(y, z) € (‘/1/><\/V22 —FE),i=1,2,...,m
pio (By M Ba)(w, 2)(y, 2) = 0 < ps 0 (Ay 11 As) (i, ) A ps o (A1 1 As)(y, 2).
This shows that G M G4 is an m-polar fuzzy graph. O

Theorem 3.2.2. If G; = (Vi, Ay, By) and Gy = (Va, Ag, Bs) are two strong m-polar
fuzzy graphs, then G111 Gy is also strong.

Proof. Let (uy,v1)(ug,v2) € E.
Since GG; and G are strong, therefore for each ¢ =1,2,...,m
pi © (B1 11 B2)((u1, v1)(uz, v2))
= p; o Bi(uqug) A p; o Ba(vivg)
=pio Ai(ur) Ap;o Ay(ug) A p;o As(v1) A p; o Agx(vs)
=pi o (A1 M Az)(ur,v1) A p; o (A M Az)(ug, v2).

Hence, GG1 I Gy is strong m-polar fuzzy graph. O]

Now, semi-strong product is defined between two m-polar fuzzy graphs to construct

a new m-polar fuzzy graph.

Definition 3.2.2. The semi-strong product of two m-polar fuzzy graphs Gy = (Vi, Ay, By)
of G = V1, E1) and Gy = (Va, Ay, By) of Gy = (Va, Ey), where it is assumed that
ViNVa = 0, is defined to be the m-polar fuzzy graph G1eGy = (A1e Ay, Bie By) of G* =
(Vi x Vo, E), where E = {(u,v1)(u,ve)|u € Vi,v1v9 € Eo} U {(uy,v1)(ug,va)|ujus €
Ey,v109 € Es} C mQ satisfying the following: for each i =1,2,....m

(i) pio (A; @ As)(u,v) = p; 0 Ai(u) A p; o Ax(v) for all (u,v) € Vi X Va,
(ii) p;o(B1eBs)((u,v1)(u,ve)) = p;oAi(u)Ap;oBa(vivg) for allu € Vi and vivy € Es,
(i1i) p; o (By @ Ba)((u1,v1)(ug,v2)) = p; o By(ujuz) A p; o Ba(vive) for all uyuy € Ey,
vy € By and

(iv) pio (By e By)((w,2)(y,2)) = O for all (w,z)(y, 2) € (Vs X Vo — E).
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<0.3,0.5,04> <0.5,02,03> <0.3,0.203> <0.3,0.3,0.4 >

u. w. (u, w) (u, )

<0.3,0.2,0.2 >

<0,3,04,0.2> <04,02,0.2>

< 0.3,0.2,0.2 > <0.3,0.2,0.2 >

<0.4,0.2,02 >

v . X . ('va) (v,x)

<0.6,0.7,0.3 > <0.4,0.3,0.7 > < 0.5,0.2,0.3 > < 0.4,0.3,0.3 >

G1 Go G1eGo
Figure 3.2: Semi-strong product of G; and Gs

We demonstrate this product in the following example.

Example 3.2.2. Consider the 3-polar fuzzy graphs Gy = (Vi, Ay, B1) and Gy

(Va, Ag, By) as in Ezample 3.2.1. Then G e Gy is calculated using the above defi-

nition. It is easy to see that Gy @ Gy is a 3-polar fuzzy graph (see Fig. 3.2).

Theorem 3.2.3. If Gy = (V1, Ay, By) and Gy = (Va, Ay, By) are m-polar fuzzy graphs,

then G1 @ Gy is an m-polar fuzzy graph.

Proof. Let (u,v1)(u,vg) € E. Then u € Vj and vvy € Fy. Since G5 is an m-polar

fuzzy graph, we have for each ¢t =1,2,....m
pi © (Br @ By)((u; v1)(u, v2))
= p; 0 A1(u) A p; o Ba(v1vg)
< pio Ai(u) A p; o As(vy) A p; o As(vs)
=p;o (A; e Ag)(u,v1) Ap;o (A @ As)(u,vs).
Let (u1,v1)(ug,v9) € E.
Then uyue € E; and vivy € E.
G, and G, being m-polar fuzzy graphs, we have for each i =1,2,... ,m
pi o (By @ By)((u, v1)(uz, v2))
= p; 0 Bi(ujuz) A p; o Ba(vivg)
< p;io Ay(ur) A p;o Ai(ug) A p; o Ag(vr) A p; o Ag(vg)
=p; 0 (A; @ Ag)(uy,v1) Ap;o(Ar @ Ay)(ug,va).
Finally, for all (w,x)(y, 2) € (Vl/>\</v22 —FE),i=1,2,....m
pi o (By e B)(w,2)(1,2)) = 0 < pi 0 (A1 @ As) (i, 5) A s o (Ay @ As)(y,2).

]

Theorem 3.2.4. If G; = (V1, Ay, B1) and Gy = (V,, Ag, Bs) are strong m-polar fuzzy

graphs, then G1 e Gy is a strong m-polar fuzzy graph.



53 CHAPTER 3. OPERATIONS AND DEGREES OF M-POLAR FUZZY GRAPHS

Proof. Let (u,v1)(u,v2) € E. Then u € V} and vjvy € Es.
(G5 being strong, we have for each i = 1,2,...,m
pio (B e By)((u,v1)(u, v2))
= p; 0 A1(u) A p; 0 By(v112)
= p; o Ai(u) A p; o Ag(vr) A pi o Ax(vs)
=pio (A1 e Ay)(u,v1) Ap;o (A @ Ay)(u,vy).
If (uy,v1)(ug,v2) € E. Then ujus € Ey and vyvy € E.
Now, GGy and GGy being strong, we have for each ¢ =1,2,...,m
pio (By e By)((u1, v1)(uz, v2))
= p; o Bi(uiuz) A p; o Ba(v1v3)
= p; 0 Ai(u1) A pi o Ai(uz) A pi o Az(v1) A p; 0 Az(v2)
= pi© (A1 @ Ay)(ur,v1) Apio (Ar @ Ag)(uz, v2).
Hence, G ® G4 is strong m-polar fuzzy graph. O]

The strong product between m-polar fuzzy graphs is an important operation of

m-polar fuzzy graph which is defined below.

Definition 3.2.3. The strong product of two m-polar fuzzy graphs Gy = (Vi, Ay, By) of
G; = (W1, Ey) and Gy = (Va, Ag, Bo) of G = (Va, Es) such that Vi NVy =0, is defined
to be the m-polar fuzzy graph G1 @ Gy = (A1 ® As, By ® By) of G* = (Vi x Vo, E),

where E = {(u,v1)(u,v9)|u € Vi,v1v9 € Eo} U {(ug,w)(ug,w)|w € Vo,ujus € E1} U

2
{(u1,v1)(ug, vo)|uguy € Ey,vivg € Ey} C Vi X Vo such that the following condition
holds: for eachi=1,2,...,m

(1) pio (A1 ® A)(u,v) = pi 0 As(u) Ap; o Ay(v) for all (u,v) € Vi x V3,
(ii) p; o (By ® Ba)((u,v1)(u,v2)) = p; o Ay(u) A p; o Ba(vive) for all u € Vi and
v1V9 € By,
(117) p; o (By @ Ba)((uy1, w)(uz, w)) = p; o By(uyuz) A p; o As(w) for all w € Vy and
urus € By,
(v) p; o (By & By)((ug,v1)(uz,v9)) = p; o Bi(ugus) A p; 0 Ba(v1va) for all uyus € Ey
and vive € Fy and

(v) pio (B1® By)((w,x)(y,2)) =0 for all (w,z)(y, z) € (VT;T/; —FE).

We now give an example which illustrates that the strong product of m-polar fuzzy

graphs is again an m-polar fuzzy graph.
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Example 3.2.3. Consider the 3-polar fuzzy graphs Gi = (Vi, A1, By) and Gy =
(Va, Ag, By) as in Example 3.2.1. Also consider the strong product Gy ® Gy which
s shown in Fig. 3.5.

<0.3,05,04> <0.50203> <0.3,02,0.3> <0.3,0.3,0.4 >
<0.3,0.2,0.2 >
“@ @ (u, ) (u,2)

<0.3,0.2,0.2 >

<0,3,04,02> <04,0202> <0.3,0.2,0.2 > <0.3,0.3,0.2 >

20.3,0.2,0.2 >

v @ + @ (v, w) (v,2)

<0.6,0.7,03> <04,03,07>  <0.5,0203> <04,02,02> <0.4,0.3,0.3 >
G G2 G1 ® Ga
Figure 3.3: Strong product of GG; and G5

It is easily checked that, G1 ® Gy is a 3-polar fuzzy graph.

Theorem 3.2.5. The strong product G, @G5 of two m-polar fuzzy graphs is an m-polar

fuzzy graph.
Proof. Follows from the definition of strong product. O

Theorem 3.2.6. If Gy = (V1, A1, B1) and Gy = (Va, Ag, By) are complete m-polar
fuzzy graphs, then G7 ® G4 is complete.

Proof. By Theorem 3.2.5, we know that the strong product of m-polar fuzzy graphs is

an m-polar fuzzy graph. Since GGy and G5 are complete, therefore every pair of vertices
2
are adjacent in the graph G; ® G5 and hence £ =V; x V.

Let (u,v1)(u,ve) € E. Since Gy is complete, we have for each i = 1,2,...,m
pi o (B1 ® By)((u, v1)(u,v2))

= p; 0 A1(u) A p; o Ba(v1vs)

= p; o A1(u) A p; o As(v1) A p; o As(vs)

=p; o (A1 ® Ag)(u,v1) Ap; o (A ® Ag)(u,vs).

Let (uy, w)(uz,w) € E.

Since (G is complete, we have for each 1 =1,2,....,m
pi © (B @ By)((ur, w)(uz, w))

= p; 0 By(ujuz) A p; o Az(w)

= p; 0 A1(u1) A p; o Ay(uz) A p; o Ag(w)

= pi o (A1 ® Az)(u1, w) Ap; o (A1 ® Az)(uz, w).
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Finally, let (u1,v1)(ug, v9) € E.

Then since GGy and G5 are complete, we have for each i =1,2,...,m

pi o (B1 ® By)((u1,v1)(ug, v2))

= p; 0 Bi(uiuz) A p; o By(v1v2)

= p; 0 Ai(u1) A pi 0 Ai(uz) A p; o Az(v1) A p; 0 Az(v2)

=p;i o (A1 ® Ag)(u1,v1) Ap; o (A1 @ Ag)(ug,v).

Hence, G; ® G5 is complete. [

Theorem 3.2.7. If Gy = (Vi, A1, By) and Gy = (Va, Ay, Bs) are m-polar fuzzy graphs

such that G1 M Gy is strong, then at least one of G1 and Gy must be strong.

Proof. Let us assume that both GG; and G5 are not strong m-polar fuzzy graphs. Then
there exist at least one uyv; € ;7 and usvy € E5 such that for each i =1,2,...,m

pi o Bi(uivr) < p;o Ay(ur) Ap;o Ay(vr) and

Pi © Bo(ugvs) < p; o Ax(ug) A p; o As(vg).

Now, for each + = 1,2,...,m we have

pi o (B 1M Ba)((ur,v1)(uz,v2))

= p; o Bi(uiuz) A p; o Ba(v1v3)

< pio Ar(ur) A p; o Aj(ug) A p; o As(v1) A p; o Az(vg) (from the above assumption)

=pio (A1 T Ag)(ur,v1) A p; o (A M Ag)(ug, ve).

This shows that, GG "G5 is not strong, which is a contradiction. So our assumption

is wrong. This means at least one of G; and G is strong. O
The following result follows from the preceding theorem.

Theorem 3.2.8. If G; = (Vi, A1, By) and Gy = (Va, Ay, Bs) are two m-polar fuzzy
graphs such that G, e Gy or G ® Gy is strong, then at least one of G and G must be

strong.

3.3 Product m-polar fuzzy graphs
In this section, a new type of m-polar fuzzy graphs, known as product m-polar fuzzy

graphs are defined.

Definition 3.3.1. A product m-polar fuzzy graph of a graph G* = (V, E) is a pair
G = (V, A, B) where A : V — [0,1]™ is an m-polar fuzzy set in V and B : V2 [0, 1]™
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is an m-polar fuzzy set in V2 such that pioB(zy) < pjoA(x) x pioAly) for all zy € V2,

i=1,2,...,m.

Remark 3.3.1. Since p; o A(x) and p; o A(y) are less than or equal to 1 for each
i=1,2,...,m, it follows that p; o B(zy) < p; o A(x) x p; 0 A(y) < p;o A(x) Ap; o Ay)

for all zy € V2, Hence, every product m-polar fuzzy graph is an m-polar fuzzy graph.

Definition 3.3.2. A product m-polar fuzzy graph G = (V, A, B) is said to be complete
if pi o B(xy) = p;o A(z) X p; o A(y) for eachi=1,2,...,m and x,y € V.

Definition 3.3.3. The complement of the product m-polar fuzzy graph G = (V, A, B)
is an m-polar fuzzy graph G = (V, A, B) where A= A and B is defined by
pio B(zy) = pio A(z) X p; o A(y) — pi o B(zy) for eachi=1,2,...,m and zy € V2,

Remark 3.3.2. Since for all xy € ‘72, 1=1,2,...,m
pi o B(xy) = p; o A(z) x pi o A(y) — p; 0 B(zy) < pio A(x) x p; 0 A(y),
therefore G is a product m-polar fuzzy graph.

Definition 3.3.4. The union G1 U Gy = (A; U Ay, By U By) of two product m-polar
fuzzy graphs Gl = (‘/151417 Bl) OfGT = (‘/17E1) and GQ = (‘/271427 BQ) OfGE = (‘/27 EQ)

is defined as follows: for eachi=1,2,...,m
pio Ai(x) if veVi—W
(i) pio (AL U Ay)(z) = pi o As(x) if zeVy—V

pioAi(x)Vp;oAy(x) if zeVinVs.

pi © Bi(zy) if xy€ B — E
(i1) pio (B U By)(zy) = pi o By(xy) if wy€ By D
pio Bi(zy) Vpio Ba(zy) if xy€ EiN Es.

Proposition 3.3.1. The direct product G, 1 Gy of two product m-polar fuzzy graphs
G1 = (Vi, Ay, By) and Gy = (Vi, Ag, Bs) is a product m-polar fuzzy graph.

Proof. Let (u1,v1)(ug,v9) € E. Then ujus € Ey and vjvg € Es.
Now for each i = 1,2,...,m we have
pi© (B1 M By)((ur,v1)(uz, v2))
= min{p; o By(ujus), p; o Ba(v1v9)}
< min{p; o Ai(u1) X pi o Ai(uz), pi © As(v1) X p; 0 Az(v2)}
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= mm{pz‘ o Ai(uy),p;i o AQ(U1)} X {pz' o Ai(ug),pi o AQ(U2)}
= p; o (A1 T Ag)(ug,v1) X p; o (A M Ag)(uz, va).
Hence the result. O

Remark 3.3.3. Let Gy = (Vi, Ay, By) and Gy = (Va, As, B) be two complete product
m-polar fuzzy graphs of the graphs G = (Vi, E1) and G5 = (Va, Ey) respectively. Then
G1 M Gy may not be complete. For example, let us take product 3-polar fuzzy graphs
G1 and Gy which are complete but G4 1 Gy is not complete (see Fig. 3.4).

< 0.3,0.4,0.6 > <0.5,0.7,0.2 > <0.3,04,0.2 > < 0.1,0.2,0.5 >

u. w. (u, w) (u, )

< 0,06,0.12,0.36 > < 0.05,0.14,0.1 >

<0.05,0.12,0.1 > <0.05,0.12,0.1 >

v @ + @ (v, w) (v,z)

<02,03,06> <01,02,05> <0203,02> <0.1,0.2,0.5 >
G1 G2 G1MGo
Figure 3.4: Gy and G, are complete product 3-polar fuzzy graphs but G, M G5 is not

complete

Definition 3.3.5. Let G; = (Vi, Ay, By) and Gy = (Va, Ay, By) be the product m-polar
fuzzy graphs of the graphs G} = (Vi, Ey) and G5 = (Va, Es) respectively. Then, the
ring sum of Gy and Gy is denoted by G = Gy & Gy = (A1 @& Ag, By ® By) and defined

as follows: for eachi=1,2,...,m

(1) pio (A1 ® As)(u) = p;o (AL U Ay)(u) for allu € Vi U Vs and
pi © Bi(uv) if wv € By — Fy
)

(ii) p; o (B1 @© By)(uv) = p; o Bo(uw if uv € By — Fy
0 otherwise.
Proposition 3.3.2. Let G; = (V4, A1, B1) and Gy = (Va, Ay, By) be the product m-
polar fuzzy graphs of the graphs G} = (Vi, E1) and G5 = (Va, Es) respectively. Then
the ring sum G = G1 ® Gy = (A1 @ Ay, By ® Bs) is a product m-polar fuzzy graph.

Proof. We will show the following: for each i =1,2,...,m
pi o (By @ By)(uv) < p;o (A1 ® As)(u) X p; o (A1 @ As)(v) for all uv € Ey U Ey.
Case (i): Let uv € Ey — Ey and u,v € V; — V5. Then for each i =1,2,...,m
pi o (By @ Bsy)(uv)
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= p; o By (uv)

< p;oAi(u) X p;o Ay (v)

= pio (A1 ® A2)(u) x p; o (A1 & Az)(v).

Case (ii): Let wv € By — Ey andu e Vi — Vo, v e ViNVa.
Then for each i =1,2,...,m

pio (Br & By)(uo)

= p; o By(uv)

< p;i o Ay(u) x max{p; o A1(v),p; o As(v)}

<pio (AT UAy)(u) X pio (AU A)(v)

= pi © (A1 © Az)(u) X pio (A & Ag)(v).

Case (iii): Let wv € E; — Ey and u,v € V1 N V4.

Then for each 2 =1,2,...,m

pio (B ® By)(uv)

= p; o By(uw)

< maz{p; o A1(u),p; o Az(u)} x maz{p; o A1(v), p; o As(v)}
<pio (A1 UAy)(u) x pjo (AU A)(v)

= pi © (A1 ® As)(u) x pi o (A1 & Az)(v).

Similarly, we can show that if uv € Fy — Fj, then also for each i =1,2,....m
p; © (Bl D BQ)(U’U) < Ppi © (Al D AQ)(U) X p; o (Al ) AQ)(U)
Hence the result. O

3.4 Degrees of vertices in m-polar fuzzy graphs

In this section, we study about the degree of a vertex in m-polar fuzzy graphs which
are obtained from two given m-polar fuzzy graphs G; and G, using the operations
of Cartesian product, composition, direct product, semi-strong product and strong

product.

3.4.1 Degree of a vertex in Cartesian product

Now, we compute the degree of a vertex in the Cartesian product. By the definition

of Cartesian product, for any vertex (x1,x3) € Vi x Vs, the degree of it is denoted by

dG1><G2($17x2) = (pl © dGlez(xla x2)7p2 © dG1><G2(x17$2)a <o Pm © dG1><G2(x17 x2)) and
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is defined by

piodacy(ri,m) = Y pio(Bix Bo)((w1,22) (41, 5))

(z1,22)(y1,92)EE

= Z pi © Ay (x1) A p; o Ba(2y2)

T1=Y1,22y2€E>

+ Z pi o Ay(x2) Ap; o By(xyyy) fori=1,2,...,m.

T2=Y2,21Y1€F1
Theorem 3.4.1. Let Gy = (Vi, Ay, By) and Gy = (Va, Ag, Bs) be two m-polar fuzzy
graphs. If By C Ay and By C As, then dg,xg,(%1,72) = dg,(x1) + dg,(x2) for all

(.1'1,1'2) € ‘/1 X ‘/2

Proof. For each i =1,2,..., m we have,

pio dG1XG2(x17 5C2) = Z Ppi© Al(l’l) A Dpio Bz(%yz)

T1=Y1,T2Y2EF>

+ Y pioAs(ws) Apio Bi(ziy)

T2=y2,21Y1€ L1

= Z pi © Ba(w2y2) + Z pi o Bi(z1y1)

T2y2€F z1y1€E

=Ppio dG1 (xl) +Dpio dGz(x2)'

Hence, dg, xc, (71, %2) = dg, (1) + dg, (x2). O
<04,03,05> <04,03,0.5> <0.4,0.3,0.5 > <04,0.3,0.3 >
ml‘ T2 . (11,1‘2). ‘ (z1,92)

<0.3,0.2,0.3 >

<0.4,0.3,02>| <0.3,02,03> <0.4,0.3,0.2 > <0.4,0.3,0.2 >

<0.3,0.2,0.3 >

n @ v @ (v1,72) @ @ (vi.v)
<05,07,03> <0.4,0.6,0.3 > <0.4,0.3,0.3 > <0.4,0.6,0.3 >
G1 G2 G1 x Ga

Figure 3.5: Cartesian product of G; and G5

Example 3.4.1. Let us consider the 3-polar fuzzy graphs G1, Go and their Cartesian
product G1 x Gy (see Fig. 3.5). For this graph, Bo C Ay and By C Ay. So, by Theorem
3.4.1,

P10 dg, <, (71, 72) = p1 o da, (71) + p1 o da, (72)
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=04+03=0.7,

P2 © dgyxa, (T1,72) = pa o dg, (1) + p2 0 dg, (22)

=0.3+0.2=0.5,

P3 © da,xc, (71, T2) = p3 0 dg, (71) + p3 0 dg, (72)

=02+03=0.5.

So, dg,xa,(r1,22) = (0.7,0.5,0.5).

Also, from Fig. 3.5, dg,xc, (%1, T2)
=(0.3+0.4,0.240.3,0.3 +0.2)
= (0.7,0.5,0.5).

Hence, dg,xq, (71, 22) = (0.7,0.5,0.5).

Similarly, we can find the degrees of all other vertices in G1 X Go. This can be

verified from the Fig. 3.5 also.

Theorem 3.4.2. Let Gy = (Vi, Ay, By) and Gy = (Va, Ag, Ba) be two m-polar fuzzy
graphs such that Ay C By, then By C Ay and conversely.

Proof. By definition of m-polar fuzzy graphs, we have
pioBj(xy) < min{p;oA;(x),p;0A;(y)} for all zy ‘75, 1=1,2,...,mand j =1,2.
Therefore, p; o B; < maz{p; o A;} and
min{p; o B;} <p;oAjfori=1,2,...,mand j =1,2.
Also, since A; C By, maz{p; o A1} < min{p; o By} fori=1,2,...,m.
Hence, p; o By < max{p; o A}
< min{p; o Ba}
<p;oAsfori=1,2,...,m,
i.e. By C A,.

The converse part can be proved in a similar way. O

Theorem 3.4.3. Let Gy = (Vi, A1, By) and Gy = (Va, Ag, B2) be two m-polar fuzzy
graphs.

(i) If Ay C By and Ay is constant function with A;(x) = (¢1,¢a, ..., ¢m) = ¢ for all
r € Vi, then dg, xa, (21, 22) = da, (21) + cday (72).
(i1) If Ay C By and Ay is constant function with As(x) = (ki, ko, ... km) = k for all

x € Va, then dg, xa, (21, 22) = da,(22) + kdg: (21).
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Proof. (i) Because A; C By, by Theorem 3.4.2, B; C As.

Then for i =1,2,...,m,

piodaxa(,e2) = Y pioAi(w) Ap;o By(ways)

T1=Y1,22y2€E2

+ Z pi © As(x2) Apio Bi(z1y1)

z2=Y2,T1y1E€F1

= Z pio Ai(zy) + Z pi o Bi(z1y1)

T2y2€ Fo T1y1€E]
= g ¢ +pioda, (x1)
z2y2€ K>

= CidG§ <$2> +p;o dGl (171)

Hence, dGng2 (LL’l, LL’Q) = dG1 (131> + CdG; (.TQ)

(i) Proof is similar to the above case. O

3.4.2 Degree of a vertex in composition

Now, we calculate the degree of a vertex in the composition of two m-polar fuzzy
graphs. By the definition of composition, for any vertex (z1,x2) € V; X V3, the degree
of it is denoted by dGl[G’z](fEh 1}2) = (pl e} dGl[GQ](x17 .TQ),pQ e} dGl[G2](ZE1, .172), .oy Pm ©

dey () (71, 72)) and is defined by

bi© dGl[GQ](ivl, 932) = Z bi© (Bl o BQ)((x17332)(?/1a 92))

(z1,22)(y1,y2)EE

= Z p; © Al(xl) N p;o BQ($2y2)

T1=Y1,T2y2€ >

+ Z pi © As(x2) Api o Bi(z1y1)

T2=Y2,21Y1E€F1

+ ) pioAs(wa) Apio As(ys) Apio Bi(miys)

xoFY2,T1Y1€E1

fori=1,2,...,m.

Theorem 3.4.4. Let Gy = (V4, Ay, By) and Gy = (Va, Ay, Bs) be two m-polar fuzzy
graphs. If By C Ay and By C Ay, then dg,(c,) (21, %2) = |Va|dg, (21) + dg, (x2) for all

(x1,22) € V1 X Va.
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Proof. For each 1 =1,2,...,m we have,

pi© dG1[G2]<$1, Ty) = Z pi o A1(x1) A pi o Ba(z232)

T1=Y1,22Y2€F2

+ > pioAs(a) Ap;o Bi(ziy)

T2=Y2,T1y1EF1

+ Z pi © Ag(2) A pi o Ax(y2) A pio Bi(z1y1)

TaF#Y2,21Y1€EE1

= Y poBo(wy)+ Y pioBi(my)

Toy2€ K2 T2=Y2,21Y1€E1

+ Z pi 0 Bi(z1y1)

xoFY2,T1y1€EL

(Since p; 0 Ay > p; o By and p; 0 Ay > p; o By)

= p; 0 da,(x2) + [Va|p; 0 da, (21).

Hencea dGl[GQ](xla 1'2) - “/Q‘dCh (113'1> + dG2 (xQ) O
<0.3,04,0.7> <04,0.5,0.6 > <0.3,0.4,0.6 > 0.2.0.3.0.4 <0.3,0.4,0.7 >
@ 2 @ (21, 22) <2205,08 > (%1,92)

<0.3,0.4,0.5 >

<0.3,04,0.5>| <0.2,0.3,04> <0.3,0.4,0.5 > <0.3,0.4,0.5 >

< 0.3,0.4,0.5 >

(y1,92)
<02,03,04> W0 s

n@ v @ (y1,22)

< 0.5,0.3,0.5> <0.3,0.6,0.7 > < 0.4,0.3,0.5 >

G1 Gla Gy [G2]

Figure 3.6: Composition of G; and Gs

Example 3.4.2. Consider the 3-polar fuzzy graphs G1, Ge and their composition G1|G]
(see Fig. 3.06). Here, By C Ay and By C Ay. Therefore, by Theorem 3.4.4 we have,
P10 day6y) (%1, T2) = p1 o dg, (21)[Va| + p1 o de, (22) = 0.3 x 2+ 0.2 = 0.8,
P2 0 dgy(6y) (%1, T2) = p2 0 dgy (1) [Va| + p2 0 dg,y (22) = 0.4 x 2+ 0.3 = 1.1,
P30 de, (o) (%1, T2) = p3 o da, (x1)|Va| + p3 o dg,(w2) = 0.5 x 2+ 0.4 = 1.4
Therefore, da, (o) (®1,22) = (0.8,1.1,1.4).
Again from the Fig. 3.6,
dayja) (71, T2) = (1 © day (@) (T1, T2), P2 © day @) (T1, T2), P3 © day (@) (1, T2))

= (0.3+0.240.3,04+0.3+0.4,0.5+ 0.4+ 0.5) = (0.8, 1.1, 1.4).
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In the same way, we can find the degree of all vertices in G1|Gs|. This can be verified

from the Fig. 3.6.

Theorem 3.4.5. Let Gy = (Vi, Ay, By) and Gy = (Va, Ag, B2) be two m-polar fuzzy

graphs.

(i) If Ay C By and A, is constant function with Ay(x) = (c1,¢2,...,¢n) = ¢ for all
x € Vi, then dg,jay) (71, 12) = |Va|da, (71) 4 cdgs (2).

(i1) If Ay C By and Ay is constant function with As(x) = (ky, ko, ... km) = k for all
x € Vy, then da,jcy) (71, 72) = da, (v2) + Kk[Va|da: (21).

Proof. (i) Because A; C By, by Theorem 3.4.2, B; C As. Now fori =1,2,...,m we
have,

pi © deyja) (21, 72) = Z pi 0 Ar(z1) A pi © Ba(w2y2)

T1=Y1,22y2€FE2

+ Z pi © As(x2) A pi o Bi(z1yr)

T2=Y2,21Y1E€F1

+ > pio Ag(w) Apio As(ys) Apio Bi(aay)

T2FY2,21Y1€E]

= Z pio Ai(zy) + Z pi © Bi(z1y1)

Toy2€ K> T2=Y2,71Y1€F1

+ Z pi © Bi(x1y1)

T27#Y2,21Y1 €L

= Z ¢ + |V2l Z pio Bi(wiy)

Toy2€E> r1y1€E1

= ¢idgs(22) + [Valpi o dg, (21).

Hence, dg,(a,] (21, 72) = [Va|dg, (21) + cdgy (22).

(ii) Similarly to the above case. O

3.4.3 Degree of a vertex in direct product

Degree of a vertex in the direct product is as follows. By definition of direct product
for any vertex (z1,x2) € Vi X Vs, the degree of (21, x9) is denoted by dg,ng, (71, x2) =

(1 0 daing, (1, T2), P2 © dGinG, (21, T2), - - - s Pm © dGina, (21, 72)) and is defined by

pi © deyng, (71, 72) = Z pi o (BiM By)((x1,22)(y1, y2))

(z1,22)(y1,92)EE

= Z pi © Bi(z1y1) A pi o Ba(xays) for i =1,2,... m.

T1Yy1€F1,w2y2€ E2
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Theorem 3.4.6. Let Gy = (V4, Ay, By) and Gy = (Va, Ay, Bs) be two m-polar fuzzy
graphs. If By C By, then dg,na, (%1, x2) = dg,(z1). Also, if By C By, then

dging, (71, x2) = da,(x2) for all (x1,x5) € Vi X Vi.

Proof. Let By C By i.e., p; o By > p; o By for each i = 1,2,...,m. Then we have,

pi © dayng, (21, 72) = > pi © Bi(21y1) A pi o By(2ys)

T1y1€F1,02y2€E2

= Z pio Bi(xiy1) =piodg,(z1) fori=1,2,...,m.

T1y1€E,

Hence, dg,ng, (71, 2) = dg, (x1).

Similarly, if By C By then dg,na, (71, 22) = dg,(x2). H
<03,0504> <04,03,07> <0.3,03,04> <0.3,0.3,04 >
1@ z2 @ (1, 22) (z1,72)

<0,3,0.3,04 > <04,0.3,0.5 >

<0.3,0.3,0.4 > <0.3,0.3,0.4 >

1@ @ (y1,72) (y1,92)
<0.6,0.7,03> <05,0306> <04,03,07> <0.5,0.3,0.6 >
G Ga G1 MGy

Figure 3.7: The direct product of G; and G,

Example 3.4.3. In this example we consider the direct product of two 3-polar fuzzy
graphs and calculate the degree of vertices in the direct product. Let us now consider
the 3-polar fuzzy graphs G1, Gy and their direct product G111 Gy (see Fig. 3.7). Here,
we see that p; o By > p; 0 By fori=1,2,3, i.e. By C By. Hence by Theorem 3.4.6,
p1 0 deyng, (71, 72) = p1 o dg, (71) = 0.3, py 0 dgyng, (71, 72) = p2 o dg, (z1) = 0.3,
P30 dg,ne, (1, 22) = pgodg, (x1) = 0.4. So, dg,na, (1, x2) = (0.3,0.3,0.4). Similarly,
we can find the degree of all other vertices in Gy T Gy. This can also be verified from

Fig. 3.7.

3.4.4 Degree of a vertex in semi-strong product
Next, we consider the semi-strong product of two m-polar fuzzy graphs and calculate
the degree of vertices of it. For any vertex vertex (zj,x2) € V; X V, in the semi-

strong product G e Go, the degree of (z1,25) is denoted by dg,ec,(1,22) = (p1 0
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dGl°G2(x17 :EQ):]DQ o dG1°G2 (1'1, 1’2), «v3Pm © dG10G2 (l'h xQ)) and is defined by

Pi © dgyec, (1, 42) = Z pi o (By e By)((x1,22) (41, 2))

(z1,22)(y1,92)€EE

— Z p; o Al(xl) Ay XS BQ(IE2y2)

T1=Y1,T2y2€ 2

+ > pi© Bi(z1y1) A pio Ba(ways) fori=1,2,....m

z1y1 €L ,22y2€E7

Theorem 3.4.7. Let Gy = (V4, Ay, By) and Gy = (Va, Ay, Bs) be two m-polar fuzzy
graphs. If By C By C Ay, then dg,ec,(T1,22) = dg, (1) + day(x2) for all (x1,25) €
Vi x Vs.

Proof. Let By C By C Ay, ie. p;o Ay > p;o By > p;o By for each 1 = 1,2,..

*

Then, for i = 1,2,...,m and (x1,x2) € V] x V5,

Pi © dgyea, (41, 22) = Z pi 0 Ar(x1) A pi @ Ba(72y2)

T1=Y1,22Y2E€F2

+ Z pi© Bi(z1y1) A pi @ Ba(22y2)

z1y1€EF1,22y2€E2

Z pio Bz $2y2 Z pi©o B1 $1y1)

T2y2€ Fo T1Yy1€E]

=Dp;o dGz(l‘Q) +Dpio dG1 (:131)
Hence, dgyec, (1, 22) = dg, (1) + dg,(x2) for all (z1,25) € Vi X V5. O

Example 3.4.4. Consider the 3-polar fuzzy graphs G, Gy and their semi-strong prod-
uct G @ Gy (see Fig. 3.8). Here, we see that p;o Ay > p;0 By > p;o By fori=1,2,3,
i.e. By C By C Ay. Hence by Theorem 3.4.7, we have

P10 dgrec, (T1,T2) = p1oda, (71) + p1oda,(72) =02+ 0.2 =04,

P2 0 dgyec, (T1,T2) = p2odg, (z1) + p2 o dg,(z2) = 0.2+ 0.3 = 0.5,

D3 0 dgyec, (1, T2) = p3odg, (1) + p3 o da,(z2) = 0.3+ 0.4 =0.7.

So, dg,ne, (71, 22) = (0.4,0.5,0.7).

Again, from the Fig. 3.8, we have

dg,ne, (T1,72) = (0.240.2,0.2+0.3,0.3 4+ 0.4) = (0.4,0.5,0.7).

Similarly, we can find the degrees of all vertices in GG, ® G5 which can be verified

from the figure also.
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< 0.3,0.5,0.4 > < 0.4,0.3,0.7 > <0.3,0.3,04 > <020304> <0.3,0.3,04 >
1) z2 @ (z1,22) St R (z1,92)

<0,202,03> <0.203,04>

<0.2,0.2,0.3 > <0.2,0.2,0.3 >

1@ 2 @ (y1,2) (y1,92)
<0.6,0.7,0.3 > <0.5,0.3,0.6 > <0.4,03,07> <02,03,04> 05 0.30.6>

G1 Ga G1eG>

Figure 3.8: Semi-strong product of G; and G5

3.4.5 Degree of a vertex in strong product

Finally, we compute the degree of a vertex in strong product of m-polar fuzzy
graphs. By definition of strong product, for any vertex (xi,z5) € Vi x Vo in G ®
G, the degree of (zq,z3) is denoted by dg,eq,(1,T2) = (p1 © dg,ea,(T1,T2), P2 ©

dayoa, (T1,72), - ., Pm © dayea, (71, 72)) and is defined by

piodasa(ti,m2) = Y pio(Bi® Bo)((w1,22) (1, 2))

(z1,22)(y1,92)EE

— Z pi © A1(w1) A pi o Ba(w2y2)

T1=Yy1,22y2€E2

+ Z pi© As(x2) A p; o Bi(z1y1)

z2=Yy2,71y1E€F1

+ Z pi © Bi(21y1) A ps o By(wayn) fori=1,2,...,m.
T1Y1€E1,22y2€E2
Theorem 3.4.8. Let Gy = (V4, Ay, By) and Gy = (Va, Aa, Bs) be two m-polar fuzzy
gmphs. ]fBQ Q A1, Bl g Ag and Bl Q BQ, then dG1®G2(ZE1,$2) = |Vé|dGl ($1)+dG2((E2)
for all (xzq1,x9) € Vi X Va.

<0.3,0.5,04> <0.4,03,07> <0.3,0.3,04> <0.3,0.3,0.4 >
<0.3,0.2,0.3 >
21 @) 2@ (x1,x2) (z1,92)

<0.3,0.2,0.2 >

< 0.3,0.2,0.2 > < 0.3,0.2,0.2 >

<0,3,02,02>| <0.3,0.2,0.3>

< 0.3,0.2,0.2 >

n @ v @ (y1,22) (y1,92)
< 0.6,0.7,0.3 > < 0.5,0.3,0.6 > < 0.4,0.3,0.7 > <0.3,0.2,0.3> <0.5,0.3,0.6 >

G1 Ga G1 ® G2

Figure 3.9: Strong product of GG; and G»



67 CHAPTER 3. OPERATIONS AND DEGREES OF M-POLAR FUZZY GRAPHS

Proof. For i =1,2,...,m and (z1,z3) € V; X V5 we have,

piodasc,(Tia) = > pio(B1®B)((x1,72)(y1,2))
(z1,22)(y1,y2)€EE

= Z p; 0 Ai(1) A pi 0 Ba(x2ys)

T1=Y1,22Y2E€F2

+ Z pi© As(x2) A p; o Bi(1y1)

T2=Y2,21y1E€E1

+ Z pi © Bi(21y1) A pi © Ba(22y2)

T1y1€EF1,m2y2€E2

= Y pioBa(way)+ Y pioBi(muy)

T2y2€ K2 T2=Y2,21Y1€F1

+ Z pi 0 Bi(x1y1)

T1y1€E

=pio dG2($2) + ‘%‘pl o dGl (‘7:1)
This shows that, dg,eq, (71, 22) = |Va|dg, (x1) + da, (22). O

Example 3.4.5. Let us consider the 3-polar fuzzy graphs Gi, Gy and their strong
product G1 ® Gy (see Fig. 3.9). Here, p;o Ay > p; o By, p;o Ay > p; o By and
pio By < pioBy fori =1,2,3, i.e. Bo C A, Bi C Ay and By C By. Hence by
Theorem 3.4.8, we have

P10 deyea, (1, T2) = p1 o dg, (z2) + |Va|pr o dg, (1) = 0.3+ 2 x 0.3 =0.9,

P2 0 dgye6, (21, T2) = p2 0 da, (2) + [Va|p2 0 dg, (21) = 0.2+ 2 x 0.2 = 0.6,

P30 deyea, (T1,T2) = p3 o dg, (22) + |Valps o dg, (1) = 0.3+ 2 x 0.2 = 0.7.

So, de,ea, (1, x2) = (0.9,0.6,0.7). Again, from the Fig. 3.9 we see that,

dg,06,(1,12) = (0.3 4+ 0.3+ 0.3,0.24+ 0.2+ 0.2,0.3+ 0.2+ 0.2) = (0.9,0.6,0.7).

Similarly, we can find the degrees of all vertices in the strong product from the

Theorem 3.4.8 as well as from the Fig. 3.9 directly.

3.5 3-polar fuzzy influence graphs

A directed graph (or digraph) is a graph whose edges have direction and called arcs
(edges). Arrows on arcs are used to encode the directional information: an arc from
the vertex = to the vertex y indicates that one may move from z to y but not from y
to z. We write zy € F to mean x — y € F, and if e = xy € F, we say x and y are

adjacent such that x is a starting node and y is an ending node.
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Definition 3.5.1. An m-polar fuzzy digraph of a digraph G* = (V, E) is a pair G =
(V,A,B), where A :'V — [0,1]™ is an m-polar fuzzy set on V and B : V2 [0,1]™
is an m-polar fuzzy set in V2 such that p; o B(zy) < min{p; o A(z),p; o A(y)} for all
Ty € ‘//\/2, for eachi=1,2,....,m and B(xy) = 0 for all zy € (‘A//2 — E). B need not

be symmetric, i.e. B(xy) # B(yz).

Graph models have broad application in many disciplines of mathematics, social
sciences, natural sciences and computer sciences. In studies of group behavior, it is
inspected that many people can influence thinking of others. A digraph can be use to
model such behavior and this graph is called an influence graph. We will present the
influence of a person in a social group on Gtalk.

Let V={Asit, Sankar, Kartik, Prabir, Shakti} be the set of five persons in a social
group. The influence degree depends on the legitimate prevailing, unity building, and
appealing to values. Then, we have a 3-polar fuzzy influence graph G = (V| A, B),
where vertices represent the person of a social group and edges represent the influence
of a person on other. From the above Fig. 3.10, we see that Kartik influence Asit,
Sankar and Prabir. Kartik’s 60% hold on Asit is due to legitimate prevailing, 40% is
due to unity building, 50% is due to appealing to values. His 70% hold on Sankar is
due to legitimate prevailing, 60% is due to unity building, 50% is due to appealing to
values. Similarly, for Prabir also. Asit influence Sankar, Sankar influence Shakti and

Prabir. So, we observe that Kartik is the most influential person in the group.

< 0.6,0.4,0.5 >

Asit ,

< 0.7,0.6,0.5 >

<0.5,0.4,0.4 > Sankar

< 0.5,0.3,0.2 > <0.3,0.2,0.2 > < 0.5,0.5,0.3 >

< 0.6,0.4,0.3 >

Kartik Prabir Shakti
<0.7,0.5,0.4 > <0.4,03,02> _ 0.5,0503> <0404,02> < 0.7,0.6,0.3 >

Figure 3.10: 3-polar fuzzy influence graph

3.6 Summary
The main goal of this chapter is to define three new operations on m-polar fuzzy

graph such as direct product, semi-strong product and strong product, and study
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their properties. Some subclasses of m-polar fuzzy graphs, namely the product m-polar
fuzzy graphs are also introduced here. Some operations like union, direct product, ring
sum are defined to construct new product m-polar fuzzy graphs. We have calculated
the degree of vertices in Gy X G, G 0 Go, G1 ® Gy and G @ GGy in terms of the degree
of vertices of the graphs (G; and G5 under some conditions. This will be helpful when
the graphs are very large. The degrees and edges of any graph are very important
parameters. The number of edges is not evaluated in this chapter. Finally, 3-polar

fuzzy influence graph is introduced as an applications.
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Chapter 4

Density of m-polar fuzzy graphs

4.1 Introduction

The density of a crisp graph G* = (V, E) is defined by D(G*) = % This gives
the number of edges per unit vertex. D(G*) is non-negative for any graph G* and its
maximum value is 1, when G* is complete. Thus, 0 < D(G*) < 1. Higher value of
D(G*) represent more edges in G*. If G* has no edges, then D(G*) is 0. Density D(G*)
of a graph G* is concerned with the patterns of connections of the entire networks.
Graphs for which D(H) < D(G) for all subgraph H of G, are called balanced graph.
Balanced graph first arose in the study of random graphs and balanced m-polar fuzzy
graphs defined here is based on density functions. A graph with maximum density is
complete and graph with minimum density is a null graph. There are several papers
written on balanced extension of graph which has tremendous applications in artificial
intelligence, signal processing, robotics, computer networks and decision making. Al-
Hawary [10] first introduced the concept of balanced fuzzy graphs. In this chapter, the
density of an m-polar fuzzy graph is defined and studied the notion of balanced m-

polar fuzzy graph and established necessary and sufficient conditions for the preceding

products of two balanced m-polar fuzzy graphs to be balanced.

4.2 m-polar fuzzy graphs and its subgraphs
Definition 4.2.1. Let G = (V, A, B) be an m-polar fuzzy graph of G* = (V, E). The
m-polar fuzzy graph H = (P,C, D) is called an m-polar fuzzy subgraph of G induced
by Pif PCV, C(x) = A(z) for all z € P and D(zy) = B(zy) for all zy € P2

71
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< 0.3,0.4,0.6 > < 0.7,0.5,0.3 > <0.3,0.4,0.6 >

<0.2,0.4,0.3 > w w

< 0.3,0.3,0.2 > <0.2,0.4,0.1 > <0.3,0.3,0.2 >

v
< 0.4,0.6,0.3 > < 0.4,0.6,0.3 >
G H

Figure 4.1: Example of 3-polar fuzzy subgraph of the graph G

Example 4.2.1. H is a 3-polar fuzzy subgraph of G (see Fig. 4.1).

4.3 Balanced m-polar fuzzy graphs
This section is began by defining the density of an m-polar fuzzy graph and balanced
m-polar fuzzy graphs. Then it is proved that any complete m-polar fuzzy graph is

balanced, but the converse is not true always.

Definition 4.3.1. The density of an m-polar fuzzy graph G = (V, A, B) of G* = (V, E)
is D(G) = (p1 o D(G),p20 D(G),...,pm o D(G)), where for each i =1,2,...,m
2( 22 pioB(w))

u,veV

> (pio A(u) Apio A(v))

u,veV

pio D(G) =

G is said to be balanced if p;o D(H) < p;o D(G) for all non-empty subgraphs H of G,

1=1,2,...,m.

<0.3,0.4,0.5 > <0.3,0.4,0.5 >
a

<0,1,0.2,0.2 >

<0,1,0.2,0.2 > <0,1,0.2,0.2 >

b
<0.3,0.4,0.5 >

Figure 4.2: 3-polar fuzzy balanced graph G

Example 4.3.1. Consider the 3-polar fuzzy graph G = (V, A, B) of G* = (V, E) where

V= {a’ b, C}, E = {ab, bc, ca}, A _ {<0.3,0.4,0A5>’ <0.3,0.4,0.5>’ <0.3,0.4,0.5>}’

a b c
__ [<0.1,0.2,0.2> <0.1,0.2,0.2> <0.1,0.2,0.2>
B = o , o , ” }. We have,
_ 2(p1oB(ab)+p1oB(bc)+pioB(ca)) _ 2(0.140.140.1) __
pio D(G) " (p1oA(a)Ap1oA(b)+p1oA(b)ApioA(c)+pioA(c)ApioA(a)) ~  0.340.3+0.3 0.67.
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Similarly, ps o D(G) =1 and p3 o D(G) = 0.8. Hence, D(G) = (0.67,1,0.8).
The non-empty subgraphs of G are Hy = {a,b}, Hy = {b,c} and Hs = {c,a}.

Then D(Hy) = (2594, 2x82 2x02) — (0.67,1,0.8),

D(Hg) — (2><0.1 2x0.2 2><0.2) — (067, 1,0.8) and

03 7 04 > 05

D(Hy) = (201, 2x02 2x02) _ (0,67,1,0.8).

We see that, D(H,) = D(Hy) = D(H3) = D(G) = (0.67,1,0.8).
Hence, G is a balanced 3-polar fuzzy graph (see Fig. 4.2).

Definition 4.3.2. An m-polar fuzzy graph G is said to be strictly balanced if p; o
D(H) = p; o D(G) for all non-empty subgraphs H of G, 1 =1,2,...,m.

Example 4.3.2. The 3-polar fuzzy graph of Fig. 4.2 is actually a strictly balanced
3-polar fuzzy graph.

Theorem 4.3.1. Any complete m-polar fuzzy graph is balanced.

Proof. Let G = (V, A, B) be a complete m-polar fuzzy graph and H be a non-empty
subgraph of G. Then for each i =1,2,...,m

2( 22 pio B(w)) 2( 22 pio A(u) Ap.A(v))
D D(G) _ u,veV _ u,veV —9
2 (pioA(u) Apio A(v)) 32 (pio Au) Apio A(v))
u,veV u,veV
and
20 X2 )piOB(UU)) 2( Z( )Pz'OA(U) Apio A(v))
u,weV (H u,veV (H
) S S o A Ap o ALD) TS (o AW Ao AC)
u,veV (H) u,veV(H)
(where V(H) represents the vertex of H). This shows that G is balanced. O

The converse of the above theorem is not true always. For example, the 3-polar
fuzzy graph in Fig. 4.2 is balanced but not complete.

Below we will discuss two types of m-polar fuzzy graphs each with density equal to

1=(1,1,...,1).

Theorem 4.3.2. Fvery self-complementary strong m-polar fuzzy graph has density

equal to 1 = (1,1,...,1).
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Proof. Let G = (V, A, B) be a self-complementary strong m-polar fuzzy graph of
G* = (V, E). Then by Proposition 6.12 of [45], we have for each ¢ = 1,2,...,m and

xy € 175,
1
D _pioBlay) =5 (pioAlw) Apio Ay)).
T#y Ty
Hence,
2( > pioB(w))
u,veV
pio D(G) = : = 1(by the above
= S oA Apoaw) ! )
u,weV
for each i = 1,2,...,m. Thus, D(G) = 1. ]
<1,1,1> <1,1,1> <1,1,1> <1,1,1>
<0,3,0.3,0.3 > £0.2,0.2,0.2 > <0.7,0.7,0.7 > £0.8,0.8,0.8 >

<L1l,1> G <1,1,1> rel
Figure 4.3: G is a 3-polar fuzzy graph with density (1, 1, 1) but not self-complementary

and strong

The converse of this theorem is not true in general. For example, the 3-polar fuzzy
graph in Fig. 4.3 has density equal to (1,1,1), but it is not self-complementary strong.
Here, we see that D(G) = (1,1,1) but G 2 G.

Theorem 4.3.3. Let G = (V, A, B) be a strictly balanced m-polar fuzzy graph and let
G = (V, A, B) be its complement. Then, D(G) + D(G) = (2,2,...,2).

Proof. Let H be any nonempty subgraph of G.
Since G is strictly balanced p; o D(H) = p;0 D(G) for every H C G, i =1,2,...,m.
Now, for all uv € V2 and i = 1,2,...,m we have

pi © B(uv) = p; o A(u) A p; o A(v) — p; o B(uv),

ie p;0B(uv) 11— pioB(uv)

Y picA(u)ApiocA(v) pioA(u)Ap;oA(v)’

. p;oB(uv) 1 pioB(uv)

ie. > pioA(u)Ap;oA(v) 1 2 pioA(u)Ap;oA(v)”
u,veV u,veV

. ;0B (uv) _ 0B (uv)
ie. 2( Ze:v p_,-o,f(u)ApioA(v)) =2-2 263 pz’O:(u)/\PiOA(U))’

ie. pjo D(G)=2—p; 0o D(G),
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i.e. pjo D(G)+ pioD(G) =2,

ie. D(G)+ D(G) =(2,2,...,2).
This completes the proof. O

Theorem 4.3.4. The complement of strictly balanced m-polar fuzzy graph is strictly

balanced.
Proof. Follows from the definition. O]

Theorem 4.3.5. Let G = (V, A, B) be a strong m-polar fuzzy graph such that for each
i=1,2,...,m and w € V2, pio B(uw) = 1(pio A(u) Ap;o A(v)). Then, D(G) =1 =
(1,1,...,1).

Proof. Since G = (V, A, B) is a strong m-polar fuzzy graph such that for each i =
1,2,...,mand uv € 175, pio B(uw) = %(pZ o A(u) A p;o A(v)), therefore by Proposition
6.13 of [45], we have G is self-complementary. Hence, by Theorem 4.3.2, it follows that
D(G) =1. O

Next, necessary and sufficient conditions are established for the direct product,

semi-strong product and strong product of two m-polar fuzzy graphs to be balanced.

Theorem 4.3.6. Let G; = (Vi, A1, By) and Gy = (Va, Ag, B) be two m-polar fuzzy
graphs of G7 = (Vi, Ey) and G5 = (Va, Ey) respectively. Then, D(Gy) < D(G1 M Gy)
for k =1,2 if and only if D(G1) = D(G2) = D(G1 M Gy).

Proof. Let D(Gy) < D(G1 M Gy) for k=1,2. Then fori=1,2,...,m

2( Y> pioBi(uiug))

uy,u2€Vy

Y. (pioAi(ur) Apio Ai(ug))

uy,u2€V

2( Y>> pioBi(uiug) Ap;o As(vi) A p; o Ax(vs))

u1,ug€Vy
v1,v2€E€ Vo

> (pioAi(ur) Ap;o Ai(ug) A pi o Ax(vr) A pi o Ax(vs))

uy,u2€V
v1,v2€ Vo

pio D(Gy) =

v

2( X2 pio Bi(uyuz) A pi o By(viv2))

u1,u2€VL
U1,U2€V2

Y. (pioAi(ur) Ap; o Ai(ug) Ap; o As(vr) A pi o As(v2))

u1,u2€V1
v1,v2€ Vo
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20 22 pio (BN By)(u,v1)(ug,va))

U17U2§¥1
v1,v2E€V2
= =p;o D(G1 M Gy).
> (pio (A1 Ag)(ur,v1) Apio (Ar M Az)(ug, va)) & )
u1,u2€Vl
’Ul,UQEVQ

Hence, p; o D(G1) > p; o D(G1 M Gy) for each i =1,2,...,m,

i.e D(Gy) > D(G1 N Gy).

Similarly, D(G2) > D(G1 M Gs).

Therefore, D(G1) = D(G2) = D(G1 N Gy). O

Theorem 4.3.7. Let G; = (V1, Ay, B1) and Gy = (Va, A, Bs) be two balanced m-polar
fuzzy graphs. Then, Gy 1 Gy is balanced if and only if D(G1) = D(Gy) = D(G1 M Gy).

Proof. Suppose D(G; M Gs) is balanced.

Then D(Gy) < D(G; M Gy) for k = 1,2 and by Theorem 4.3.6, D(G;) = D(G2) =
D(G, M Gy).

Conversely, let D(G1) = D(G2) = D(G; M Gs) and H be a non-empty subgraph of
G1 M Gsy. Then there exist subgraphs Hy of G; and Hs of Gs.

Let pi o D(G1) = p; o D(G) = E,

pio D(H,) = ¢ and

pio D(Hy) = ¢ fori=1,2,...,m and a;, b;, ¢;, 73, 8, 1; € R.

Since GG; and G, are balanced, therefore for i =1,2,...,m

pio D(H) =3 < p;oD(Gy) = £ and

pio D(Hz) = §+ <p;o D(Gz) = L.

Thus, s;7; + a;r; < t;q; + biq,

ie Z%Z; < Z—i fori=1,2,...,m.

Hence, p; o D(H) < % <L =poD(GiNG,y) fori=12,....,m.

Therefore, G1 M (G5 is balanced. O

Similarly, we have the following results.

Theorem 4.3.8. Let G; = (V4, A1, B1) and Gy = (Va, Ag, Bs) be two balanced m-polar
fuzzy graphs. Then

(i) G1 e Gy is balanced if and only if D(G1) = D(G2) = D(G; @ Gs).
(1)) G1 ® Gy is balanced if and only if D(G1) = D(Gs) = D(G1 ® G3).
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We end this section by showing that isomorphism between m-polar fuzzy graphs

preserve balanced.

Theorem 4.3.9. Let G and G5 be two isomorphic m-polar fuzzy graphs. If Go is

balanced, then Gy is balanced.

Proof. Since GG; and G5 are isomorphic therefore there exists a bijective mapping
¢ : Vi — V, such that p; o Aj(u) = p; o As(é(u)) for all uw € Vi and p; o By(uv) =
pi © Ba(op(u)p(v)) for all uv € \//?, i=1,2,...,m.

Then, > p;o Ai(u)

ueVy

= > pioAs(¢(u)) and

H(u)EV2
Z p; © Bi(uv)

u,veV]

= X pioBa(d(u)g(v)).
d(u),p(v)EV2
Let H, and H, be two nonempty subgraphs of G; and G5 respectively.
Then, p; o Ai(u) = pi o As(d(u)) and p; o By(uv) = p; o Ba(¢(u)g(v)) for all u,v €
Vi(Hy),i=1,2,...,m. Here, Vi(H;) represents the vertices of H;.

Since (G5 is balanced, therefore for : = 1,2,...,m

pi o D(H3) < p; o D(G>),

. p;oBa(uv) pioBa(uv)

ie 2 ) Ue%(HQ) o As ) ApoAa( <2 ) UEG:V pioAz(u)ApioAs(v)’

. pioB1 (uv) pioB1(uv)

ie. 2 ) Ue%(H : PioA1 (W) ApioAr (v) — 2u % " p;i0A1(u)ApioAy(v)?

ie. p;o D(Hy) < p;o D(Gy),

i.e. (G is balanced. U

4.4 Summary

The main purpose of this chapter is to define density of an m-polar fuzzy graph. This
chapter deals with the significant properties of balanced m-polar fuzzy graphs. Density
of some special m-polar fuzzy graphs are calculated using the formula. Necessary and
sufficient conditions are established for the products of two m-polar fuzzy balanced
graphs to be balanced. Finally, it has been shown that isomorphic m-polar fuzzy

graphs preserves the property of balanced.



4.4. SUMMARY

78




Chapter 5

m~polar fuzzy planar graphs and its

dual™

5.1 Introduction

Graph model can be used to represent electrical circuits. Minimizing the non-
overlapping circuit is the main objective in such system. In a city planning, subway
tunnels, pipelines, metro lines, etc. are all essential. There are chances of accident
due to crossing. Routes without crossing is preferable, but due to the lack of space
crossing of such lines are allowed. Crossing between congested and non-congested
routes are more preferable than the crossing between two congested routes. The term
“congested” has no definite meaning. We generally use “congested”, “very congested”,
“highly congested” routes, etc. These terms are called linguistic terms and they have
some membership values. A congested route may be termed as strong route and
low congested route may be termed as weak route. Thus, crossing between strong and
weak route may be allowed in a city planning with certain amount of safety. The terms
“strong route” and “weak route” lead to strong edge and weak edge of an m-polar fuzzy
graph respectively and the permission of crossing between strong and weak edges leads
to the concept of m-polar fuzzy planar graphs. Abdul et. al [1] introduced the concept
of fuzzy planar graph. Samanta and Pal [114,116] defined fuzzy planar graph assuming

crossing of edges. In this chapter, m-polar fuzzy planar graphs, m-polar fuzzy dual

*A part of the work presented in this chapter is published in Int. J. of Computing Science and
Mathematics, 7(3) 283-292 (2016) and Journal of Intelligent and Fuzzy Systems, 31(3) 2043-2049
(2016).
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graphs are defined and some important properties are established. Here, the “degree
of planarity” is used to measure the nature of planarity of an m-polar fuzzy planar
graph. Also, we introduced some terms like m-polar fuzzy multiset, m-polar fuzzy
multigraphs, m-polar fuzzy dual graph. Some theorems have been proved on degree
of planarity. Depending on the degree of planarity, the considerable edge has been

introduced.

5.2 m-~polar fuzzy multiset and m-polar fuzzy multi-

graph
Yager [135] first discussed fuzzy multiset, although he used the term “fuzzy bag”.
Fuzzy multiset over a non-empty set V' is a mapping C:Vx [0,1] — N. m-polar fuzzy

multiset is another generalization of multiset which is defined below.

Definition 5.2.1. (m-polar fuzzy multiset) Let V' be a nonempty set and A7 : V —
0,1]™, j = 1,2,...,p be the mappings. The m-polar fuzzy multiset on V is denoted
by A and is defined as {(v, A7(v)):v e V,j=1,2,...,p}.

Example 5.2.1. Let V = {a,b,c,d}. Then one of the 3-polar fuzzy multisets on V is
(a,< 0.3,0.4,0.5 >), (a,< 0.5,0.7,0.8 >), (a,< 0.4,0.2,0.3 >), (b,< 0.7,0.8,0.5 >),
(b,<0.5,0.3,0.4 >), (¢,< 0.4,0.5,0.7 >), (d,< 0.3,0.9,0.2 >), (d,< 0.6,0.3,0.2 >).

The concept of m-polar fuzzy multigraph is introduced using the notion of m-polar

fuzzy multiset.

Definition 5.2.2. Let V' be a nonempty set and let A be an m-polar fuzzy set on V. Let
B = {((u,v), Bi(u,v)),j = 1,2,...,p: (uw,v) € V x V} be an m-polar fuzzy multiset
of V.xV. Then G = (V, A, B) is said to be m-polar fuzzy multigraph if p; o B? (u,v) <
min{p; o A(u),p; o A(v)} for allu,v €V, j=1,2,...;pandi=1,2,...,m .

Here, A(u) and B(u,v) represent the membership value of the vertex u and of the
edge (u,v) in G respectively. It may be noted that there may be more than one edge
between the vertices u and v. B(u,v) denotes membership value of the j-th edge
between the vertices u and v and p represents the number of edges between the vertices
u and v.

An example of 3-polar fuzzy multigraph is given in Fig. 5.1.

A special type of m-polar fuzzy multigraph is defined below.
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<0.4,0.5,0.7 >
u

<0.2,0.3,0.3 >

Figure 5.1: Example of 3-polar fuzzy multigraph.

5.3 m-polar fuzzy planar graphs

Let G = (V, A, B) be an m-polar fuzzy multigraph and for a certain geometrical
representation, the graph has only one crossing between the edges ((w,z), B(w,x))
and ((y,z), B(y,2)). If B(w,z) =1 and B(y, z) = 0, then we say that the graph has
no crossing. Similarly, if B(w,z) has value near to 1 and B(y, z) has value near to
0, the crossing will not be important for the planarity. If B(w,x), B(y, z) have value
near to 1, then the crossing becomes very important for the planarity. So, if there is a
crossing at a point between two edges, a value is assigned corresponding to that point,

called the intersecting value.

5.3.1 Intersecting value in m-polar fuzzy multigraph

Let G = (V, A, B) be an m-polar fuzzy multigraph where B = {((u,v), B?(u,v)),j =
1,2,...,p: (u,v) € V x V}. G is called m-polar fuzzy complete multigraph if p; o
Bl (u,v) = min{p;o A(u),p;io A(v)} forallu,v € V,i=1,2,... mand j =1,2,...,p.

<0.5,04,0.3 > <0.5,0.4,0.3 >

b
<0.5,0.7,0.3 > <0.5,04,03> < 0.6,05,0.7 >
< 05,04,03> 7<0504,03> ®°

N
.....

< 0.5,0.5,0.3 >

Figure 5.2: 3-polar fuzzy complete multigraph

Example 5.3.1. [t is easy to see that G is a 3-polar fuzzy complete multigraph as
shown in Fig. 5.2.
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The strength of an edge ((u,v), B/(u,v)) is defined by a value

m

1 2
I(uﬂ)) = (I(u,v)7 ](u,v)’ tto I(u,v))

where

: pi © B (u,v) :
I = =1,2,...,m.
(u,v) m@n{pz OA(U/),pZ'OA(U)}jz < 7m

Definition 5.3.1. Let G = (V, A, B) be an m-polar fuzzy multigraph. An edge (u,v) in
G is said to be m-polar fuzzy strong if I(iw) > 0.5 for eachi =1,2,...,m. Otherwise,

it is called m-polar fuzzy weak edge.

In m-polar fuzzy multigraph, when two edges intersect at a point, a value is assigned
to that point in the following way.

Let in an m-polar fuzzy multigraph G = (V, A, B), B contains two edges ((u1,v1),
BI(uy,v1)) and ((ug,v2), B*¥(ug, v9)) which intersect at a point P, where j and k are

fixed integers. The intersecting value at the point P is given by
Ip = (Zp, I3, ..., IT})

where ' 4
Ty & Hunan) ;g

T, = .
P 2 Y =

S, M.

If the number of points of intersection in an m-polar fuzzy multigraph increases, the
‘planarity’ decreases. Using these concept, the notion of m-polar fuzzy planar graph

is introduced below.

Definition 5.3.2. (Planarity of m-polar fuzzy multigraph) Let G = (V, A, B) be
an m-polar fuzzy multigraph and for a certain geometrical representation Py, P, ..., Py
be the points of intersections between the edges. Then G is said to be m-polar fuzzy

planar graph with m-polar fuzzy planarity value
P=(P1,Pas...,Pn)

where
1

- E— —
1+ {Tp + T+ ...+ 15 }

P is bounded, since 0 < P; <1 for eachi1=1,2,...,m.

P

=1,2,...,m.
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Example 5.3.2. Let us consider a 3-polar fuzzy multigraph with two point of intersec-
tions Py and Py (see Fig. 5.3). Py is a point between the edges ((a,b), < 0.3,0.6,0.3 >)
and ((¢,d),< 0.5,0.6,0.2 >), P is a point between the edges ((a,b), < 0.4,0.5,0.3 >)
and ((¢,d), < 0.5,0.6,0.2 >).

Now, for the edge ((a,b), < 0.3,0.6,0.3 >), 43 = (0.75,0.85,0.75),

for the edge ((a,b),< 0.4,0.5,0.3 >), I(4p = (1,0.71,0.75) and

for the edge ((c,d), < 0.5,0.6,0.2 >), I.q) = (1,0.85,0.66).

The intersecting values are Zp, = (0.875,0.85,0.705) and Zp, = (1,0.78,0.705).

So, planarity value for the 3-polar fuzzy multigraph is (0.35,0.38,0.41).

< 0.4,0.7,0.5 >

<0.4,0.5,0.5 >
<0.3,0.6,0.3 >

<0.5,0.6,0.2 >

< 0.5,0.7,0.3 > < 0.5,0.8,0.7 >

<0.6,0.7,0.4 >

Figure 5.3: 3-polar fuzzy planar graph with 3-polar fuzzy planarity value
(0.35,0.38,0.41)

Now consider an m-polar fuzzy complete multigraph whose m-polar fuzzy planarity

value is given by the following theorem.

Theorem 5.3.1. Let G = (V, A, B) be an m-polar fuzzy complete multigraph. The m-

1

m,12172,...,m

polar fuzzy planarity value P = (P1, Pa, ..., Pm) is given by P; =

where ny, is the number of points of intersection between the edges in G.

Proof. Since G is complete, we have,

pi o BI(u,v) = min{p; o A(u),p; o A(v)} for all u,v € V, i = 1,2,...,m and
17=12...,p.

Let P, P, ..., P, be the points of intersection between the edges in G.

p;ioBI (u,v)
min{p;0A(u),p;0A

For an edge (u,v) in G, I(iu,v) = ap=Li=12...m
Therefore, for the point P; which is the point of intersection between the edges (a, b)

and (c,d), the intersecting value is Zp, = (1,1,...,1).
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Hence, Zp, = (1,1,...,1) fori=1,2,... k.

Now for ¢t =1,2,...,m,
U (@, T A Tn) | RO T

Therefore, the m-polar fuzzy planarity P is given by P = (P, Ps, ..., Pm) where

_ _1 -
Pi—m,l—1,2,...,m. ]

Theorem 5.3.2. Let G = (V, A, B) be an m-polar fuzzy planar graph with m-polar
fuzzy planarity P = (P1,Pa, ..., Pm) is such that P; > 0.5 fori =1,2,...,m. Then
the number of points of intersection between m-polar fuzzy strong edges in G is at most

one.

Proof. 1f possible, let G has at least two points of intersection P; and P, between two
m-polar fuzzy strong edges in G.
For any m-polar fuzzy strong edge ((u,v), B (u,v)), I(iw) >051=1,2,...,m.
Thus, for any two intersecting strong edges ((u,v), B’ (u,v)) and ((w, z), B*(w, z)),
M >05fore=1,2,...,m,
ie. T > 0.5.
Similarly, Z}, > 0.5.

Then, 1 —|—I};1 —I—I}é > 2,

i R S
ie. P = T, 2L, <0.5.
This is a contradiction, since P; > 0.5 for i =1,2,...,m.

Hence, the number of points cannot be two.

Clearly, if the number of point of intersection between m-polar fuzzy strong edges
increases, then the planarity value decreases. Similarly, if the number of point of
intersection is one, then the planarity value P is such that P; > 0.5, 2= 1,2,... ,m.
Any m-polar fuzzy planar graph without any crossing between edges has m-polar fuzzy

planarity value P where P; > 0.5. Hence, the proof. O

Theorem 5.3.3. Let G = (V, A, B) be an m-polar fuzzy planar graph with m-polar
fuzzy planarity value P = (P1,Pay ..., Py). If P; > 0.67,i=1,2,...,m, then G does

not contain any point of intersection between two m-polar fuzzy strong edges.

Proof. If possible, let P be a point of intersection between two m-polar fuzzy strong

edges ((u,v), B/ (u,v)) and ((w, ), B¥(w, z)).



85 CHAPTER 5. M-POLAR FUZZY PLANAR GRAPHS AND ITS DUAL

For any m-polar fuzzy strong edge ((u,v),B/(u,v)), we have I/ . > 0.5, i =

(u,0)

1,2,...,m.

For the minimum value of Iéu,v) and [’Awyz), IL=05,i=1,2,...,m.
Then, P; = Hﬁ < 0.67 for i = 1,2,...,m, a contradiction.

Hence, G does not contain any point of intersection between two m-polar fuzzy

strong edges. |
Next the definition of strong m-polar fuzzy planar graph is given below.

Definition 5.3.3. An m-polar fuzzy planar graph G is said to be strong m-polar fuzzy
planar graph if the m-polar fuzzy planarity value P = (P1, Pa, ..., Pm) of the graph is
such that P; > 0.67, 1 =1,2,...,m.

Strength of an edge has an important role to model some kind of projects. Edges of
small strength may be ignored. So, the edges with sufficient strengths are very useful to

design such projects. These edges are called considerable edges which is defined below.

Definition 5.3.4. Let G = (V, A, B) be an m-polar fuzzy planar graph. Let 0 < ¢ <

0.5 be a rational number. An edge ((u,v), B(u,v)) is said to be considerable edge if

piOB(uvv)
min{p;0A(u),p;oA(v)

7 >c fori=1,2,...,m. Otherwise, it is called non-considerable edge.
For an m-polar fuzzy multigraph G, a multi-edge ((u,v), B?(u,v)) is said to be con-

siderable edge if min{plzzoﬁ;()ul;fZA(v)} >cfori=1,2,...,mandj=1,2,...,p.

Theorem 5.3.4. Let G be an m-polar fuzzy planar graph with m-polar fuzzy planarity
value P = (P1, Pay ..., Pm) be such that P; > 0.5 for i =1,2,...,m and considerable
number c. Then the number of point of intersection between considerable edges in G

18 at most [%] or % — 1 according as % 1s not an integer or an integer respectively.

Proof. Let G = (V, A, B) be an m-polar fuzzy planar graph where
B = {((u,v), B’ (u,v)),5=1,2,....,p: (u,v) € Vx V}.
Let 0 < ¢ < 0.5 be the considerable number.
For any considerable edge ((u,v), B?(u,v)), we have,
pi o B/ (u,v) > ¢ min{p; o A(u),p; 0o A(v)}, i =1,2,...,m.
This implies that, I(iu’v) >cfori=1,2,...,m.
Let P, P, ..., P, be the [-points of intersection between the considerable edges.
Also let, P; be the point of intersection between the considerable edges ((u1,v1),

BI(uy,v1)) and ((ug, va), B*(ug, vs)).
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) Iiu v +Izu v
Then, Zp = o) _(upep) 1)2 (2:v2) > ¢,
l
So, > Ip >le.
n=1

1
Hence, P; < 177

This imply that 0.5 < P; < -,

: 1
ie. 0.5 < T+ie’
ie [ <t

C
_ 2] if 1 is not an integer
Hence, the values of [ are given by [ =

1 1 if L is an integer
C (&

This completes the proof. n

Theorem 5.3.5. Any complete m-polar fuzzy graph of five vertices or complete bipar-

tite m-polar fuzzy graph of six vertices are not strong m-polar fuzzy planar graph.

Proof. Let G = (V, A, B) be a complete m-polar fuzzy graph of five vertices where
V =A{u,v,w,z,y} and B = {((u,v), B(u,v) : (u,v) € Vx V}.

For all u,v € V, we have,

pi o B(u,v) = min{p; o A(u),p;0o A(v)}, i =1,2,...,m.

By Theorem 5.3.1, the m-polar fuzzy planarity value of a complete m-polar fuzzy
graph is P = (P1,Pa, ..., Pn), where P; = ﬁ, n, being the number of point of
intersection of the edges in G.

We know that the geometric representation of the underlying crisp graph of an m-
polar fuzzy complete graph of five vertices is non-planar and one point of intersection
cannot be avoided for any representation.

So, P,=05,i=1,2,...,m.

Hence, G is not strong m-polar fuzzy planar graph.

Similarly, it can be proved that the complete bipartite m-polar fuzzy graph of six

vertices is not strong m-polar fuzzy planar graph. O]

5.4 Faces of m-polar fuzzy planar graph

Face of m-polar fuzzy planar graph is an important parameter. Face of an m-polar
fuzzy planar graph is a region bounded by m-polar fuzzy edges. Every m-polar fuzzy
face is characterized by m-polar fuzzy edges in its boundary. If all the edges in the
boundary of m-polar fuzzy face have membership values 1, it becomes crisp face. If

one such edges is removed, the m-polar fuzzy face does not exist. So, the existence
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of an m-polar fuzzy face depends on the minimum value of strength of m-polar fuzzy
edges in its boundary. m-polar fuzzy face and its membership values of an m-polar

fuzzy graph are defined below.

Definition 5.4.1. Let G = (V, A, B) be an m-polar fuzzy planar graph and B =
{((u,v), B (u,v)),7 = 1,2,...,p: (u,v) € V x V}. An m-polar fuzzy face of G is a
region bounded by the set of m-polar fuzzy edges E' C 'V x V', of a geometric repre-
sentation of G. The strength of the face is (Sk, S%, ..., S%), where St = min{[(iw) :
(u,v) € E'}, i=1,2,...,m.

Definition 5.4.2. An m-polar fuzzy face is called strong m-polar fuzzy face if St > 0.5
forv=1,2,....,m and weak m-polar fuzzy face otherwise. Fvery m-polar fuzzy planar
graph has an infinite region which is called outer m-polar fuzzy face. Other faces are

called inner m-polar fuzzy faces.

F3

-

< 0.7,0.3,0.5 > -, < 0.5,0.3,0.2 >

. .

U1

<0.4,0.3,0.2 >
<0.4,0.3,0.2 >
P

I3
<0.4,0.2,0.2 >

<0.3,0.3,0.2 >

< 0.6,0.3,0.4 >

\\\\
vz @ vy

< 0.8,0.6,0.5 > < 0.7,0.6,0.5 >

Figure 5.4: 3-polar fuzzy planar graph with three 3-polar fuzzy faces

Example 5.4.1. Let us consider the 3-polar fuzzy planar graph as shown in the Fig.
5.4. Here, Fy, Fy, F3 are three 3-polar fuzzy faces. The 3-polar fuzzy face Fy is bounded
by the edges ((Ul,U2>, <0.4,0.3,0.2 > ), ((UQ,U4), <04,0.2,0.2 > ) and ((U4,U1),
< 0.6,0.3,0.4 > ) with strength (0.8,0.67,0.8).

Similarly, Fs is a face bounded by the edges ((Ul,'l}g), <0.3,0.3,0.2 > ), ((Ul,Ug),
< 0.4,0.3,0.2 > ) and ((v2,v3),< 0.4,0.2,0.2 > ) with strength (0.42,0.67,0.4). F;
is the outer face with strength (0.42,1,0.4). So, Fy is strong 3-polar fuzzy face while

F5, F3 are weak 3-polar fuzzy faces.
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5.5 m-~polar fuzzy dual graph

In this section, we introduce the concept of dual of an m-polar fuzzy planar graph.
In m-polar fuzzy dual graph, vertices are corresponding to the strong m-polar fuzzy
faces and each edge in dual graph between two vertices is corresponding to each edge
in the boundary between two m-polar fuzzy faces of m-polar fuzzy planar graph. The

definition is given below.

Definition 5.5.1. Let G = (V, A, B) be an m-polar fuzzy planar graph where B =
{(u,v), B¥(u,v)),7 = 1,2,...,p: (u,v) € Vx V}. Let Fi,F,, ..., Fy be the strong
m-polar fuzzy faces of G. The m-polar fuzzy dual graph of G is an m-polar fuzzy
planar graph Gy = (Vi, A1, By) where Vi = {z,,q = 1,2,...,k}, the vertex x, of G,
is correspond to the face Fy, of G. The membership value of vertices are given by the
mapping Ay : Vi — [0,1]™ such that p; o Ay(z,) = max{p; o B/ (u,v),j =1,2,...,1:
(u,v) is an edge of the boundary of the m-polar fuzzy face F,}.

There may exist more than one common edge between two m-polar fuzzy faces F;
and F; of G. Thus there may be more than one edge between two vertices x; and x;
in the m-polar fuzzy dual graph Gy. Let B'(x;, z;) denote the membership value of the
l-th edge between x; and x;. The membership value of the edges of the m-polar fuzzy
dual graph are given by By'(z;,7;) = B'(u,v) where (u,v) is a common edge between
two m-polar fuzzy faces Fy and F; and | = 1,2,...,t; t being the number of common
edges in the boundary between F; and F; or the number the edges between x; and x;.

If there is any strong pendant edge in the m-polar fuzzy planar graph, then there will
be a self-loop in Gy corresponding to this pendant edge. The edge membership value of
the self-loop is equal to the membership value of the pendant edge. m-polar fuzzy dual
graph of m-polar fuzzy planar graph does not contain any point of intersection of edges
for a certain representation, so it is an m-polar fuzzy planar graph with m-polar fuzzy

planarity value (1,1,...,1).

Next, we give an example of an m-polar fuzzy dual graph of an m-polar fuzzy planar
graph which are shown in Fig. 5.5. We assume that the black filled circles and the
lines represent the vertices and edges of the m-polar fuzzy planar graph while the
empty circles and the dotted lines represent the vertices and edges of m-polar fuzzy

dual graph corresponding to the m-polar fuzzy planar graph.
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Figure 5.5: 3-polar fuzzy graph and it’s 3-polar fuzzy dual graph

Example 5.5.1. Let us now consider a 3-polar fuzzy planar graph G = (V, A, B) as
shown in Fig. 5.5, where V- = {uy, ug, uz, ug}, A= {(ul, < 0.8,0.7,0.6 > ),
(u2,<0.6,0.5,0.7 > ), (us, < 0.8,0.8,0.9 > ), (ug, < 0.9,0.7,0.6 > )}, and

B = {((u1,us),< 0.5,0.4,0.5 > ), ((u2, us), < 0.6,0.4,0.5 > ), ((us, us),
<0.7,0.7,0.5 > ), ((u1,u3), < 0.7,0.6,0.6 > ), ((u1,us), < 0.7,0.5,0.4 > ), ((uz, u3),
< 0.5,0.5,0.6 > )}.

The 3-polar fuzzy planar graph has the following faces:

(i) the 3-polar fuzzy face Fy is bounded by ((uz,u3), < 0.5,0.5,0.6 > ), ((U3,u4),
<0.7,0.7,0.5 > ), ((us,us), < 0.6,0.4,0.5 > ),

(i1) the 3-polar fuzzy face Fy is bounded by ((ul,ug), <0.5,0.4,0.5 > ), ((Ul,’dg),
< 0.7,0.6,0.6 > ), ((u2,u3),< 0.5,0.5,0.6 > ),

(#1i) the 3-polar fuzzy face F3 is bounded by ((ul,u3), < 0.7,0.6,0.6 > ), ((ul,u;z,),
<0.7,0.5,0.4 > ), and

(iv) the outer 3-polar fuzzy face Fy is surrounded by ((ul,u2),< 0.5,0.4,0.5 > ),
((u2,us), < 0.6,0.4,0.5 > ), ((u1,us), < 0.7,0.6,0.6 > ), ((uz,us), < 0.7,0.7,
0.5>).

The strengths of the faces Fy, Fy, F3, Fy are (0.83,0.8,0.83), (0.62,0.8,0.83),

(0.87,0.71,0.66), (0.83,0.71,0.66) respectively. Since all the faces are strong 3-polar
fuzzy faces, for each strong 3-polar fuzzy faces, we consider a vertex for the 3-polar
fuzzy dual graph. Thus the vertex set Vi of the 3-polar fuzzy dual graph is Vi =
{1, 29, 23,24}, where the vertex x; corresponds to the strong 3-polar fuzzy face F;,

1=1,2,3,4. Now, the membership value of the vertex set Vi is calculated below:
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Aq(z1) =< 0.7,0.7,0.6 >, Ay(z2) =< 0.7,0.6,0.6 >,

Aq(z3) =< 0.7,0.6,0.6 >, A;(z4) =< 0.7,0.7,0.5 >.

There are two common edges (ug,uy) and (us,uy) between the faces Fy and Fy in
G. Therefore, there exist two edges between x1 and x4 in the 3-polar fuzzy dual graph.
The membership values of these edges are given by

Bi(z1,14) = Blus,us) =< 0.7,0.7,0.5 >, By(z1,24) = B(ug,us) =< 0.6,0.4,0.5 >.

The membership values of other edges of the 3-polar fuzzy dual graph are calculated
as Bi(x1,12) = B(ug,u3z) =< 0.5,0.5,0.6 >, By(xs,x3) = B(uy,u3) =< 0.7,0.6,0.6 >,

Bi(z2,x4) = B(uy,us) =< 0.5,0.4,0.5 >, By(z3,24) = B(uy,u3) =< 0.7,0.5,0.4 >.

Thus, the edge set of the 3-polar fuzzy dual graph is

By = {((z1,22),< 0.5,0.5,0.6 > ), ((22,23), < 0.7,0.6,0.6 > ), (22, z4),
<0.5,0.4,0.5 > ), ((w3,24), < 0.7,0.5,0.4 > ), ((z1,24), < 0.7,0.7,0.5 > ), (w1, z4),
<0.6,0.4,0.5 > )}.

Now, we have the following observations.

Theorem 5.5.1. Let G = (V, A, B) be an m-polar fuzzy planar graph whose number
of vertices, number of edges and number of strong m-polar fuzzy faces denoted by n, e

and [ respectively. Let G1 be the m-polar fuzzy dual graph of G. Then

(i) the number of vertices of Gy is equal to f,
(ii) the number of edges of Gy is equal to e,

(i11) the number of m-polar fuzzy faces of Gy is equal to n.

Proof. Proof of (i), (ii) and (i7i) follows from the definition of m-polar fuzzy dual

graph. [

Theorem 5.5.2. Let Gy = (Vi, Ay, By) be an m-polar fuzzy dual graph of the strong
m-polar fuzzy planar graph G = (V, A, B). Then the number of strong m-polar fuzzy

faces in Gy is less than or equal to the number of vertices of G.

Proof. Since all the faces of the m-polar fuzzy dual graph G; may not be strong m-
polar fuzzy faces, therefore the result holds from the (iii)-rd part of the Theorem

5.5.1. ]

Theorem 5.5.3. Let G = (V, A, B) be a strong m-polar fuzzy planar graph having
no weak m-polar fuzzy edges and Gy be the m-polar fuzzy dual graph of G. Then the
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membership value of the m-polar fuzzy edges of G1 is equal to the membership value of

the m-polar fuzzy edges of G.

Proof. The dual graph G of G is a strong m-polar fuzzy planar graph as there is no
point of intersection between any edges. Let {F}, Fy, ..., Fi} be the set of strong faces
of G.

From the definition of m-polar fuzzy dual graph we know that B,'(x;, z;) = B'(u,v)
where (u,v) is a common edge between two strong m-polar fuzzy faces F; and F; and
l=1,2,...,t; t being the number of common edges in the boundary between F; and
F;. The number of m-polar fuzzy edges of the two graphs G and G are same as G
has no weak edges. Hence, for each m-polar fuzzy edge of G there is an m-polar fuzzy

edge in G| with the same membership value. ]

5.6 Isomorphism on m-polar fuzzy planar graphs
In this section, we introduce the notion of isomorphism between m-polar fuzzy

graphs. The related definitions are given as follows.

Definition 5.6.1. Let Gy = (Vi, A1, By) and Gy = (Va, A, By) be two m-polar fuzzy
planar graphs of the graphs G; = (Vi, Ey) and G5 = (Va, E3) respectively. An iso-
morphism between G1 and Gy is a bijective mapping ¢ : Vi — V, such that for each

i=1,2,...,m

(1) p; o A1(x1) = p; o As(¢p(x1)) for all zy € V7,
(i) pio Bi(w1,y1) = pi 0 Ba(p(x1), d(y1)) for all (w1,y1) € V.

In this case, we write G1 = Gs.

Definition 5.6.2. Let Gy = (Vi, Ay, By) and Gy = (Va, A, By) be two m-polar fuzzy
planar graphs of the graphs Gt = (Vi, Ey) and G%5 = (V,, Ey) respectively. A weak
1somorphism between G1 and G4 is a bijective mapping ¢ : Vi — Vo which satisfies the

following conditions:

(i) ¢ is a homomorphism,

(ii) p;o Ai(x1) = p; o As(@p(xy)) for all zy € Vi and i =1,2,...,m.

Definition 5.6.3. Let G1 = (Vi, Ay, By) and Gy = (Va, A, By) be two m-polar fuzzy
planar graphs of the graphs G5 = (Vi, E1) and G5 = (Va, Ey) respectively. A co-weak
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1somorphism between G1 and G4 is a bijective mapping ¢ : Vi — Vo which satisfies the

following:

(i) ¢ is a homomorphism,

(ii) p; o By(x1,y1) = pi © Ba(d(z1y1)) for all (x1,y1) € V2 andi=1,2,...,m.

[somorphism between m-polar fuzzy graphs is an equivalence relation. But, if there
is an isomorphism between two m-polar fuzzy graphs and one is m-polar fuzzy planar
graph, then the other also be an m-polar fuzzy planar graph. This can be proved as

follows.

Theorem 5.6.1. Let Gy be an m-polar fuzzy planar graph. If there exists an isomor-
phism ¢ : G1 — Go where Gy is an m-polar fuzzy graph, then Go can be drawn as an

m-polar fuzzy planar graph with same planarity value as of Gy.

Proof. Isomorphism preserves edge and vertex weights. Also, the order and size of
isomorphic m-polar fuzzy graphs are preserved [46]. So, the order and size of Gy will
be equal to G;. Then, G5 can be drawn similarly as GG;. Hence, the number of points
of intersections between edges and planarity value of G5 will be same as G;. This

means that GGy can be drawn as m-polar fuzzy planar graph with same planarity value

as of Gy. O

Theorem 5.6.2. Let Gy be the m-polar fuzzy dual graph of m-polar fuzzy dual graph
of a strong m-polar fuzzy dual graph G without weak edges. Then there exists a co-weak

isomorphism between G and GS.

Proof. Let G7 be the m-polar fuzzy dual graph of G and G5 be the m-polar fuzzy
dual graph of G;. Now, the number of vertices of G5 is equal to the strong m-polar
fuzzy faces of G; and the number of strong m-polar fuzzy faces in G is equal to the
number of vertices in G. Hence, the number of vertices of GGo and G are same. Also,
the number of edges of an m-polar fuzzy planar graph and its dual are same. By the
definition of m-polar fuzzy dual graph, the edge membership value of an edge in dual
graph is equal to the edge membership value of an edge in m-polar fuzzy graph. Thus,

we can construct a co-weak isomorphism between G and (G5. Hence the result. O

Theorem 5.6.3. Let G and G4 be two isomorphic m-polar fuzzy graphs with m-polar
fuzzy planarity values Pg, and Pg, respectively. Then, Pa, = Pg,.
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Proof. Follows from Theorem 5.6.1. O]
Next, we state the following without proof.

Theorem 5.6.4. Let G1 and G5 be two weak isomorphic m-polar fuzzy graphs with
m-polar fuzzy planarity values Pg, and Pg, respectively. Then, Pg, = Pg, if the edge

membership values of corresponding intersecting edges are same.

Theorem 5.6.5. Let G; and G2 be two co-weak isomorphic m-polar fuzzy graphs
with m-polar fuzzy planarity values Pg, and Pg, respectively. Then, Pg, = Pqg, if
the minimum of end vertex membership values of corresponding intersecting edges are

same.

5.7 Summary

Crossing may be allowed in connecting the wire lines, gas lines, water lines, printed
circuit designs, etc. These graph theoretic problems may be uncertain in some aspects.
It is quiet natural to deal with the vagueness and uncertainty using the concepts
of m-polar fuzzy sets compared to fuzzy sets. Therefore, the concept of m-polar
fuzzy sets is applied to multigraph and planar graphs. m-polar fuzzy planar graph
is a very important subclass of m-polar fuzzy graph and m-polar fuzzy multigraph
is a generalization of m-polar fuzzy graph. In this chapter, we define both these
graphs and study several properties. The m-polar fuzzy planar graph is defined in a

¢

very interesting way along with a parameter “ m-polar fuzzy planarity value”. This
parameter measures the planarity of an m-polar fuzzy graph. The other relevant terms
such as considerable edges, m-polar fuzzy faces, m-polar fuzzy strong faces are defined
here. A very close association of m-polar fuzzy planar graph is m-polar fuzzy dual
graph. This is also defined and several properties of it are studied. m-polar fuzzy
planar graph and m-polar fuzzy dual graph have many applications in different fields

including design of subway tunnel or routes, gas or oil pipelines, image segmentation,

etc.
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Chapter 6

Isomorphic properties of m-polar

fuzzy graphs®

6.1 Introduction

In this chapter, weak self complement m-polar fuzzy graphs is defined and a neces-
sary condition is mentioned for an m-polar fuzzy graph to be weak self complement.
Some properties of self complement and weak self complement m-polar fuzzy graphs
are discussed. The order, size, busy vertices and free vertices of an m-polar fuzzy
graphs are also defined and proved that isomorphic m-polar fuzzy graphs have same
order, size and degree. Also, we have proved some results of busy vertices in isomor-
phic and weak isomorphic m-polar fuzzy graphs. A relative study of complement and
operations on m-polar fuzzy graphs have been made. Finally, we have modeled some

real life situations in terms of m-polar fuzzy graphs as an application.

6.2 Weak self complement m-polar fuzzy graphs

Self complement m-polar fuzzy graphs have many important role in the theory of
m-polar fuzzy graphs. If an m-polar fuzzy graph is not self complement, then also
we can say that it is self complement in some weaker sense. Simultaneously, we can
establish some results with this graph. This motivates to define weak self complement

m-polar fuzzy graphs.

*A part of the work presented in this chapter is published in SpringerPlus, 5(1) 1-21 (2016).
95
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Definition 6.2.1. Let G = (V, A, B) be an m-polar fuzzy graph of the crisp graph
G* = (V,E). The complement of G is an m-polar fuzzy graph G = (V, A, B) of

G* = (V,V2) such that A = A and B is defined by

p; o B(zy) = min{p; o A(z),p; o A(y)} — pi o B(wy) for all zy € V2, i=1,2,...,m.

Example 6.2.1. Let G = (V, A, B) be a 3-polar fuzzy graph of the graph G* = (V, E)

where V = {u,v,w,z}, E = {uv, vw, wu,uz},

A—{<O'2’O'3’0'5> <0.5,0.6,0.3> <0.7,0.2,0.3> <0.2,0.5,0.7>}
- )

u ’ v ? w ’ T

B_{<0.2,0.3,0.3> <0.4,0.1,01> <0.1,0.1,0.1> <0.1,0.2,04> <0,0,0> <0,0,0>}
sl

uv ) vw 4 wu : fan 4 TU ) w

Then by Definition 6.2.1, we have constructed the complement G of G which is

shown in Fig. 6.1.

< 0.5,0.6,0.3 > <0.7,0.2,0.3 > <05,06,03> ~071,01,02> <07,0203>
w

w \4

<0.4,0.1,0.1 >

<0.2,0.5,0.3 >|<0.2,0.2,0.3 > <0.1,0.1,0.2 >

< 0.2,0.3,0.3 > < 0.1,0.1,0.1 >

<0.1,0.1,0.1 >

<@ <0.1,0.2,0.4 >

<0.2,0.5,0.7 > <0.2,0.3,0.5 > <0.2,0.5,0.7 > <0.2,0.3,0.5 >
G G

Figure 6.1: G and it’s complement G

Remark 6.2.1. Let G = (V, A,?) be the complement of G where A=A=Aand
p; 0 B(wv) = min{p; o A(u), pi o A(v)} — p; o B(wv)
= min{p; o A(u),p; o A(v)} — {min{p; o A(u),p; 0 A(v)} — pi o B(uv)}
= p; o B(uv) for uv € ‘75, i=1,2,...,m.
Hence, G=0a.

Definition 6.2.2. The m-polar fuzzy graph G = (V, A, B) is said to be weak self
complement if there is a weak isomorphism between G onto G. In other words, there

exist a bijective homomorphism ¢ : G — G such that fori=1,2,...,m

(i) p; o A(u) = p; o A(é(u)) for allu €'V, N
(i3) p; o B(uv) < p; o B(é(u)d(v)) for all uv € V2.

Example 6.2.2. Let G = (V, A, B) be a 3-polar fuzzy graph of the graph G* = (V, E)

where V = {U,, v, w}; E = {UU, ’UU}}, A= {<0.3,01.L4,0.4>7 <0.2,0.5,0.7> <0.3,0.6,0.7>}}

v ’ w
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< 0.3,04,0.4 > <0.2,0.5,0.7 > <0.3,0.4,04 > < 0.2,0.5,0.7 >

u‘ v u

<0.1,0.1,0.2 >

<0.1,0.3,0.2 >

<0.1,0.2,0.2 > <0.3,0.4,0.4> <0.1,0.3,0.5 >

W
Ie. < 0.3,0.6,0.7 > Iel < 0.3,0.6,0.7 >

Figure 6.2: Weak self complement 3-polar fuzzy graphs

. [<0.1,0.1,02> <0.1,0.2,02> <0,0,0>
B_{ uv ) vw Y wu }

Then G = (V, A, B) is also a 3-polar fuzzy graph where A= A and

B = {<0~1,(7)J~§>,0.2>7 <0.1,?);~:;>,0.5>7 <0.372)'3’0'4>}, We can easily verify that, the identity

map is an weak isomorphism from G onto G (see Fig. 6.2). Hence, G is weak self

complement.

In [45], Ghorai and Pal proved that if G is a self complementary strong m-polar
fuzzy graph then for all zy € V2 and i = 1,2,....m

> pioBlay) = ! > min{p; 0 A(z),p; o A(y)}.
2

Y TFY
The converse of the above result does not hold always.

<0.2,0.3,04 > < 0.4,0.5,0.6 > < 0.2,0.3,0.4 > < 0.4,0.5,0.6 >
v

<0.2,0.3,0.4 >

< 0.1,0.05,0.1 > <0.1,0.2,0.2 >

<0.3,0.3,0.4 >

<0.2,0.25,0.3 >

< 0.5,0.7,0.8 > a < 0.5,0.7,0.8 >

Figure 6.3: Example of 3-polar fuzzy graph G which is not self complement

Example 6.2.3. For example, let us consider a 3-polar fuzzy graph G = (V, A, B) of
G* = (V,E) where V = {u,v,w}, F = {uv,vw,wu},

_ r<0.2,0.3,0.4> <0.4,0.5,0.6> <0.5,0.7,0.8>
A=A 12

u ’ [ ? w

B — {<020304> <0.0202> 010050123
- uv ) vw ’ wu ’

Then, we have the following:
p1 o B(uv) + p1 o B(vw) + p; o B(wu) =0.2+0.14 0.1 = 0.4 and
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%[min{pl o A(u),p1o A(v)} +min{p, o A(v), p1 o A(w)} + min{p; o A(w), p1 o A(u)}]
= Lmin{0.2,0.4} + min{0.4,0.5} + min{0.5,0.2}] = 1(0.2+ 0.4+ 0.2) = 0.4.

So,

Zpl o B(uv) =0.4 = % me{pl o A(u),p; o A(v)}.

UFV uFv
Simalarly,
1
Zpg o B(uv) = 0.55 = 5 Z min{ps o A(u),ps 0 A(v)}
uFv UFEV
and

1
> pso B(uw) =0.7 = 5 > " min{ps o A(u), ps 0 A(v)}.
uFv UFEv

Hence, fori=1,2,3 we have,
ZPZOB uv) me{pzoA( ),pio A(v)}.
uFv u#v
But, G is not self complementary as there exists no isomorphism from G onto G

(see Fig. 6.3).

Now suppose an m-polar fuzzy graph G = (V, A, B) is a weak self complement.

Then the following inequality holds.

Theorem 6.2.1. Let G = (V, A, B) be a weak self complement m-polar fuzzy graph of
G*. Then fori=1,2,....m
> pio Blwy) me{pzoA( );pio Aly)}.
Ay 2 A
Proof. Since G is weak self complement, therefore there exists a weak isomorphism
¢ :V — V such that
p; o A(x) = p; o A(¢(z)) for all z € V and
p; o B(zy) < pio B(¢(z)p(y)) for all zy € V2, i =1,2,...,m
Using the above we have,
pi o Blay) < pio B(é(2)d(y)) = min{p; o A(x), p; 0 A(y)} — pi o B(o(2)o(y)),
ie. pio B(xy) + pi o B(¢(x)o(y)) < min{p; o A(¢(x)), pi 0 A(d(y))}-
Therefore, for all xy € Y//VQ, 1=1,2,...,m

Y pioBlxy)+ Y pio B(o(x)d(y)

£y TH#Y
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< Z min{p; o A(¢(x)),pi o A(p(y))}

T#y
=Y min{p; 0 A(x),pi o A(y)},
TFY
ie.
2> pioB(ay) <> min{pio A(z),p; 0 A(y)},
TH#Y TH#Y
ie.

Zpi o B(zy) < % Z min{p; o A(z),p; o A(y)}.

TFy TFY
[

Remark 6.2.2. The converse of the above theorem is not true in general. For example,
consider the 3-polar fuzzy graph of Fig. 6.3. We see that for the 3-polar fuzzy graph
G, the condition of Theorem 6.2.1 is satisfied. But, G is not weak self complementary

as there is no weak isomorphism from G onto G.

Theorem 6.2.2. If p; o B(zy) < smin{p; o A(z),p; o A(y)} for all zy € 175, i =

1,2,...,m, then G is a weak self complement m-polar fuzzy graph.

Proof. Let G = (V, A, B) be the complement of G’ where
A(z) = A(x) for all z € V and
i 0 Bay) = min{p; o A(x), p; 0 A(y)} — p; 0 Blay) for zy € V2, i = 1,2,...,m.
Let us now consider the identity map I : V — V.
Then A(z) = A(I(x)) = A(I(x)) for all z € V and
pio B(I(x)I(y)) = p; o B(xy)
= min{p; o A(z),p; o A(y)} — pi o B(zy)
> min{p; o A(x),p; 0 A(y)} — gmin{p; o A(x),pi o A(y)}
= ymin{p; o A(x),pi o A(y)} > pi o B(ay).
So, pi o B(zy) < p; o B(I(x)I(y)) for i = 1,2,...,m and zy € V2.

Hence, I : V — V is a weak isomorphism. O

Example 6.2.4. Consider the 3-polar fuzzy graph G = (V, A, B) of G* = (V, E) where
V =A{u,v,w}, E = {uv,vw, wu},

A = [<020304> <040506> <050.709>) p_ (<0L0102> <020203> <0.L0.L02>Y
7 u ) v ’ w ’ o uv ’ vw ) wu :

We see that for each 1 =1,2,3 and xy € \//v?,
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<0.2,0.3,0.4 > <0.4,0.5,0.6 > <0203,04> <0.4,0.5,0.6 >

<0.1,0.1,0.2 > <0.1,0.2,0.2 >

<0.1,0.1,0.2> <0.2,0.2,0.3 >

<0.1,0.2,0.2 > <0.2,0.3,0.3 >

G < 0.5,0.7,0.9 > el < 0.5,0.7,0.9 >

Figure 6.4: Example of 3-polar fuzzy graph GG which is weak self complement

pio B(wy) < %m’m{pz o A(x),pio Aly)} -
Also, consider the complement of G of Fig. 6.4.
Let us now consider the identity mapping I : G — G such that I(u) = u for all

w € V. Then, I is the required weak isomorphism from G onto G. Hence, G is weak

self complementary.

6.3 Order, size and busy value of vertices of m-

polar fuzzy graphs

In this section, the order, size, busy value of vertices of an m-polar fuzzy graph is

defined.

Definition 6.3.1. The order of the m-polar fuzzy graph G = (V, A, B) is denoted by
V| (or O(G)) where

1+ ipi o A(x)
oG =Vi=) —=

zeV

2

The size of G is denoted by |E| (or S(G)) where

I+ f:pi o B(wy)
s@)=181= Y —

zyelE

Theorem 6.3.1. Two isomorphic m-polar fuzzy graphs G; = (Vi, A1, B1) and Gy =

(Va, As, By) of the graphs G = (Vi, E1) and G5 = (Va, E) have same order and size.

Proof. Let ¢ be an isomorphism from G onto Gb.
Then A;(z) = Ay(p(x)) for all z € V; and
pi © Bu(xy) = pi o Ba(6()6(y)) for all zy € V2, i =1,2,....m.
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Now,
L+ pioAi(x)
0(Gy) =Vl = 3 —=
zeVy
1+ 32 ps0 Ay(6())
(b(I)GVQ
and

1+ > pio Bi(zy)
=1
S(Gh) = |B| = E 5

zyEFE)

143 ps 0 Ba(6(x)6(y)
= Y =1 5 = S(Gy).

d(x)d(y)EL2

]

Definition 6.3.2. The busy value of a vertex u of an m-polar fuzzy graph G is denoted
as D(u) = (pyoD(u),paoD(u),...,pmoD(u)), where p;oD(u) = > min{p;o A(u), p;o
A(ug)}; ug are the neighbors of w. The busy value of G is denokted as D(G) where
D(G) = ;D(uk), up € V.

< 0.6,0.3,0.5 > <05,02,02> < 0.8,0.4,0.3 >

<0.6,0.2,0.4 > < 0.1,0.3,0.2 >

<0.7,0.5,0.6 > <0.5,0.6,0.4 >

Figure 6.5: 3-polar fuzzy graph G and busy value of its vertices

Example 6.3.1. Consider the 3-polar fuzzy graph G = (V, A, B) of G* = (V, E) where

V =A{u,v,w,z}, E = {uww,vw,uz, uw,vze},

A= {<O.6,0.3,0.5> <0.8,0.4,0.3> <0.5,0.6,0.4> <0.7,0.5,0.6>} and

u ’ [ ) w ’ T

B:{<0.5,0.2,0.2> <0.1,0.3,0.2> <0.6,0.2,0.4> <0.3,0.2,0.3> <0‘7,0.4,0.2>}

uv ’ VW ? ux ’ uw ’ VT

Then we have from Fig. 6.5,
p1o D(u) = 1.7, pso D(u) = 0.9, ps o D(u) = 1.2,
proD(v) =18, pyo D(v) = 1.1, pso D(v) = 0.9,
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proD(w) =1, ppo D(w) =0.7, p3 0 D(w) = 0.7,
pro D(z) =1.3, pso D(z) = 0.7, ps o D(z) = 0.8.
So, D(u) = (1.7,0.9,1.2), D(v) = (1.8,1.1,0.9),
D(w) = (1,0.7,0.7), D(z) = (1.3,0.7,0.8).

Definition 6.3.3. If p; o A(u) < p; odeg(u) fori=1,2,...,m, then the vertex u of

G is called a busy vertex. Otherwise, it is a free vertex.

Definition 6.3.4. If p; o B(ujvy) = min{p; o A(u1),p; o A(v1)}, i = 1,2,...,m for
u1v; € E, then it is called an effective edge of G.

Definition 6.3.5. Let u € V be a vertex of the m-polar fuzzy graph G = (V, A, B).

(i) w is called a partial free vertex if it is a free vertex of G and G.

(11) w is called a fully free vertex if it is a free vertex of G and it is a busy vertex of

G.
(i4i) u is called a partial busy vertex if it is a busy vertex of G and G.

() w is called a fully busy vertex if it is a busy vertex in G and it is a free vertex of

G.

Theorem 6.3.2. Let ¢ be an isomorphism from G = (Vi, Ay, B1) onto Gy = (Va, Ay, Bs).
Then, deg(u) = deg(¢(w)) for all u € V.

Proof. Since ¢ is an isomorphism between G; and G5, we have
pio Ai(u) = p; o Ay(p(u)) for all uw € V; and
pi © Bi(z1y1) = p; 0 Ba(¢(21)p(yy)) for all myy; € V2, i=1,2,...,m.

Therefore,

piodeg(u) = Y pioBi(uww)= Y pioBy(¢(u)d(v) = piodeg(d(u))

uFv d(u)#¢(v)
weE] P(u)p(v)EE-
forue Vi, i=1,2,...,m. Hence, deg(u) = deg(¢(u)) for all u € V. O

Theorem 6.3.3. If ¢ is an isomorphism from Gy onto Gy and u is a busy vertex of

G1, then ¢(u) is a busy vertex of Gs.

Proof. Since ¢ is an isomorphism between G; and G5 we have,

pio Aj(u) = p; o As(¢p(u)) for u € Vi and
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pi © Bi(x1y1) = p; o Ba(o(x1)p(y1)) for zqy1 € ‘7;2, i=1,2,...,m.

If w is a busy vertex of G, then p; o A;(u) < p; odeg(u) fori =1,2,...,m.
Then, by the above and Theorem 6.3.2,

pi o Aa(p(u)) =p; 0 Ay(u) < p; odeg(u) =p; o deg(p(u)) for i =1,2,...,m.

Hence, ¢(u) is a busy vertex in Gs. O

Theorem 6.3.4. Let the two m-polar fuzzy graphs Gy and Gy be weak isomorphic. If
u € Vi is a busy vertex of Gy, then the image of u under the weak isomorphism is also

busy in Go.

Proof. Let ¢ : Vi — V5 be a weak isomorphism between GG; and Gs.
Then, p; o Aj(x) = p; o As(¢(z)) for all x € V; and
i 0 Bi(ziyn) < p;s 0 Ba(d(x1)b(1)) for all zy € V2, i=1,2,....m.
Let u € V} be a busy vertex.
Then, p; o Ay (u) < p;odeg(u) fori=1,2,...,m.
Now, by the above for i =1,2,...,m
pio Az(¢(u)) =pi o Ai(u)
Spiodeg(u) = > pioBi(uww) < 32 pio By(d(u)o(v))

uFv d(u)#p(v)
w€EE] P(u)p(v)EE2
=p; © deg(¢(u)).
Hence, ¢(u) is a busy vertex in Gs. O

6.4 Complement and isomorphism in m-polar fuzzy

graphs
In this section, some important properties of isomorphism, weak isomorphism, co

weak isomorphism related with complement are discussed.

Theorem 6.4.1. Let Gy = (Vi, Ay, By) and Gy = (Va, Ag, Bs) be two m-polar fuzzy
graphs of the graphs G% = (Vi, E\) and G5 = (Va, Ey). If G1 =2 Gy, then G = Gs.

Proof. Let G7 = Gbs.
Then there exists an isomorphism ¢ : V; — V5 such that
Aq(z) = Ay(¢p(x)) for all z € V] and
pi o Bi(xy) = p; o Ba(¢p(x)p(y)) for each i =1,2,...,m and xy € ‘A/;Z
Now, A (z) = Ay (z) = As(¢(z)) = Az(¢(w)) for all z € V.
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Also, for i = 1,2,...,m and zy € V2 we have,

pi o Bi(zy)

= min{p; o Ai(z),pi o A1(y)} — pi o Bi(zy)

= min{p; 0 As(¢(x), pi © As(¢(y)} — pi 0 Ba(d(2)o(y))

= pi o Ba(o(2)9(y))-
Hence, ¢ is an isomorphism between GG; and Gs, i.e. G7 = Gbs. O
<0.6,0.8,0.1 > <0.5,0.7,0.2 > <0.6,0.8,0.1 > <0.4,0.3,0.2 >

a
< 04,0.2,0.1 >

< 0.3,0.2,0.05 > £0.3,0.2,0.1 >

Gy
<0.4,0.3,0.2 >

u

< 0.4,0.3,0.1 >

<0.4,0.3,0.1 > <0.4,0.3,0.2 >

Ga
<0.5,0.7,02 >

Figure 6.6: Weak isomorphic 3-polar fuzzy graphs G and G,

< 0.6,0.8,0.1 > < 0.5,0.7,0.2 > < 0.6,0.8,0.1 > <0.4,0.3,0.2 >
a b u w
® <0.1,0.5,0 > ® ®
<0.1,0.1,0.05 > £0.1,0.1,0.1 > <0.1,04,0>
¢ “ @ @

<04,0.3,0.2 > < 0.5,0.7,0.2 >

Figure 6.7: Example of weak isomorphic graphs whose complement is not weak iso-

morphic

Remark 6.4.1. Suppose there is a weak isomorphism between two m-polar fuzzy graphs
G4y and Gs. Then there may not be a weak isomorphism between Gi and GS.

For example, consider two 3-polar fuzzy graphs G1 and Go of Fig. 6.6.

Let us now define a mapping ¢ : Vi — Vs such that ¢(a) = u, ¢(b) = v, ¢(c) = w.
Then, ¢ is a weak isomorphism from G, onto Go. But, there is no weak isomorphism
from G onto Gy (see Fig. 6.7) because

By(uw = ¢(a)p(c)) = 0= (0,0,...,0) < By(ac) = (0.1,0.1,0.05) and

By(vw = ¢(b)p(c)) = 0= (0,0,...,0) < By(bc) = (0.1,0.1,0.1).
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Remark 6.4.2. In a similar way, we can construct example to show that if there is
a co-weak isomorphism between two m-polar fuzzy graphs G1 and Gy then there may

not be a co-weak isomorphism between G, and Gs.

Theorem 6.4.2. Let G; = (V4, Ay, By) and Gy = (Va, Ay, Bs) be two m-polar fuzzy
graphs of the graphs G = (V1, E1) and Gy = (Va, Es) such that Vi N Vo = (. Then
Gi+ G, 2 G UG,.

Proof. To show that G; + G2 = G; UG5, we need to show that there exists an isomor-
phism between G; + G5 and G; U Gb.
We will show that the identity map I : ViUV, — ViUV is the required isomorphism
between them. For this, we will show the following:
(A1 4+ Ay)(z) = (A UAL)(z) for all z € V; U V3 and
Di om(xy) = p; o (B U By)(wy) for all zy € mQ, 1=1,2,...,m.
Let x € V; U V5.
Then (A; + As)(z)
= (A1 + Ay)(z)
= (A1 U A)(x)
A(z) if zeVi—-V,
Ay(x) if reVa=W
Ai(z) if zeVi-V
Ay(x) if zeVa-V
= (A1 U Ay)(2).

2
Now, for each 2 =1,2,...,m and xy € V; x V5, we have,

pi o (B + Bs)(xy)

= min{p; o (A1 + A2)(x), pi o (A1 + A2)(y)} — pi o (B1 + Ba)(zy)

([ min{pi o (A U A5)(2), ps o (A1 U A)(y)} — pi o (By U By)(wy), if 2y € By U By
= min{p; o (A1 U Az)(x),p; 0 (A1 U A2)(y)} — min{p; o (A1)(2),pi o (A2)(y)},

if zy € E'

mm{pi o Al(ﬂf)apz’ o Al(y>} —Dio Bl(iﬁy)» if vy € By — Es
= mzn{pz @) Ag(x),pl ] AQ(Z/)} — Pi © BQ(Z'y), if Ty € E2 — El
mm{Pi oA (ff)apz’ © A2(y)} - mm{])z‘ o (A1)(Z‘);pi © (A2)(y)}, if zy € B
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pio Bi(zy), if xye By —Es
=1 pioDBaay), if wy€ B~ E
0, if xy € E
=p; © (B1 U By)(zy). O
Theorem 6.4.3. Let Gy = (Vi, Ay, By) and Gy = (Va, As, By) be two m-polar fuzzy
graphs of the graphs G = (V1, Ey) and G5 = (Va, Es) such that Vi N Vy = (). Then
GlUG, =G+ G,

Proof. Consider the identity map I : Vi UV, — V3 UV, We will show that I is the
required isomorphism between G; U Gy and G + Gs.
For this, we will show the following:
(A1 U Ay)(x) = (4] + Ay)(x), for all z € V; U V3 and
pio (B1 U By)(zy) = pi o (By + By)(xy) for all 2y € V; x ng, i=1,2,...,m.
Let x € V; U V5.
Then A; U Ay(x)
= (A1 U Ay)(x)
Ai(z), if zeVi-Va
Ay(z), if ze€eVo—W
Al(z), if zeVi—V,

Ay(x), if zeVa-W
= (A1 U Ay)(x)

and
pi o (B U By)(zy)
— n}m{pi o (A1 U Ag)(z), pio (A1 U Ag)(y)} — pio (B1 U By)(xy)

min{p; o Ai(z),p; o A1(y)} — pi o Bi(zy), if xy € Ey— Ey
=9 min{p; o Ay(x),p; 0 As2(y)} — pi o Ba(y), if xy € Ey— Ey
L mzn{ploAl(x)apz0A2(y)}_07 Zf HARS ‘/laye ‘/2
pi o Bi(xy), if xy € By — Ey
=9 pi © Ba(zy), if wye€E,—E
L mln{pzoAl(x)aploA2<y>}_07 Zf MRS ‘/173/6%
pi © Bi(zy), if wyeE — B
= pi © By(y), if wy€ Ey— E
min{p; o A1(x),p; 0 As(y)} — 0, if  wyecE
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- 2
=p;o(B1+ By)(zy) fori=1,2,...,m, zy € Vi x Vo . This completes the proof. []

Theorem 6.4.4. Let G; = (Vi, A1, By) and Gy = (Va, Ay, B) be two strong m-
polar fuzzy graphs of the graphs G = (Vi, Ey) and G5 = (Va, Es) respectively. Then
GioGy = G_l o G_2

Proof. Let G0 Gy = (V} x Vo, Aj 0 Ay, By o By) be an m-polar fuzzy graph of the
graph G* = (V, E) where V = V; x V5 and

E = {(x,x9)(x,y2) : * € Vi, 29y2 € Eo} U{(x1,2)(y1,2) : 2 € o,y € E1} U
{(@1,22) (Y1, 92) : w191 € B, w0 # Yo}

We show that the identity map [ is the required isomorphism between the graphs
G oGy and Gy o Gy,

Let us consider the identity map [ : V3 x Vo — Vj x V5.

In order to show that [ is the required isomorphism, we show that

pi o (By o By)(zy) = p; o (By o By)(xy) for all zy € V1/>\</V22, i=1,2,...,m.

Several cases may arise.

Case(i): Let e = (x,x9)(z,y2) where x € Vi, xoys € Ey. Then e € E.

Since Gy o GGy is strong m-polar fuzzy graph, we have for each 1 =1,2,...,m

pio (BioBy)(e) =0 and

pi o (B o By)(e) = min{p; o Ai(x),p; © Ba(way2) } = 0

(since Gy is strong and xpy, € FEb, therefore p; o By(xoys) = 0 for each i =
1,2,...,m).

Case(ii): Let e = (z,z2)(z, y2) where za # ya, Toys ¢ Eo.

Then e ¢ E.

So foreach i =1,2,....m

pio (ByoBy)(e) =0 and

pio (Bio Ba)(e)

= min{p; o (A1 0 As)(z, x2), pi 0 (A1 0 Az)(w,12)}

= min{p; o A1(x), pi © As(x2), p; © As(y2)}.

Again, since 22y, € s, therefore

pi o (B1 o By)(e)

= min{p; o Ay (x), p; © Ba(w212)}

= min{p; o A1(x),p; o Ay(z3),p; 0 As(y2)} for each i = 1,2,... ,m.
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Case(iii): Let e = (21, 2)(y1, 2) where 21y € Ey, z € Vh.
Then e € E.

So, pio (By o By)(e) =0 for each i = 1,2,...,m as in Case(i).
Also, since 1y, ¢ By, therefore p; o (B o By)(e) = 0 for each i = 1,2, ..., m.
Case(iv): Let e = (21, 2)(y1, 2) where x1y; ¢ Ey, z € Va.
Then e ¢ E.

Hence, p; o (By o By)(e) =0 for each i = 1,2,...,m.

pio (Bio By)(e)

= min{p; o (A1 o As)(z1, 2),p; © (A1 © A2)(y1, 2)}

= min{p; o A1(x1),p; o A1(11), pi 0 Aa(z)} and

pi© (B1o By)(e)

= min{p; o As(2),pi o Bi(z191)}

= min{p; o Ai(x1),p; o A1(y1), pi © A2(2)} (G being strong).

<02,05,03> <04,0.6,02> <020502> ;949475 <020201>
@ c@ (a,¢) (a,d)

<0.2,0.2,0.1 >

<0.2,04,02> <0.3,0201> <0.2,04,0.2> <0.2,0.2,0.1 >

<0.2,0.2,0.1 >

(b,¢) b,d
'@ i@ <0.3,0.2,0.1 > (,d)
<0.3,0.6,04 > <0.5,020.1> <0.3,0.6,0.2 > <0.3,0.2,01 >
el Go G1o0Gs
<0.2,0.5,0.2 > <0.2,0.2,0.1 >
(a,0) @ ® d
< 0,0.1,0 > GioGa
(b,0) @ @ 0o
<0.3,0.6,0.2 > <0.3,0.2,0.1 >

Figure 6.8: Gl, GQ, G1 9] G2 and G1 e} G2

Case(v): Let e = (21, 22)(y1, y2) where z1y; € Ey, 23 # yo.
Then e € E.
So, we have p; o (By o By)(e) =0 for each i = 1,2,...,m as in Case(i).
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Also, since 1y, € Ey, we have p; o (B; o By)(e) = 0 for each i = 1,2,...,m.

<0.2,0.5,0.3 > <0.4,0.6,0.2 > <0.2,05,02> _ 0.1,0,0 > <0.2,0.2,0.1 >

a. C. (a,c)

<0,0.1,0.1 >

<0,01,01> <0.2,02,0> <0,0.1,0.1 > <0,0.1,0.1 >

(b,c) b,d
'@ i@ <0.1,0,0 > (6.4)
<0.3,06,04> <050201> <0306,02> <0.3,0.2,0.1 >
G1 G2 G10G2

Figure 6.9: Example of 3-polar fuzzy graphs G; and G, where G 0 Gy 2 G 0 Gy

Case(vi): Let e = (21, 22)(y1,y2) where z1y1 ¢ Ey, 9 # yo.

Then e ¢ E and hence for each i =1,2,...,m

pio (BioBs)(e) =0,

oo (BLo B0

= min{p; o (A1 0 Az) (@1, 22), pi © (A1 0 A2)(y1,52)}

= min{p; o A1(z1),pi 0 A1(y1), pi © Aa(2), pi 0 Aa(y2)} and since z1y, € Ei,
pio (B o B)(©)

= mm{])z‘ © A2(ZE2)7P¢ © Az(?h);pz’ o E(xlyl)}

= min{p; o A1 (z1),p; 0 A1(y1), pi © Aa(w2),p; 0 As(y2)} (G being strong by [45]).
Case(vii): Finally, let e = (z1,22)(y1, y2) where x4y, ¢ E1, xoys ¢ Es.
Then e ¢ E and hence for each i = 1,2,...,m

p; o (Byo By)(e) =0,

pi o (Bio By)(e) = min{p; o (A1 0 As)(w1,x2), ps © (A1 0 As)(y1, )}

Now, 21y1 € B and if 25 = y» = 2, then we have the Case(iv).

Again, if 21y, € Ey and if 25 # 9, then we have Case(vi).

Thus combining all the cases we have,

- o 2
pio(BioBy)(xy) =p;o(ByoBy)(zy) forallzy e Vi x Vo ,i=1,2,...,m. O

Remark 6.4.3. If Gy and Gy are not strong, then G1o Gy 2 G o Gy always. For
example, consider two 3-polar fuzzy graphs Gy and Gy which are not strong (see Fig.

6.8). From the Fig. 6.8 and Fig. 6.9, we see that, Gy o Gy 2 G10G,.
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6.5 Applications

Now a days, fuzzy graphs and bipolar fuzzy graphs are most familiar graphs to
us and they can also be thought of as 1-polar and 2-polar fuzzy graphs respectively.
These graphs have many important applications in social networks, medical diagnosis,
computer networks, database theory, expert system, neural networks, artificial intelli-
gence, signal processing, pattern recognition, engineering science, cluster analysis, etc.
The concepts of bipolar fuzzy graphs can be generalized to m-polar fuzzy graphs. For
example, consider the sorting of mangoes and guavas. Now the different characteristics
of a given fruit can change the decision in sorting process more towards the decision
mango or vice versa. There are two poles present in this case. One is 100% sure
mango and the other is 100% sure guava. This shows that the situation is bipolar.
This situation can be generalized further by adding a new fruit, for example sweet

lemon into the sorting process.

6.5.1 Graphical representation of tug of war

Consider the another example of tug of war where two people pull the rope in
opposite directions. Here, who uses the larger force, the center of the rope will move
in the respective direction of their pulling. The situation is symmetric in this case.
We present an example where m people pull a special rope in m different directions.
We use this example to represent it as an m-polar fuzzy graph. We assume that O is
the origin and there are m straight paths leading from O. We also assume that there
is a wall in between these paths. In this setting, we have the special rope with one
node at O and m endings going out from this nodes- one end corresponding to each
of the paths. Suppose on every path there is a man standing and pulling the rope in
the direction of the path on which he is standing. This situation can be represented
as an m-polar fuzzy graph by considering the nodes as m-polar fuzzy set and edges
between them as m-polar fuzzy relations, which is shown in Fig. 6.10. In this context,
one can ask the question what is the strength require in order to pull the node O from
the center into one of the paths (assuming no friction)? The answer to this is that if
the corresponding forces which are pulling the rope are Fy, k = 1,2,...,m, then the
node O will move to the jth path if £, > >~ Fj.

k=1,2,..m
k]
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Fn,

I
Fy F3

Figure 6.10: Graphical representation of tug of war

6.5.2 Evaluation graph corresponding to the teacher’s evalu-

ation by the students

In this section, we present the model of m-polar fuzzy graph which is used in eval-
uating the teachers by the students of 4th semester of a department in an university
during the session 2015-2016. Here the nodes represent the teachers of the correspond-
ing department and edges represent the relationship between two teachers. Suppose
the department has six teachers denoted as T' = {t1, to, t3, t4, t5,1}. The membership
value of each node represents the corresponding teachers feedback response of the stu-
dents depending on the following: {regularity of classes, style of presentation, quality
of lectures, generation of interest and encouraging future reading among students, up-
dated information}. Since all the above characteristics of a teacher according to the
different students are uncertain in real life, therefore we consider 5-polar fuzzy subset

of the vertex set 7.

(0.7,0.6,0.7,0.8,0.8) t; (0.6,0.6,0.6,0.7,0.8) £3(0.8,0.9,0.7,0.8,0.9)

(0.8,0.7,0.6, 0.6, 0.8)

0.8,0.7,0.7,0.8,0.8
(0.6,0.6,0.7,0.8,0.7) (0.8,0.7,0.7,0.8,0.8)

(0.7,0.5,0.6,0.7,0.6)
(0.7,0.5,0.7,0.7,0.8)

©(0.5,0.7,0.7,0.6,0.8) (0.8,0.7,0.7,0.7,0.8)

tq

—

(0.6,0.7,0.8,0.9,0.9) \\\ (0.8,0.9,0.7,0.7,0.8) t5 (0.8,0.7,0.8,0.9,0.8)
—

\\

[
6,0.7,0.8,0.7,0.8) ™
(0.6,0.7,0.8,0.7,0.8) \\

(0.7,0.8,0.6,0.6,0.7)
(0.6,0.7,0.7,0.7,0.7)

(0.7,0.8,0.9,0.7,0.8)

Figure 6.11: 5-polar fuzzy evaluation graph corresponding to the teacher’s evaluation

by students
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In the Table 6.1, the membership values of the teacher’s are given which is according
to the evaluation of the students.

Edge membership values which represent the relationship between the teachers can
be calculated by using the relation p;o B(uv) < min{p;0A(u), p;oA(v)} for all u,v € T,
1=1,2,...,5. These values are given in the Table 6.2.

Table 6.1: 5-polar fuzzy set A of T

t1 to oty tyg Ty g
proA |06 07 08 08 08 0.7
peoA 0.7 06 09 0.7 09 0.8
psoA |08 07 07 08 07 09
psoA 109 08 0.8 09 07 0.7
psoA 109 08 09 08 08 038

Table 6.2: 5-polar fuzzy relation B on A
tita tits tite Tals tals tats T3ty t3ls  tals tals  Tsle
moB |06 05 06 06 08 07 08 07 08 06 0.7
ppoB |06 07 07 06 07 05 07 05 07 07 08
psoB |07 07 08 06 06 06 07 07 07 07 06
psoB |08 06 07 07 06 07 08 07 07 07 06
psoB |07 08 08 08 08 06 08 08 08 07 0.7

Table 6.3: Average response score of the teachers
Teachers | t; to ts ta ts te

Scores | 0.78 0.72 0.82 08 0.78 0.78

We rank the teacher’s performance according the following:
Teacher’s average response score < 60%, teacher’s performance according to the stu-
dents is Average.
Teacher’s average response score > 60% and < 70%, teacher’s performance according
to the students is Good.
Teacher’s average response score > 70% and < 80%, teacher’s performance according

to the students is Very Good.
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Teacher’s average response score is > 80%, teacher’s performance according to the
students is Excellent.

From the Table 6.3, we see that the performance of the teachers t,ts, t5, tg are very
good whereas the performance of the teachers t3 and ¢4 are excellent. Among these
teachers, teacher t3 is the best teacher according the response score of the students of

the department during the session 2015-2016.

6.6 Summary

The theory of fuzzy graphs play an important role in many fields including decision
makings, computer networking and management sciences. An m-polar fuzzy graph can
be used to represent real world problems which involve multi-agent, multi-attribute,
multi-object, multi-index, multi-polar information with uncertainty. In this chapter,
we have introduced weak self complement m-polar fuzzy graph in some weaker sense
and studied the properties of self complement and weak self complement m-polar fuzzy
graphs. Then order, size, busy vertices and free vertices in m-polar fuzzy graphs are
defined. A relative study of complement and operations have been made. Some real
life situations like tug of war and evaluation of teachers by students have been modeled

in terms of m-polar fuzzy graphs as applications.
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Chapter 7

Edge regularity of m-polar fuzzy
graphs®

7.1 Introduction

Regular graphs play a central role in combinatorics and theoretical computer science.
Strongly regular graph form an important class of graphs which is highly structured.
Strongly regular graph was first defined by Bose [35]. Nagoorgani et al. [85,88] intro-
duced regular and irregular fuzzy graphs. Radha and Kumaravel [100] introduced the
concept of strongly regular fuzzy graph. In this chapter, the concept of edge regular,
strongly regular and biregular m-polar fuzzy graph are introduced. Some properties of
them are studied. Also, the concept of partially edge regular m-polar fuzzy graph and
fully edge regular m-polar fuzzy graph are introduced. Finally, we introduce the no-
tion of strongly edge irregular and strongly edge totally irregular m-polar fuzzy graphs.
Some properties of them are also studied to characterize strongly edge irregular and

strongly edge totally irregular m-polar fuzzy graphs.

7.2 Some preliminaries
Definition 7.2.1. [7] Let G = (V, A, B) be an m-polar fuzzy graph of G* = (V, E).

(i) The neighborhood degree of a vertex v is defined as

dy(v) = (di(v), d% (), ..., d%(v)) where diy(v) = > pioA(u),i=1,2,...,m.

u€N (v)

*A part of the work presented in this chapter is published in International Journal of Applied and
Computational Mathematics, DOI:10.1007/340819-016-0296-y, (2016).
115
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(ii) The degree of a vertex v in G is defined by dg(v) = (dg(v),d%(v),. .., d%(v)),

where di(v) = . p;o B(uw), i = 1,2,...,m. If all the vertices of G have the

uFv
wekr

same degree, then G is called regular m-polar fuzzy graph.

(iii) The closed degree of a vertex v is defined by dg[v] = (dg[v],d%[v], ..., d%v]),
where d[v] = di(v) +pio A(v), i = 1,2,...,m. If each vertex of G has the same
closed degree, then G is called totally reqular m-polar fuzzy graph.

(iv) The order of G is defined as O(G) = (OY(G), O*(G),...,0™(Q)) where O'(G) =
YpioAw),i=1,2,...,m.

veV
The size of G is defined as S(G) = (SY(G), S*(G),...,S™(G)) where SY(G) =
> pioB(uw),i=1,2,...,m.

wekl
Definition 7.2.2. [102] Let G* = (V,E) be a crisp graph and let e = vv; be an
edge in G*. Then the degree of the edge e = vv; € E is defined as dg+(vvj) =
de+(v;) + dg=(vy) — 2.

7.3 Edge regularity in m-polar fuzzy graphs

In this section, edge regular, strongly regular and biregular m-polar fuzzy graphs
are defined and some properties of them are given. Then, the necessary and sufficient
condition for an m-polar fuzzy graph to be strongly regular is given. Also, partially

edge regular m-polar fuzzy graph and fully edge regular m-polar fuzzy graph are

defined.
Definition 7.3.1. Let G = (V, A, B) be an m-polar fuzzy graph of G* = (V, E).

(i) The degree of an edge ej; = vjv, € E is denoted as
da(ejr) = (d(ejr), d*(ejk), . .., d™(ejx)) and is defined as

d'(ejr) = dg(v;) + dg(v) — 2p; © B(vjur)
or, d'(e;r) = Y. pioB(vju)+ Y, pioB(uwy) fori=1,2,...,m.
vjvEL v EE
Ik I#j
(1) The minimum edge degree of G is denoted as 0p(G) = (01(G), 02(G), ..., dm(G)),
where §;(G) = NMd'(ee)|lesx € E}, i =1,2,...,m.
(111) The mazimum edge degree of G is denoted as Ap(G) = (A1(G), Ao(G), ..., An(G)),

where N;(G) = V{d'(ejx)|lejx € E}, i =1,2,...,m.
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(iv) The total edge degree of an edge ej, € E is denoted as
tdg(ejr) = (td' (eji), td*(eji), - . ., td™(ej)) where

td'(ejr) = >, pioB(vju)+ >, pioB(vuy)+pio Blej) fori=1,2,...,m.
vjvER Vv EE
£k I#j
Example 7.3.1. Let us consider the 4-polar fuzzy graph G = (V, A, B) (see Fig. 7.1)
of G* = (V, E) where V.= {v1,vs,v3,v4} and E = {v1vg, v104, V103, V203, V304 }. Then,
dg(ein) = (1.3,1,0.9,1.2). Hence, tdg(e12) = (1.3+0.4,1+0.5,0.940.6,1.2+0.3) =
(1.7,1.5,1.5,1.5) (Here, e;; = v;v;).

U1(06,05,08,07) (04, 05,06,03) ’l)2(04,077 08,05)

(0.5,0.4,0.3,0.3) (0.3,0.2,0.3,0.4)

(0.5,0.4,0.3,0.5)

® (0.4,0.4,0.2,0.3)
v4(0.7,0.6,0.4,0.4) v3(0.5,0.4,0.3,0.6)

Figure 7.1: 4-polar fuzzy graph G

Definition 7.3.2. Let G = (V, A, B) be an m-polar fuzzy graph.

(1) If all the edges in G has the same degree (I1,ls, ..., ly), then G is said to be an
edge regular m-polar fuzzy graph.

(11) If all the edges in G has the same total degree (t1,ta, ..., tn), then G is said to
be a totally edge regular m-polar fuzzy graph.

v1(0.3,0.5,0.7) (0.3,0.4,05) v2(0.5,0.4, 0.6)
(0'370'570.3) (0.37 0.4, 0.5)
v3(0.7,0.6,0.4) (0.3,0.5,0.3) v4(0.5,0.4,0.6)

Figure 7.2: (0.6,0.9,0.8)-edge regular 3-polar fuzzy graph G

Example 7.3.2. Consider the 3-polar fuzzy graph G = (V, A, B) of the graph G* =
(V,E) (see Fig. 7.2) where V = {v1,v2,v3,v4} and E = {vjve, v103, V304, 1204 }. Then,
dg(e12) = dg(eas) = de(ers) = da(ess) = (0.6,0.9,0.8). Hence, G is (0.6, 0.9, 0.8)-edge
reqular 3-polar fuzzy graph.
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Theorem 7.3.1. Let G = (V, A, B) be an m-polar fuzzy graph of a cycle G* = (V, E).
Then > dg(v)) = Y, da(vju), ie. Y, do(v;) = >, di(vjw), i=1,2,...,m

v;EV vjvR€E v;EV vjvR€E
Proof. Let G = (V, A, B) be an m-polar fuzzy graph and G* be a cycle vyvqv3 . .. v, 1.
Then Z de(vjvjtr) = ( é d'(vjvj41), Jé d?(vjvj41), - .. ,jg d™(vjvs1)).
Nowforz— 1,2,....m
'21 d'(vjvji1) = d'(v1v9) + d"(vav3) + ... 4+ d"(v,v1) where v, = vy
. = d5(v1) + d5(v9) — 2p; 0 B(v1v2) + d&(v2) + d&(v3)
—2p; 0 B(vau3) + ...+ d5(v,) + di(v1) — 2p; 0 B(v,vy)
= 2d5(v1) + 2d5(v2) + . .. + 2d%(vy,)
—2(pi o B(v1v2) +pl o B(vv3) + ... + pi © B(vav1))
=23 dg(v;) -2 sz ° B(vjvjs1)

v; eV ]—
= > dg(vy) +2 sz o B(vjvj1) — 2 lez' o B(vvj41)
v; €V Jj=
= > dg(vy).
’UjGV
Hence, Y da(vjvin) = (2 di(vy), 2o dg(vy),.... X2 dg(v;) = X da(vy).
j=1 ’UjGV ’U]‘EV ’UjGV UjEV

Remark 7.3.1. Let G = (V, A, B) be an m-polar fuzzy graph of the graph G*. Then,
> da(vjur) = (X da(vjue)pr o B(vjog), > de-(vjvr)p2 o B(vjug), ...,

vjvkEE Uj’l}kGE ’L}j’l}kEE

> de (vjur)pm o B(vjug)), where dg-(vjvy) = des (v;) +de- (vg) — 2 for all vju, € E.

vjvEE
Theorem 7.3.2. Let G = (V, A, B) be an m-polar fuzzy graph of the p-regular crisp
graph G*. Then,

> da(vur) = ((p—1) X dg(vy), (p—1) X2 dg(vy), ... (p—1) X dE(vy)).

vjupEE v;eV v;eV v;eV
Proof. By Remark 7.3.1, we have
> da(vjvr)

vjupEE
= (X de-(vjuR)proB(vju), Y. da-(vjvp)p2o B(vjur), ..., > da=(0jvk)pmo
vjupEE vjuvpEE vjupEE
B(vjvk))
Now, 3 dg-(vjve)pio B(ojue) = 35 (dg-(v;) + da-(vk) — 2)pi o B(vjuy,).
vjuREE vjvpEE

Since G* is a p-regular crisp graph, therefore dg-(v;) = p, for all v; € V.
So, > de+(vjvg)p; o B(vjug)

vjvpEE
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= > (p+p—2)pio Blvu)

=20-1) % pio Bl
-1 3 o)
Hence, > datn) = ((p-1) 5 db(o),(p-1) 5 (o). (=) 5 dilo).

]

Theorem 7.3.3. Let G = (V, A, B) be an m-polar fuzzy graph of the crisp graph G*.
Then, > tdg(vjur) = Y, de(vjup)B(vjog) + >, B(vjug).

vjvkEE ijkEE vjvkEE
Proof. From definition of total edge degree, we have for i =1,2,...,m
> td(vu) = X (d(vur)+pioBlujur)) = X d(vur)+ X pioB(vju).
vjvkEE vjvaE ’UjvaE vjvaE

From Remark 7.3.1, we have

S tdi(vjug) = Y. des(vjug)pio B(vjup)+ Y. pioB(vjug) fori=1,2,...,m.

’U]"UkEE Uj’l}kEE ’Uj’UkEE

Hence the proof. O

Theorem 7.3.4. Let G = (V, A, B) be an m-polar fuzzy graph. Then B is a constant

function if and only if the following are equivalent:

(i) G is edge regular m-polar fuzzy graph.
(i) G is totally edge reqular m-polar fuzzy graph.

Proof. Let us assume that B be a constant function.

Then B(vv;) = (c1,¢2,...,¢y) for all vv; € E, where ¢, ¢2,...,¢, € [0,1] are
constants.

Let G be an (rq,7s, ..., Ty)-edge regular m-polar fuzzy graph.

Then, dg(viv;) = (r1,72,...,1y) for all v;v; € E and

tda(vv;) = (d*(vv;)+proB(vivy), d?(vv;)+pao B(vivy), . . ., d™(vv;) +pmo B(vw;))
=(r+c,re+ oy Ty + ¢p) for all vy € E.

Hence, G is a (r1+c¢1, 9+ Co, . . ., iy + ¢ )-totally edge regular m-polar fuzzy graph.

Now, let G be a (t1,t,...,ty)-totally edge regular m-polar fuzzy graph.

Then tdg(vivj) = (t1,ta, ..., ty) for all vv; € E,

ie. (d'(vivy) + p1 o B(vivy), d*(viv;) + pa o B(vw;), ..., d™(v05) + pm © B(vivy))

= (ti,ta, .. tm),

ie. (d'(vw;) + e, d®(vvy) + oy ..o, d™(V07) 4 €m) = (t1, T2, ..o b),

i.e. (dl(’l)ﬂ)j), dQ(’UZ‘?}j), ce ,dm(vivj)) = (tl - Cl,tg — Co, ... ,tm - Cm),
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ie. Gis (t; —c1,ta — oy . . ., tyy — €y )-edge regular m-polar fuzzy graph.
Conversely, we assume that the statements (i) and (iz) are equivalent.

We need to show that B is a constant function.

If possible, let B be a non constant function.

Then there exists v;vg, vjv, € E such that B(vjug) # B(vv,).

Let G be a (ry,r,...,ry)-edge regular m-polar fuzzy graph.

Then for vjvg, vv, € E, we have

tda(vjvg)

= (d"(vjur) + p1 o B(vjug), d*(vjog) + p2 © B(vjug), ..., d™(v;vp) + pm o B(vjug))
= (11 + p1 o B(vjug), 2 + p2 0 B(vjvk), ..., Tm + Pm © B(v,vg)) and

tdg(vv,)

= (d*(vv,) + p1 o B(vw,), d(vw,) + pa o B(uw,), . .., d™(vv,) + pm o B(vw,))
= (r1 +p1 o B(vyw,),m9 + pa o B(vjvy), ..., T + Pm © B(vv,)).

Since B(vjv;) # B(vv,), therefore tdg(vjvyg) # tda(vv,).

Hence, G is not totally edge regular, which is a contradiction. So, B is constant. []

Theorem 7.3.5. Let G = (V, A, B) be an m-polar fuzzy graph of a p-regular crisp
graph G*. Then B is constant if and only if G' is both regular and totally edge regular
m-polar fuzzy graph.

Proof. Let B be a constant function.

Let B(u,v) = (¢1,¢9,...,¢p) for all uv € E where ¢;’s are constants.

Then
dg(v) = (dg(v), dg(v), - .., dE(v))
:( ; p1 o B(uv), ; pao B(uv),..., >, pmoB(uv))

uFU
wekl uwvekl wekl
=( > o, X ...y Y em) =(pe1,pea, ..., pey) forallv € V.
uFv uFv uFv
wel weE weE

Hence, G is (pey, pea, - . ., pey )-regular m-polar fuzzy graph.
Again, tdg(vjur) = (td*(vjug), td*(vjug), . . ., td™(vjvy)) where for i =1,2,...,m
td'(vjup) = >, pioB(vju)+ Y. pio B(vyuwy) + p; o B(vjuy)

vjvER Vv EE
£k I#5
= > g+ > cgt+ca=clp—D+calp-1)4+c=c2p—1).
Uj’UZEE v ER
£k I#j

Hence, G is ((2p — 1)y, (2p — Ve, ..., (2p — 1)cm)—totally edge regular graph.
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Conversely, let G be (ry,79,...,r,)-regular and (tq,ts, ..., t,)-totally edge regular
m-polar fuzzy graph. We will prove that B is a constant function.

Now, dg(v) = (r1,re, ..., 1) for allv € V and

tda(vjvg) = (t1,ta, ..., ty) for all vu, € E.

Again, tdg(vjv) = (td*(vjvg), td*(vjug), . .., td™(vjvy)) where

td'(vju) = di(v;) + di(vg) — pi o B(vjuy) for all vju, € E.

This implies for all vju, € E, i =1,2,...,m

¢ + ¢ — pi o B(vjug) =1,

ie. p; o B(vju,) = 2¢; — t;.

Hence, B(vjvg) = (2¢1 — t1,2¢0 — to, ..., 2¢y, — ty,) for all v;u, € E,

i.e. B is constant. O

Definition 7.3.3. A finite m-polar fuzzy graph G = (V, A, B) is said to be strongly

reqular if it satisfies the following conditions:

(1) G isr = (ry,r9, ..., m)-reqgular m-polar fuzzy graph,
(i1) The sum of the membership values of the common neighborhood vertices of any
pair of adjacent vertices and non adjacent vertices of G has the same weight and

is denoted by A = (A, Ao, ..., Am), 0 = (01,02, ..., 0m), respectively.

A strong reqular graph G is denoted by G = (n,r,\,d), where n is the number of
vertices in G.

v1(0.4,0.5,0.7) (0.4,0.3,0.5) v2(0.5,0.3,0.6)

(0.4,0.3,0.5)

(0.4,0.3,0.5) (0.4,0.3,0.5)

(0.4,0.3,0.5)

v3(0.5,0.3,06)  (0-4,0:3,0.5) v4(0.4,0.5,0.7)

Figure 7.3: Strongly regular 3-polar fuzzy graph G

Example 7.3.3. Let us consider the 3-polar fuzzy graph G of Fig. 7.3. Here, n =4,
r=(1.2,0.9,1.5), A =(0.9,0.8,1.3), 6 = (0,0,0). Hence, G is strongly reqular 3-polar
fuzzy graph.

Theorem 7.3.6. Let G = (V, A, B) be a complete m-polar fuzzy graph where A and

B are constant functions. Then, G is strongly regular m-polar fuzzy graph.
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Proof. Let G = (V, A, B) be a complete m-polar fuzzy graph where V- = {vy, va, ..., v,}.
Let A(v;) = (a1,a2,...,ay) for all v; € V and B(vjuy) = (c1,¢9,...,¢p) for all
vjvp € E/ where a;’s and ¢;’s are constants.

Since G is complete,

da(v)) = (> proBlvw), Y paoB(ujwg),..., 3 pmo Blvju))
v Ay v AV, v AV,
vjvpEE vjuRER vjuRER

=((n—1ey, (n —1)cg, ..., (n—1)cy,) for v, € V.

Hence, Gis ((n — 1)cy, (n — 1)eg, . .., (n — 1)¢p)-regular m-polar fuzzy graph. Again
since G is complete, therefore the sum of the membership values of common neighbor-
hood vertices of any pair of adjacent vertices has the same weight A = ((n —2)ay, (n —
2)ag, ..., (n —2)a,,) and the sum of the membership values of common neighborhood
vertices of any pair of non adjacent vertices has the same 6 = 0. So, G is strongly

regular m-polar fuzzy graph. O

Remark 7.3.2. If G is strongly reqular and disconnected m-polar fuzzy graph then
0=0.

Definition 7.3.4. An m-polar fuzzy graph G = (V, A, B) is said to be a biregular
m-polar fuzzy graph if it satisfies the following:

(i) G isr = (r1,ra,..., m)-reqgular m-polar fuzzy graph,

(i) V = Vi3 UV, be the bipartition of V' and every vertex in Vi has the same neigh-
borhood degree M = (M, Ms, ..., M,,) and every verter in Vo has the same
neighborhood degree N = (N1, No, ..., Ny,), where M and N are constants.

©1(0.5,0.8,0.3) (0.4,0.3,0.2) ©v2(0.7,0.5,0.3)

(0.5,0.3,0.3) (0.5,0.3,0.3)
(0.7,0.5,0.3)  (0.5,0.8,0.3)
(0.5,0.4,0.3)

U5 Ve

(0.5,0.4,0.3)| (0.4,0.3,0.2) (0.4,0.3,0.2) | (0.5,0.4,0.3)

(0.5,0.4,0.3)

(0.5,0.8,0.3) (0.7,0.5,0.3
(0.5,0.3,0.3) (0.5,0.3,0.3)

U8

(0.4,0.3,0.2)

v4(0.7,0.5,0.3) v3(0.5,0.8,0.3)

Figure 7.4: Biregular 3-polar fuzzy graph
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Example 7.3.4. Let G be a 3-polar fuzzy graph of the graph G* = (V, E) where V =
{v1,v9, V3, V4, U5, Vg, U7, V8 } and E = {0109, v104, V105, UaUg, VaUs, U3y, V3V7, UgUs, VsVg, UsUs,
vevr, vy} (see Fig. 7.4). Here, n = 8, r = (1.4,1,0.8), Vi = {vy,v3,v6,0s},
Vo = {va, 04, 05,07}, M = (2.1,1.5,0.9) and N = (1.5,2.4,0.9). Hence, G is a bireqular
3-polar fuzzy graph.

Theorem 7.3.7. If G = (V, A, B) is a strongly reqular m-polar fuzzy graph which is

strong, then G is a (11,72, ..., Tm)-regular.
Proof. Since G is strongly regular, therefore G is (11,72, ...,y )-regular. Again, since
G is strong, therefore for i =1,2,...,m
— 0 if wvjuy €E
pi o B(vjuy) = , .f -
min{p; o A(v;),p; o A(vg)} if wvjup & E.
Now, the degree of a vertex v; in G is dg(v;) = (d5(v;), d%(v;), ..., d%(v;)), where
d%(vj) = Y pioBvu) = Y pioAv;) Apio Alvg) = 1y, for all v; € V,
”L)j?él)k {Ujivk
’U]'UkEE Uj'UkeE
i=1,2,...,m. Hence, dg(v;) = (r1,79,...,7m) for allv; € V. So, G is (r1,ra, ..., 1)
-regular m-polar fuzzy graph. m

Theorem 7.3.8. Let G = (V, A, B) be a strong m-polar fuzzy graph. Then, G is

strongly reqular if and only if G is strongly reqular.

Proof. Let G be a strongly regular m-polar fuzzy graph. Then, G is (r1,79,...,7mn)-
regular and the adjacent vertices and non-adjacent vertices have the same common
neighborhood weight A = (A1, A2, ..., Ap) and § = (d1, 92, ..., 9,,), respectively. Now,
since G is strongly regular and strong, therefore by Theorem 7.3.7, G is (r1, 72, ..., "y )-
regular. Let S and T denote the set of all adjacent and non adjacent vertices of G; S
and T denote the set of all adjacent and non adjacent vertices of G.

So, S = {vj,vx|v;u, € E}, where v; and v, have same common neighborhood
weight A = (A1, Ao, ..., A) and T = {v;, vg|lvjur ¢ E}, where v; and v, have same
common neighborhood weight 6 = (01,dy,...,0,,). Then, S = {v;,vi|vju, € E},
where v; and v, have same common neighborhood weight § = (61,02,...,0,,) and
T = {vj,vJvjoy ¢ E}, where v; and v; have same common neighborhood weight
A= (A, X2, ..., A\p). This shows that G is strongly regular. Similarly, we can show

the converse part. O
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Theorem 7.3.9. A strongly regular m-polar fuzzy graph G is a biregular m-polar
fuzzy graph if the adjacent vertices have the same common neighborhood weight A =

(A1, Agy .oy Am) # 0 and the non adjacent vertices have the same common neighborhood

weight § = (01,09, ...,0m) # 0.

Proof. Since G is strongly regular m-polar fuzzy graph, therefore Gisr = (11,79, ..., 7m)-
regular m-polar fuzzy graph. Let S be the set of all non adjacent vertices of G. Then
S is a non-empty subset of V' since the non adjacent vertices have the same com-
mon neighborhood weight 6 = (91,2, ...,6m) # 0. So, S = {v;, vg|v; is not adjacent
to vk, j # k,v;,v, € V}. Now the vertex partition of G is Vi = {v;|v; € S} and

Vo = {vg|vx, € S}. Hence, G is biregular m-polar fuzzy graph. O]

Definition 7.3.5. (i) If the underlying graph G* is an edge regular graph, then G
is said to be a partially edge regular m-polar fuzzy graph.
(i1) If G is both edge regular and partially edge regular m-polar fuzzy graph, then G
is said to be a full edge reqular m-polar fuzzy graph.

Theorem 7.3.10. Let G = (V, A, B) be an m-polar fuzzy graph of G* such that B is
constant. If G is full reqular, then G is full edge reqular m-polar fuzzy graph.

Proof. Let B(vju,) = (¢1,¢2,...,¢p) for all vju, € E where ¢;’s are constant.

Since G is full regular, therefore G and G* is both regular, i.e. dg(v;) = (11,72, .., 7m)
and dg«(vj) = p for all v; € V, where r; and p are constants.

Now, dg«(vjvg) = de+(v) + de+(vy,) — 2 = 2p — 2 for all vu;, € E.

This shows that, G* is an edge regular graph, i.e. G is partially edge regular m-polar
fuzzy graph.

Again, for all vju, € £, i =1,2,...,m

di(vjuy) = di(vi) + di(vk) — 2pi o B(vjug) = 1y + 15 — 26 = 2r; — 2¢;.

Hence, G is (2r; — ¢1,2r9 — 2¢9, ..., 21y, — 2¢,)-edge regular m-polar fuzzy graph.

Therefore, G is fully edge regular m-polar fuzzy graph. O]

Theorem 7.3.11. Let G = (V, A, B) be at = (t1,ta,...,ty)-totally edge regular and

_qt

p-partially edge regular m-polar fuzzy graph. Then, S(G) = ﬁ(tl,tg, coytm) = T

where ¢ = |E.

Proof. The size of G is S(G) = (SY(G), S*(G), ..., S™(G)) where
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SYG)= > pioB(uw),i=1,2,...,m. Now, from Theorem 7.3.3, we have

uveFE
> tde(vjvr)

’Uj’l}kEE

= (X da-(vjue)pr o Blujur) + > proB(vjue), > da-(vjve)pe 0 Bujug) +
vjvp €L vjvp €L vjvp €L

> peoB(vjug),..., > de-(vjop)pm o Blujug) + >0 pm o Blvjug))

vjvREE vjuLEE vjuREE

= ( Y. da-(vjvg)proB(vjug), Y, de(vjvg)pao B(vjvg), ..., Y, de(Vjvk)pmo

’U]"UkEE Uj’UkEE Uj’l}kEE

B(vjug)) + S(G),
ie. q(t1,ta, ... tm) = pS(G) + S(G), since p = dg+(vjvi) for all vju, € E,
ie. gt = (1+p)S(G),
ie. S(G) =1L O

14+p°

7.4 Edge irregular m-polar fuzzy graphs

In this section, strongly edge irregular m-polar fuzzy graph and strongly edge totally
irregular m-polar fuzzy graph are defined with examples. Some properties of them are

studied.
Definition 7.4.1. Let G = (V, A, B) be an m-polar fuzzy graph. Then

(1) G is said to be strongly edge irreqular m-polar fuzzy graph if every pair of edges
have distinct degrees, i.e. no two edges have the same degree.
(i1) G is said to be strongly edge totally irregular m-polar fuzzy graph if every pair of

edges have distinct total degrees, i.e. no two edges have the same total degree.

u3(0.5,0.7,0.5)

(0.3,0.6,0.3) (0.4,0.2,0.1)

u2(0.4,0.6,0.5) u4(0.8,0.3,0.2)

(0.4,0.5,0.3) (0.5,0.3,0.2)

u1(0.5,0.7,0.3) u5(0.6,0.6,0.3)

(0.5,0.5,0.2)

Figure 7.5: Example of 3-polar fuzzy graph which is both strongly edge irregular and
strongly edge totally irregular
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Example 7.4.1. Here we will give an example of a 3-polar fuzzy graph which is both

strongly edge irreqular and strongly edge totally irreqular. Let G = (V, A, B) be a

3-polar fuzzy graph of G* = (V, E) (see Fig. 7.5). We have from the Fig. 7.5,
de(wug) = dg(w) + da(uz) — 2B(uqus)

=(054+04+04403-0.8,054+05+05+0.6—-1,024+0.3+0.34+0.3 —0.6)
— (0.8,1.1,0.5),

de(ugus) = dg(ug) + dg(ug) — 2B(uguz) = (0.9,1.2,0.8),

de(usuy) = de(us) + dg(ug) — 2B(usug) = (0.8,0.9,0.5),

de(ugus) = dg(ug) + dg(us) — 2B(ugus) = (0.9,0.7,0.3),

dg(usuy) = dg(us) + dg(uy) — 2B(usuy) = (0.9,0.8,0.5).

Since every pair of edges have different degrees, therefore G is a strongly edge irreg-

ular 3-polar fuzzy graph. Again,

tdg(uiug) = dg(uug) + B(uiug) = (0.8,1.1,0.5) 4+ (0.4,0.5,0.3) = (1.2,1.6,0.8),
tdg(ugus) = dg(ugus) + B(ugug) = (0.9,1.2,0.8) + (0.3,0.6,0.3) = (1.2,1.8,1.1),
tdg(usug) = dg(ugug) + B(usuyg) = (0.8,0.9,0.5) + (0.4,0.2,0.1) = (1.2,1.1,0.6),
tdg(uqus) = dg(ugus) + B(ugus) = (0.9,0.7,0.3) + (0.5,0.3,0.2) = (1.4,1,0.5),

tdg(usuy) = dg(usur) + B(usug) = (0.9,0.8,0.5) + (0.5,0.5,0.2) = (1.4,1.3,0.7).

The total degrees of every pair of edges is distinct. So, G is strongly edge totally
wrreqular 3-polar fuzzy graph. Hence, G is both strongly edge irreqular and strongly
edge totally irregqular 3-polar fuzzy graph.

Example 7.4.2. Here we show by example that strongly edge irreqular m-polar fuzzy
graphs need not be strongly edge totally irreqular m-polar fuzzy graphs. For example,
let us consider the 3-polar fuzzy graphs of Fig. 7.6. Then we have,
dg(ujus) = (0.8,0.8,0.4), dg(usuz) = (0.5,0.8,0.4), da(usuy) = (0.9,0.8,0.4),
tdg(uug) = (1.1,1.2,0.6), tdg(ugus) = (1.1,1.2,0.6), tdg(usuy) = (1.1,1.2,0.6).
This shows that G is strongly edge irreqular 3-polar fuzzy graph and it is not strongly
edge totally irregular 3-polar fuzzy graph. So, strongly edge irregular 3-polar fuzzy
graphs may not be strongly edge totally irreqular 3-polar fuzzy graphs.

Example 7.4.3. Again strongly edge totally irregular m-polar fuzzy graphs need not
be strongly edge irreqular m-polar fuzzy graphs. For example, consider the 3-polar

fuzzy graph of Fig. 7.7. We have, dg(vive) = (1.1,0.8,1.1), dg(vevs) = (0.9,0.7,0.9),
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u3(0.8,0.7,0.3)

(0.2,0.4,0.2)

(0.6,0.4,0.2) u1(0.3,0.5,0.7)

(0.3,0.4,0.2)

u2(0.6,0.4,0.2)

Figure 7.6: Example of 3-polar fuzzy graph which is strongly edge irregular but not
strongly edge totally irregular

da(vsvy) = (1.1,0.8,1.1), dg(vgvy) = (1.3,0.7,1.1). Here, dg(vive) = dg(vsvy). So,
G is not strongly edge irreqular 3-polar fuzzy graph. Also, tdg(vivy) = (1.4,1.1,1.4),
tdg(vovg) = (1.3,1.2,1.5), tdg(vsvy) = (1.7,1.2,1.7), tdg(vsvy) = (2,1,1.6). Since
tdg(viva) # tdg(vavs) # tdg(vsvs) # tdg(vavy), therefore G is strongly edge totally

wrreqular 3-polar fuzzy graph.

v1(0.7,0.3,0.5)

(0.7,0.3,0.5) (0.3,0.3,0.3)

v4(0.8,0.4,0.6) v2(0.5,0.6,0.7)

(0.6,0.4,0.6) (0.4,0.5,0.6)

v3(0.6,0.7,0.8)
Figure 7.7: Example of 3-polar fuzzy graph which is strongly edge totally irregular

but not strongly edge irregular

Theorem 7.4.1. Let G = (V, A, B) be an m-polar fuzzy graph of G* = (V, E) where
B is constant. Then G is strongly edge irreqular m-polar fuzzy graph if and only if G
is strongly edge totally irregular m-polar fuzzy graph.

Proof. Let B(uv) = (c1,¢2,...,¢y) for all uv € E, where ¢y, ¢a, ..., ¢y € [0,1].
Let G be strongly edge irregular m-polar fuzzy graph.
& dg(ujug) # dg(vivg) for all ujug, vivy € E
& dg(urug) + (c1, ¢, ..y ) # da(vive) + (1, ¢a, - .+, 0 for all ujug, vivy € E
& dg(ujug) + B(ujug) # da(vive) + B(vivg) for all uyug, vive € E
& tdg(ugug) # tdg(vive) for all ujug, viv9 € E

& (G is strongly edge totally irregular m-polar fuzzy graph. O
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Remark 7.4.1. If G = (V, A, B) is both strongly edge irreqular and strongly edge
totally irregular m-polar fuzzy graph, then B may not be a constant function.

For example, consider the 3-polar fuzzy graph of Fig. 7.5. Here B is not constant
although G is both strongly edge irregular and strongly edge totally irreqular.

Theorem 7.4.2. If G is strongly edge irregular m-polar fuzzy graph, then G is neigh-
borly edge irreqular m-polar fuzzy graph.

Proof. Since G is strongly edge irregular m-polar fuzzy graph, therefore every pair of
edges in G have distinct degrees. So every pair of adjacent edges have distinct degrees.

Hence, G is neighborly edge irregular m-polar fuzzy graph. O]

Theorem 7.4.3. If G is strongly edge totally irreqular m-polar fuzzy graph, then G is
netghborly edge totally irregular m-polar fuzzy graph.

Proof. Let G = (V, A, B) be an m-polar fuzzy graph which is strongly edge totally
irregular. Then every pair of edges in G have distinct total degrees. So every pair
of adjacent edges have distinct total degrees. Hence, GG is neighborly edge totally

irregular m-polar fuzzy graph. 0

(0.3,0.5,0.4) (0.3,0.5,0.4) (0.3,0.5,0.4)

u1(0.3,0.5,0.4) u2(0.4,0.6,0.5) u3(0.5,0.7,0.6) u4(0.6,0.8,0.7)

Figure 7.8: Example of 3-polar fuzzy graph which is both neighborly edge irregular and
neighborly edge totally irregular but not strongly edge irregular and totally strongly

edge irregular

Remark 7.4.2. The converse of the above Theorems 7.4.2 and 7.4.3 may not be true.
For example, see Fig. 7.8 of the 3-polar fuzzy graph G. Here,

dg(uy) = (0.3,0.5,0.4), de(ug) = (0.6,1,0.8),

dg(uz) = (0.6,1,0.8),dg(uy) = (0.3,0.5,0.4),

de(uruz) = (0.3,0.5,0.4), dg(ugus) = (0.6,1,0.8), dg(usus) = (0.3,0.5,0.4) and

tdg(uiuz) = (0.6, 1,0.8), tdg(usus) = (0.9,1.5,1.2), tde(usuy) = (0.6,1,0.8).

Note that, dg(uius) # dg(usus), da(ugus) # da(usuy) and dg(uiug) = dg(usuy).
Hence, we conclude that G is neighborly edge irreqular 3-polar fuzzy graph, but G is
not strongly edge irregular 3-polar fuzzy graph.
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Again, tdg(ujug) # tdg(ugus), tdg(usus) # tdg(usus) and tdg(uius) = tdg(usuy).
Hence, G is neighborly edge totally irregular 3-polar fuzzy graph but G is not strongly
edge totally irreqular 3-polar fuzzy graph.

Theorem 7.4.4. Let G = (V, A, B) be an m-polar fuzzy graph of G* where B is
constant. If G is strongly edge irreqular m-polar fuzzy graph, then G is an irreqular

m-polar fuzzy graph.

Proof. Let B(uv) = (c1,¢a,. .., cp) for all wv € E where ¢y, ¢, ..., ¢ € [0,1]. Since G
is strongly edge irregular therefore every pair of edges will have distinct degrees. Let
us consider the two adjacent edges u;v; and vyw; having distinct degrees.

This implies that dg(uivy) # dg(viwy)

= dg(uy) + dg(v1) — 2B(uyvy) # dg(v1) + dg(wy) — 2B(viw,)

= dg(uy) +da(v1) — 2(c1, 625+ oy 0m) # da(v1) + da(wr) — 2(c1,Coy ooy Cm)

= dg(uy) # dg(wy)

This shows that the vertex v; which is adjacent to the vertices u; and w; having

distinct degrees. Hence, G is irregular. O]

Theorem 7.4.5. Let G = (V) A, B) be an m-polar fuzzy graph of G* and B is constant.
If G is strongly edge totally irreqular m-polar fuzzy graph then G is an irreqular m-polar
fuzzy graph.

Proof. Similar to the above. O]
° (0.3,0.4,0.2) (0.3,0.4,0.2) (0.3,0.4,0.2)
u1(0.3,0.5,0.4) u2(0.4,0.6,0.5) u3(0.7,0.4,0.2) u4(0.6,0.7,0.3)

Figure 7.9: Example of 3-polar fuzzy graph which is irregular but neither strongly

edge irregular nor strongly edge totally irregular

Remark 7.4.3. Converse of the Theorems 7.4.4 and 7.4.5 need not be true. For
example, consider the 3-polar fuzzy graph of Fig. 7.9. Then we have

dg(uy) = (0.3,0.4,0.2), dg(usz) = (0.6,0.8,0.4),

dg(uz) = (0.6,0.8,0.4), da(uy) = (0.3,0.4,0.2).

So, G is irreqular 3-polar fuzzy graph.

Also, dg(uius) = (0.3,0.4,0.2), dg(ugusz) = (0.6,0.8,0.4),
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dg(U3’LL4) = (()3, 04, 02)7 tdg(u1u2) = (()6, 08, 04)7
th(UQUS) = (09, 12,06), tdg(U3U4) = (06,08,04)

Here, G is neither strongly edge irregular nor strongly edge totally irregular.

Theorem 7.4.6. Let G = (V, A, B) be an m-polar fuzzy graph of G* and B is constant.

If G s strongly edge irregular m-polar fuzzy graph then G is highly irreqular m-polar
fuzzy graph.

Proof. Let B(uv) = (c1,¢a,...,¢n) for all wv € E where ¢1,¢a,...,¢, € [0,1]. Let uy
be any vertex adjacent with the vertices uy, us and uy. Then wjus, usus and usuy are
adjacent edges in GG. Let us assume that G is strongly edge irregular m-polar fuzzy
graph. Then every pair of edges in GG have distinct degrees. So, every pair of adjacent
edges in GG have distinct degrees.

Hence, dg(ujug) # dg(usus) # da(uguy)

= dg(uy) + dg(uz) — 2B(ujus) # da(us) + da(us) — 2B (ugus)

# dg(ug) + dg(ug) — 2B (uguy)

= dg(ur) + dg(ug) — 2(c1, Coy . ..y Cm) # da(uz) + da(ug) — 2(cr, oy .oy Cm)

# da(uz) + dg(uyg) — 2(c1, ¢y oy C)

= dg(w) # dg(uz) # dg(us).

So the vertex us is adjacent to the vertices wy,us and uy with distinct degrees.

Hence, G is highly irregular. [

Theorem 7.4.7. Let G = (V, A, B) be an m-polar fuzzy graph of G* and B is constant.
If G is strongly edge totally irregular m-polar fuzzy graph, then G is highly irreqular
m-polar fuzzy graph.

Proof. Similar to the above. O]
° (0.2,0.4,0.1) ° (0.2,0.4,0.1) ° (0.2,0.4,0.1)
u1(0.3,0.5,0.4) u2(0.4,0.6,0.5) u3(0.7,0.4,0.2) u4(0.6,0.7,0.3)

Figure 7.10: G is highly irregular but neither strongly edge irregular nor strongly edge

totally irregular

Remark 7.4.4. Converse of the above Theorems 7.4.6 and 7.4.7 need not be true. For

example, consider the 3-polar fuzzy graph G of Fig. 7.10. We have,
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dg(uy) = (0.2,0.4,0.1), dg(uz) = (0.4,0.8,0.2),

da(uz) = (0.4,0.8,0.2), de(uyg) = (0.2,0.4,0.1).

Hence, G is highly irreqular.

Again, dg(uiug) = (0.2,0.4,0.1), dg(ugus) = (0.4,0.8,0.2), dg(usuys) = (0.2,0.4,0.1).
So, G is not strongly edge irregular.

Also, tdg(uiuz) = (0.4,0.8,0.2), tdg(usug) = (0.6, 1.2,0.3), tde(usus) = (0.4,0.8,0.2).

So, G is not strongly edge totally irreqular also.

Theorem 7.4.8. Let G = (V, A, B) be an m-polar fuzzy graph of G* which is a

path of 2n (n > 1) wvertices. If the membership value of the edges ey, e, ..., €, 1
are (at,ad, ... al), (a?,a2,...,a2), ..., (a® ' a3" ', ..., a?" 1) respectively such that
(al,ad, ... al) < (a%,d2,...,a%2) < ... < (a7" ', a3"',...,a® 1), then G is both

strongly edge irreqular and strongly edge totally irreqular. (Here, €; = Vviyq fori =

1,2,...,(2n—1))

Proof. We have
dg(vi)) = (a7 +at,ast +ab, ... ait +al) fori=2,3,...,(2n — 1) and

do(vi) = (ai, a3, .., ay,),
de(van) = (ai" ™, gn_lw-w@%?*l),
do(e;) = (a7 +alt™ ab™ +abt™ o alt +abt) for i = 2,3,..., (2n — 2),
da(er) = (a2, a3, ... ,afn),
da(egn_1) = (a3 2,a3"7 2, ..., a?"2).

Hence, G is strongly edge irregular m-polar fuzzy graph.

Again, since

tdg(e)) = (a7 +a™ +al,abt +abtT - al, . bt + a4+ al)
fori =2,3,...,(2n — 2),

tdg(e1) = (a3 +aj,a3 +ad, ..., a% + al),
tdg(ean—1) = (3" 2 +a> 1 a3 2 +a3" ', ... a? "2+ a2 1), therefore G is strongly
edge totally irregular m-polar fuzzy graph. O]

Theorem 7.4.9. Let G = (V, A, B) be an m-polar fuzzy graph of G* which is a

cycle of n (n > 4) vertices. If the membership value of the edges ey, ea, ..., e, are
(al,ad, ... al), (a%,a3,....d2), ..., (a},ay,... a") respectively such that
(al,ad,...,al) < (a},d,...,a%) < ... < (a},a},...,a"), then G is both strongly

edge irreqular and strongly edge totally irreqular.
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Proof. Let ey, e,,..., e, be the edges of the cycle G* in that order.

Then we have,

da(v) = (a7t +al,ay ' +adb, ..., a  +al ) fori=2,3,...,n,

dao(v1) = (aj +at,ad +ay, ... al +a”),

dg(e;) = (a7 P+ ait abt +abt™, . et 4 aitt) fori =2,3,...,(n— 1),
da(er) = (a2 +al, a3 +ay,...,a% +a),

dg(en) = (at +a} al+ab™t .. al, +a ).

Hence, G is strongly edge irregular m-polar fuzzy graph.

Again, since

tdg(e;) = (a7 +aiT +al, ab Mrabt 4al, L ai et al) fori = 2,3, ... (n—1),

tda(er) = (af +aj + al, a3 +aj+ a3, ....a2 +a), +alb),

tda(esm—1) = (al +at +at ™ al +ab + a5t . al +a? + a’'), therefore G is
strongly edge totally irregular m-polar fuzzy graph. O]

Theorem 7.4.10. Let G = (V, A, B) be an m-polar fuzzy graph of a graph G* = (V, E)
which is a star K. If the membership values of no two edges are same, then G is

strongly edge irreqular and totally edge reqular m-polar fuzzy graph.

Proof. Let uy,us,...,u, be the vertices adjacent to the vertex ug. Let ey, eq, ... €,
be the edges of the star G* in that order having membership values (ai,al, ..., al),
(a3,a3,...,a2), ..., (a},ay, ..., a") such that (ai,as,...,a.) # (a},a3,...,a2) #

... # (a},aly, ... al). Then
de(ei = uou;)

= da(uo) + da(u;) — 2B(uou;)

— 1 2 n .1 2 n 41 2 n A ) %
=(a;+ai+...+at,a3+as+...+ady,a,, +a, +...+ak)+ (a},ds, ... a%,)
—2(a},ab, ..., al)

— 1 2 n .1 2 n .1 2 n i1 %
=(a;+aj+...+al,a3+a5+ ...+ a5, a,, +a, +...+a)— (a},as, ..., aL)

fori=1,2,...,n.

We see that all edges have distinct degrees. So, G is strongly edge irregular. Also,
tdg(e; = uou;)
=(ai+a?+...+alal+ai+...+ay,al, +ad +...+a") — (al,db, ... a)

+(ai,db, ... at)

=(al+a?+...+al,ad+addi+...+ay,al, +a2 +... +a?) fori=1,2,... n.

Since all edges have the same total degrees therefore G is totally edge regular. [J
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Theorem 7.4.11. Let G = (V, A, B) be an m-polar fuzzy graph of a graph G* = (V, E)
which is a Barbell graph B, ,. If the membership values of no two edges are same, then

G is strongly edge irreqular but not strongly edge totally irreqular m-polar fuzzy graph.

v1 ul

V2
ug

’1)3. ‘ud

T Yy

Up—1

Up—1 Up

Figure 7.11: The m-polar fuzzy graph G of the Barbell graph B, ,
Proof. Let vy,vs,...,v, be the vertices adjacent to the vertex x and ey, es, ..., e,

be the edges incident with the vertex z in that order having membership values

(at,ad,... al), (a2,a3,...,d%), ..., (a},a},... a"

y Ym ) Y'm r'm

). Again let wy,ug,...,u, be the
vertices adjacent to the vertex y and fi, fo, ..., f, be the edges incident with the vertex

y in that order having membership values such that (a},al,...,al) < (a?,ad3,...,d%)

< .o (abay, .. at) < (b1, by, .. bh) < (03,035, 02) < oL (DR WL 0R) <
(ay,ag,...,a,) where (aj,as, ..., a,) is the membership value of the edge zy (see Fig.
7.11). Then,

de(zy) = (ai+a}+.. . +a},a3+a3+.. . +a},al, +a +.. . +al) +(a1,a9,...,ap,)+
(D102 4. AU by +b3+. . 45, b +b2 4. 0B )+ (a1, as, . .. am) —2(a1, a, . . ., ap,)
= (ai+ai+...+af,ay+ai+...+ay,al, +aX +...+ay)+ (b +b3+... +0], b+
b3+ ...+ 05,0l + 0% + ...+ D),

tdg(zy) = (a} +a} + ...+ at,ay + a3+ ...+ ay,al, +a + ... +al) + (b + b3 +
BB AR h L 0 ) 4 (a1, G, ),

da(e;) = (ai+ai+.. . 4+al,ab+ad+...+a5,af,+a2 +...+al) + (a1, as, ..., am)+
(ai,ab, ... al) —2(a},db, ... al) = (af +a}+...+af,ay+ a3+ ...+ a5, a, + a2, +
cotal) + (an, a0, .. ) — (al,db, . al) for i = 1,2, .. 0.

Similarly, da(f;) = (b} + 0% + ... + 00,03 + b3 + ...+ B, bL, + b2 + ...+ bB) +
(ai, a9, ... am) — (b, 05, ... 0 ) fori=1,2,...,p.

We see that every pair of edges have distinct degrees. So, G is strongly edge irregular.
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Also, tdg(e;) = (aj+al+...+a}, aj+a3+. . .+aj, al, +a +. . .+a)+(ar, as, . .., an)
fori=1,2,...,n and

tda(fi) = (Bl 4+ 4.+, by +b3+...+ 05,0, +02 +...+ ) + (a1, as, ..., an)
fori=1,2,...,p.

We see that each e;, © = 1,2,...,m have same total degrees and each f;, i =

1,2, ..., p have same total degrees. So, G is not strongly edge totally irregular. O]

7.5 Summary

In this chapter, the definition of edge regular, partial edge regular and fully edge
regular m-polar fuzzy graphs are given and some properties of them are studied. The
condition under which edge regular m-polar fuzzy graph and totally edge regular m-
polar fuzzy graphs are equivalent is mentioned. The notion of strongly edge irregular
and strongly edge totally irregular m-polar fuzzy graphs. Characterization of strongly
edge irregular and strongly edge totally irregular m-polar fuzzy graphs are given.

Several important properties of them have been investigated.



Chapter 8

Morphism of m-polar fuzzy graphs

8.1 Introduction

In order to achieve a good correspondence between two graphs, the most used con-
cept is the one of graph isomorphism and a lot of work is dedicated to the search
for the best isomorphism between two graphs or subgraphs. However in a number of
cases, the bijective condition is too strong and the problem is expressed rather as an
inexact graph matching problem. For instance, inexact graph matching appears as an
important area of research in the pattern recognition. Several researches use graphs
to represent the knowledge and the information extracted for instance from images,
where vertices represent the segments or entities of the image and edges show the
relationships between them. Examples of areas in which this type of representation
is used are cartography, robotics and autonomous agents, character recognition and
recognition of brain structures. Graph matching is used when the recognition is based
on comparison with a model for instance. One graph represents the model and another
one the image where recognition has to be performed. Because of the schematic aspect
of the model (atlas or map for instance) and of the difficulty to segment accurately the
image into meaningful entities, no isomorphism can be expected between both graphs.
Such problems call for inexact graph matching. Similar examples can be found in
other fields. In this chapter, we have introduced the notion of m-polar ¥-morphism
on m-polar fuzzy graphs. The action of m-polar ¥-morphism on m-polar fuzzy graphs
is studied and we established some results on weak and co-weak isomorphism. ds-
degree and total dy-degree of a vertex in m-polar fuzzy graphs are defined and studied

(2, k)-regularity and totally (2, k)-regularity. A real life situation of a company where
135
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a group of people decides which product design to manufacture has been modeled as

a 4-polar fuzzy graphs.

8.2 Regularity and isomorphism on m-polar fuzzy

graphs
Regular graphs are the most widely studied classes. For example, regular fuzzy
graphs play a key role in designing reliable communication networks. Here, the notion
of m-polar ¥-morphism is introduced in m-polar fuzzy graphs. Also, ds-degree, total
do-degree, (2, k)-regularity and totally (2, k)-regularity are defined in m-polar fuzzy

graphs and studied some important properties of them.

Definition 8.2.1. Let G = (V, A, B) be an m-polar fuzzy graph. Then dy- degree of
a verter w in G is dy(u) = (di(u),d3(u),...,d5(u)) where dy(u) = > p; o B*(uv) is
such that p; o B*(uv) = sup{p; o B(uuy) A p; o B(uiv)}.

The minimum dy-degree of G is denoted as 62(G) = (03(GQ), 03(G), ..., 05 (QG)) where
05(G@) = NMd(u) : w € V}. The mazimum dy-degree of G is denoted as Ny(G) =
(AYG), N3(G), ..., AT(G)) where Ny(G) = V{dy(u) :u € V}.

41(0.5,0.7,0.5)

(0.5,0.6,0.5) (0.5,0.6,0.3)

u5(0.7,0.7,0.6) u2(0.7,0.6,0.4)

(0.6, 0.3,0.4) (0.6,0.5,0.3)

14(0.6,0.3,0.4) u3(0.8,0.7,0.4)

(0.5,0.3,0.2)

Figure 8.1: 3-polar fuzzy graph G

Example 8.2.1. Let G be a 3-polar fuzzy graph where V. = {uy,us, us, uq, us} and
E = {uqus, ugus, uguy, ugus, usuy } (see Fig. 8.1). By routine computations we have,
dh(ur) = {0.5V 0.6} + {0.5V 0.6} = 1, d2(u1) = {0.6 V 0.5} + {0.6 V 0.3} = 0.8,
d3(u) = {0.3V 0.3} + {0.5V 0.4} = 0.7, d(us) = {0.5V 0.5} + {0.5V 0.6} = 1,
B (us) = {0.6 V 0.6} + {0.3V 0.5} = 0.9, d3(us) = {0.5V 0.3} + {0.2V 0.3} = 0.5,
di(us) = {0.5V 0.6} + {0.6 V 0.5} = 1,2(us) = {0.6 V 0.5} + {0.3V 0.3} = 0.8,
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& (us) = {0.3V 0.3} + {0.4V 0.2} = 0.5.
Hence, dy(uy) = (1,0.8,0.7), do(usz) = (1,0.9,0.5), do(uz) = (1,0.8,0.5).

Definition 8.2.2. Ifdy(u) = k for allu € V then g is said to be (2, k)- reqular m-polar
fuzzy graph.

(0.4,0.4,0.4) (0.4,0.4,0.4) (0.4,0.4,0.4)

u1(0.4,0.5,0.6) u2(0.5,0.6,0.7) u3(0.7,0.8,0.9) 14(0.9,0.9,0.9)

Figure 8.2: (2,(0.4,0.4,0.4))-regular 3-polar fuzzy graph G

Example 8.2.2. Consider the 3-polar fuzzy graph as in Fig. 8.2. Here, dy(u;) =
do(ug) = do(ug) = da(uy) = (0.4,0.4,0.4). So, G is (2,(0.4,0.4,0.4))-reqgular 3-polar
fuzzy graph.

Definition 8.2.3. The total dy- degree of a vertexr u € V is defined as tdy(u) =
(td(u), tda(u), . .., tdy(u)), where tdy(u) = > p; o B*(uv) +p;io A(u), i = 1,2,...,m.

Note 8.2.1. If each vertex of G has the same total dy-degree I, then G is said to be

totally (2,1)-regular m-polar fuzzy graph.

u1(0.7,0.6,0.6)

(0.7,0.1,0.2) (0.5,0.2,0.4)

u5(0.8,0.7,0.8) u2(0.9,0.7,0.8)

(0.7,0.1,0.2) (05,0.2,0.4)

u4(0.7,0.7,0.8)

5(0.8,0.6,0.6
(0.6,0.1,0.2) us( )

Figure 8.3: Totally (2,(1.9,0.9,1.2))-regular 3-polar fuzzy graph G

Example 8.2.3. Consider the 3-polar fuzzy graph G with the vertex set V- = {uy, ug, us, uq, us }
and edge set E = {ujus, ugus, ugiy, ugus, usuy } (see Fig. 8.3). We see that

do(ur) = (1.2,0.3,0.6), da(us) = (1,0.2,0.4), do(uz) = (1.1,0.3,0.6),

do(uyg) = (1.2,0.2,0.4), do(us) = (1.1,0.2,0.4) and

tda(uy) = tda(ug) = tda(us) = tdy(ug) = tda(us) = (1.9,0.9,1.2).

Since each vertex has the same total do-degree, therefore G is totally (2,(1.9,0.9,1.2))-

reqular 3-polar fuzzy graph. Although, G is not (2, k)-regular.
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Theorem 8.2.1. Let G = (V, A, B) be an m-polar fuzzy graph. Then A(u) = ¢ =

(c1,€2y ... Cm) for allu € V if and only if the following are equivalent:

(i) G is a (2, k)-reqular m-polar fuzzy graph,
(i) G is a totally (2, k + )-regular m-polar fuzzy graph.

Proof. Suppose that A(u) =¢ = (c1,¢a,...,¢p) for all u € V. We will show that the
statements (i) and (i7) are equivalent.

(i) = (i1) : Let G be a (2, k)-regular m-polar fuzzy graph. Therefore, dy(u) = k for
all u € V. Now, tdy(u) = k +¢ for all u € V. So, G is totally (2, k + ¢)- regular.

(i3) = (i) : Now, suppose that G is totally (2, k + ¢)-regular.

Then tdy(u) =k + ¢ forall u € V,

ie. dy(u) + A(u) =k+cforallucV,

i.e. dy(u) =k forallu eV,

i.e. G is k-regular.

Conversely, let (i) and (ii) are equivalent.

Let G be both totally (2, k + ¢)-regular and (2, k)-regular.

Then we have, tdy(u) = k + ¢ and dy(u) = k for all u € V,

i.e. dy(u) + A(u) =k +¢and dy(u) =k for all u € V.

So, A(u) =¢ for all u € V. Hence the result. O

Definition 8.2.4. Let Gy = (Vi, Ay, By) and Gy = (Va, A, By) be two m-polar fuzzy
graphs. Then a bijective function 1 : Vi — Vs is called an m-polar morphism or m-

polar 1-morphism if there exist positive real numbers ki, ky such that fori =1,2,...,m

(1) pio As((u)) = kip; o Ay (u) for all w € Vi and

(11) p; o Bo(1p(u)(v)) = kap; 0 By(uv) for all uv € 1715
In this case, v is called (ky, ka) m-polar 1¥-morphism from Gy onto Gy. If ky =
ko = k, then we call yb an m-polar k-morphism. When k = 1, we obtain usual

m-polar morphism.

Note 8.2.2. Let G = (Vi, Ay, By), Gy = (Va, Ay, By) and Gz = (V3, As, B3) be three
m-polar fuzzy graphs of the graphs G} = (Vi, Ey), G5 = (Va, Ey) and G5 = (V;, Ej3).
Let Ay, Ay and Az denote the membership functions of the vertices in G1, Ga, G3
respectively; By, By, Bs denote the membership functions of the edges in G1, Gs, G

respectively.
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Theorem 8.2.2. The relation -morphism is an equivalence relation in the collection

of m-polar fuzzy graphs.

) )

Proof. Let G be the collection of all m-polar fuzzy graphs. Define a relation '~’ on
G x G as follows: for G1,Gy € G, we say Gy ~ Gs if and only if there exist a (kq, ko)
m-polar 1-morphism from G onto G5 for some non-zero k; and k.

We show that ~ is an equivalence relation. First, we see that ~ is reflexive by
simply taking the identity mapping from G onto itself.

Let G1,Gy € G and Gy ~ (5. Then there exists a (ki, k2) @-morphism from G,
onto (G for some non-zero k; and ks.

Therefore p; o As(¢(u)) = kip; o Ay (u) for all w € V; and

pi o Ba(¥(u)p(v)) = kap; o By(uv) for all uv € ‘f/?, i=1,2,....m

Now consider the function ¥~!: Vo — Vi. Let z,y € Va.

Since 1) is bijective, therefore there exist u,v € Vi such that ¢(u) = = and ¢ (v) =
Then, p; o A1 (¢~ (2)) = pi o Ay(u) = gpi 0 Ao(P(u)) = £-pi 0 As(2) and

pi o Bi(p~ ()Y (y)) = pio Bi(ww) = pi o Ba(¥(u)(v)) = gpi o Ba(wy) for
i=1,2,...,m. Thus, ¥ lis a (%, é) m-polar morphism from G5 to Gj.

Hence, G5 ~ G'1. So, ~ is symmetric.

Again, let G1, G5, G5 € G be such that G; ~ G5 and G5 ~ Gjs.

Then there exist a (ki, ko) m-polar ¢, morphism from Gy onto Gy and a (ks, ky)
m-polar 1, morphism from G5 onto GG3 for some non-zero real numbers ki, ko, k3 and
ky. Then,

Yy (u)) = kip; o Ay (u) for all u € Vi,

Y1 () (v) = kopi © By (uv) for all uo € V2,

a(u)) = ksp; 0 Az(u) for all u € V4,

Yo (u)he(v)) = kyp; o Ba(uv) for all uv € ‘725, i=1,2,...,m.
Let ¥3 = 19 091 : Vi — V5 be a mapping.

Now, p; o Az(3(u))

= p; 0 Az(¥2 0 1 (u))

= p; 0 Az(¥2(¢1(w)))

= ksp; o Ag(¥1(u))

= kskip; o A1 (u) and

pi © B3(¢3(u)i3(v))
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= pi © B3(¥h2 0 1 (w)thy 0 1 (v))

= pi © By (tha (41 (u) )2 (¢1(v)))

= kap; o Ba(¢1(u)ih1(v))

= kykop; 0 By(uwv), i =1,2,... m.

Thus, 13 is a (kski, kyka) m-polar morphism from G; onto Gs.

Therefore, G; ~ (G3 and hence ~ is transitive. So, the relation ~ is an equivalence

relation in the collection of m-polar fuzzy graphs. m

Theorem 8.2.3. Let Gy and Gy be two m-polar fuzzy graphs and ¢ be a (ki, ka) m-
polar fuzzy morphism from Gy onto Gy for some non-zero ky and ko. Then the image

of strong edges in (G is also strong edge in Go if and only if ky = k.

Proof. Let ujv; be a strong edge in G and ky = k.

Since 9 is a (ky, ko) m-polar fuzzy morphism from G; to G, therefore we have,

pi © Ba(¥(u1)(v1))

= kop; o B1(uqvq)

= kafpi 0 Ar(u1) Apio Ai(vy)}

= kop; 0 A1(uq1) A kop; 0 Ay(v1)

= kip; o A1(uy) A kyp; o Ay(v1)

= p; 0 Ag(ug) A p;o Ag(vy) fori =1,2,...,m.

So, the edge ¥(u1)®(v1) in Gy is strong.

Conversely, let ujv; be a strong edge in G; and its corresponding image ¥ (u1)v(vy)
in GGy is also strong. Then we have,

kop; o By(ujvy)

= pi © Ba(th(u1)(v1))

= pi © Ao ((u1)) A pi 0 Az (¥ (1))

= kip; o A1(uq) A kyp; o Ar(v1)

= kip; o Bi(ujvy) for each i = 1,2,... m.

This implies that k; = ko. This completes the proof. O

Corollary 8.2.1. Let Gy and Gy be two m-polar fuzzy graphs and Gy be a (kq, ka) m-
polar fuzzy morphism to Gs. If Gy s strong, then G5 is strong if and only if k1 = ks.

Theorem 8.2.4. If the m-polar fuzzy graph Gy is co-weak isomorphic to the m-polar

fuzzy graph G and G is reqular, then Gy is reqular also.
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Proof. Since GGy is co-weak isomorphic to Go, therefore there exists a co-weak isomor-
phism ¢ : V; — V5 which is bijective such that

pio Ai(u) < p; o Ay(p(u)) and

pi © Bi(uv) = p; o Ba(o(u)p(v)) for all u,v € Vi, i =1,2,... m.

Since G is regular, we have dg, (u) = (¢1,¢2,...,¢y) for all u € V7.

Now, dg, (¢(u))

= Y pioBy(o(u)p(v))
d(u)#d(v)
P(u)p(v)EE2

= > pioBj(w)=c¢forallueViandi=1,2,...,m.

u#v
uv€Fq

Hence, GG is regular. O]

Remark 8.2.1. If the m-polar fuzzy graph Gy is co-weak isomorphic to Gy and Gy is

strong, then Gy need not be strong.

Theorem 8.2.5. Let G; and G4y be two m-polar fuzzy graphs. If Gy is weak isomorphic

to Gy and Gy s strong, then Go is also strong.

Proof. Since (G is weak isomorphic to G4, therefore there exists a weak isomorphism
¢ : Vi — V5 which is bijective such that

pi o Aj(u) = p; o As(op(u)) for all u € V; and

i 0 Bi(uv) < p; o Ba(d(u)d(v)) for all wo € V2, i =1,2,...,m.

As Gy is strong, p; o Bi(uv) = min{p; o Ai(u),p; o A1(v)} for all wv € FEy, i =
1,2,...,m. Now,

pi o Ba(d(1)o(v))

> p; o By(uv)

= min{p; o Aj(u),p; 0 A;(v)}

= min{p; o Ax(¢(u)), pi o A2(¢(v))} and

by definition, p;o By((u)é(v)) < min{pio As((u)), pioAx(6(v))} for d(u)d(v) € By,

1=1,2,...,m. Hence, G is strong. O

Corollary 8.2.2. Let G and G5 be two m-polar fuzzy graphs. If G is weak isomorphic

to Gy and G is regular, then Go need not be regqular.

Theorem 8.2.6. If the m-polar fuzzy graphs G is co-weak isomorphic with a strong

reqular m-polar fuzzy graph Gs, then Gy is strong reqular m-polar fuzzy graph.
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Proof. Since (51 is co-weak isomorphic to (G5 therefore there exists a co-weak isomor-
phism ¢ : V; — V5 which is bijective such that

pio Aj(u) < p;o As(p(u)) for all uw € V; and

p; 0 Bi(uv) = p; o Ba(o(u)p(v)) for all uv € \//?, i=1,2,...,m.

Now we have,

pi © Bi(uv)

= pi © Ba(¢(u)(v))

= min{p; o Az(¢(u)), p; o A2(¢p(v))} (Since Gy is strong)

> min{p; o A;(u),p; o A1(v)}.

But, by definition of m-polar fuzzy graphs,

p; o By(uv) < min{p; o A1(u),p; o A1(v)} for all uv € 1//?

So, from the above we have, p; o By (uv) < min{p;o A;(u),p;oAi(v)} for all uv € Fy,
1=1,2,...,m. Hence, GGy is strong.

Also, for i =1,2,...,m and u € Vi,

> pioBi(uww)= > p;o By(d(u)p(v)) = constant (Since Gy is regular).
uFv d(u)#p(v)
weE; P(u)p(v)EE2
Hence, (5 is regular. O]

Theorem 8.2.7. Let G; and G5 be two isomorphic m-polar fuzzy graphs. Then Gy is

strong regular if and only if Gy is strong reqular.

Proof. As Gy is isomorphic to G, therefore there exists an isomorphism ¢ : V; — V5
which is bijective and satisfies p; o A1(u) = p; o As(é(u)) for all u € V4 and

pi © Bi(uv) = p; o Ba(¢p(u)p(v)) for all uv € \//?, i=1,2,...,m.

Now, G is strong

& p; o By(uv) = min{p; o A1(u),p; 0 A1 (v)} for all wv € Ey,i=1,2,...,m

& pi o Ba(d(u)p(v)) = min{pi o Ax(¢(u)), pi © Ax(¢(v))} for all ¢(u)p(v) € Ex,
1=1,2,...,m

& (G4 is strong.

Again, GGy is regular

& Y pio Bi(uv) = constant for all u € V7,

uF#v
uwveFy

& Y. pioBy(o(u)p(v)) = constant for all p(u) € V3

d(w)#o(v)
P(u)p(v)EE2

< (G4 is regular. ]
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Theorem 8.2.8. A strong m-polar fuzzy graph G is strong reqular if and only if its

complement G is strong reqular.

Proof. From Proposition 6.11 of [45], we have if G = (V, A, B) is a strong m-polar
fuzzy graph, then G = (V, A, B) is also a strong m-polar fuzzy graph where A = A
and B is defined by p; o B(wy) = min{p; o A(x), p;o A(y)} — pio B(xy) for all zy € V2,
1=1,2,...,m.

Now, G is strong regular if and only if p; o B(xy) = min{p; o A(z),p; o A(y)} if and
only if p; o B(zy) = min{pio A(x),pio A(y)} —pio B(zy) = pio B(zy) —pio B(zy) =0
if and only if 3" p; o B(xy) = 0 if and only if G is strong regular. O

8.3 Modeling of products design in a company as

a 4-polar fuzzy graph

Here, we model a real life situation of a company where a group of people decides
which product design to manufacture. This type of network is an ideal example of m-
polar fuzzy graphs. It is very important for a company to decide which product design
to manufacture so that they can make profit as much as possible. A very good product
design is gladly acceptable to the peoples if it is also cheap in price. The determination
of which product design to manufacture is called the decision making problem. By
taking the very good decision (very good product design), one company can spread
their product all over the world keeping in mind that the product design is very good,
demandable, cheap, easily accessible, etc. Before manufacturing a product design,
engineers and manufacturers test several important things in a product. Suppose a
company has to decide to manufacture a product design among five products, say
D1, Dy, D3, Dy and Ds. A product design is manufactured by a company keeping in
mind its market demand, price, time taken to manufacture and accessibility.

We consider the above as a set, say M = {demand, price, time, accessibility} and
the set of product designs as D = {D;, Dy, D3, Dy, Ds}. Since all the above charac-
teristics of a product design according to the different company are uncertain in real
life, therefore we consider a 4-polar fuzzy subset A of the set D. This situation can
be represented as a 4-polar fuzzy graph by considering the different product design
as the nodes and edges between them represent the relationship between two product

designs (see Fig. 8.4). The membership value of each node represents the degree of
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D1(0.7,0.5,0.5,0.8)

(0.4,0.4,0.5, 0.6) (0.6,0.3,0.4,0.5)

(0.6,0.7,0.6,0.6) Ds D2(08,0.4,06,0.7)

(0.5,0.2,0.4,0.4)

(0.5,0.4,0.4,0.5) (0.6,0.3,0.4,0.6)

(0.3,0.4,0.5,0.4)

D5(0.9,0.3,0.4,0.9)

(0.6,0.5,0.6,0.7) Dy

(0.6,0.2,0.3,0.7)

Figure 8.4: Modeling of products design in a company as a 4-polar fuzzy graph G

demand, price, time taken to manufacture and accessibility to people in global market.
Edge membership values which represent the relationship between the product design
can be calculated by using the relation p; o B(uv) < min{p; o A(u),p; o A(v)} for all
u,v € D,;i=1,2,...,4. The edge between two product designs represents the degree
of using common power equipments, raw materials, engineer employs and agencies
involved for both products.

From the Fig. 8.4, we see that G = (D, A, B) is a 4-polar fuzzy graph and the prod-
uct design D3 has maximum demand, minimum price, minimum time to manufacture

and has maximum accessibility compared to all others product designs.

8.4 Summary

In this chapter, the notion of m-polar ¥-morphism is introduced on m-polar fuzzy
graphs. The action of m-polar )-morphism on m-polar fuzzy graphs is studied and
we established some results on weak and co-weak isomorphism. ds-degree and total
do-degree of a vertex in m-polar fuzzy graphs are defined and studied (2, k)-regularity
and totally (2, k)-regularity. Finally, we have modeled a real life situation in terms of

4-polar fuzzy graph as an application.



Chapter 9

Generalized regular bipolar fuzzy
graphs and product bipolar fuzzy

line graphs®

9.1 Introduction

In 2011, Akram [3,6] introduced bipolar fuzzy graphs with many properties. In
2012, Akram and Dudek [5] introduced regular bipolar fuzzy graphs. The aim of this
chapter is to point out some errors in [5] by counterexamples in Definitions 3.3, 3.5,
Propositions 3.9, 3.10 and Theorem 3.17. Finally, we introduced generalized regular
bipolar fuzzy graphs. The notion of product bipolar fuzzy line graph is introduced and
investigated some of its properties. A necessary and sufficient condition is given for
a product bipolar fuzzy graph to be isomorphic to its corresponding product bipolar
fuzzy line graph. It is also examined when an isomorphism between two product
bipolar fuzzy graphs follows from an isomorphism of their corresponding fuzzy line

graphs.

9.2 Counterexamples
Here, we assume that G* = (V, E) represents a crisp graph and G = (V, A, B)

represents a bipolar fuzzy graph of it.

*A part of the work presented in this chapter is published in Neural Computing and Applica-
tions, DOI:10.1007/s00521-016-2771-0, (2016) and International Journal of Applied and Computa-
tional Mathematics, DOI:10.1007/s40819-015-0112-0, (2015).
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First, we recall some definitions given in [5]. Also, we recall the Propositions 3.9,

3.10 and Theorem 3.17 of [5].

Definition 9.2.1. (Definition 3.3 of [5]) Let G = (V, A, B) be a bipolar fuzzy graph
on G*. If all the vertices have the same open neighborhood degree n, then G is called
an n-reqular bipolar fuzzy graph. The open neighborhood degree of a verter x in G is
defined by deg(x) = (deg® (x),deg"™ (x)), where deg”(z) = > pk(x) and deg™ (x) =

zeV
> wA (2).

z€V

Definition 9.2.2. (Definition 3.4 of [5]) Let G = (V, A, B) be a regular bipolar fuzzy
graph. The order of a regular bipolar fuzzy graph G is O(G) = (> pk(z), S wf (x)).
The size of a reqular bipolar fuzzy graph G is S(G) = ( ZV ufj(;;, ZE u]}?;y)).

zy€ oye

Definition 9.2.3. (Definition 3.5 of [5]) Let G = (V, A, B) be a bipolar fuzzy graph.
If each vertex of G has the same closed neighborhood degree m, then G is called a
totally regular bipolar fuzzy graph. The closed neighborhood degree of a vertex x in G
is defined by deg|x] = (deg [x], deg™ [x]), where deg[x] = deg (z) + ki (z), deg™[z] =

deg™ (z) + p ().

Proposition 9.2.1. (Proposition 3.9 of [5]) The size of a n-reqular bipolar fuzzy graph
G is &, where |V| = k.

27

Proposition 9.2.2. (Proposition 3.10 of [5]) If G is a m-totally reqular bipolar fuzzy
graph, then 25(G) + O(G) = mk, where |V| = k.

Theorem 9.2.1. (Theorem 3.17 of [5]) Let G = (V, A, B) be a bipolar fuzzy graph
where crisp graph G* is an odd cycle. Then G is regqular bipolar fuzzy graph if and

only if B is a constant function.

To find out out the flaws of Definition 9.2.1 and Definition 9.2.3, we give counterex-
amples to Propositions 9.2.1, 9.2.2 and Theorem 9.2.1.

First of all, we point out that the Definition 9.2.1 is itself meaningless. The adjacency
between vertices is missing in the definition. So, according to [5], the open neighbor-

hood degree of a vertex x is deg(z) = (deg” (z),deg” (x)), where deg”(z) = >_ 14 (y)

yeVv
zyelE

and deg™(x) = > pi (y)-

yeVv
zyelE
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(0.5, —0.3) (0.5,—0.3)

(0.2, —0.1)

(0.4,-0.1)

i@

(0.5, —0.3)

(0'27

-0 (0.5,—0.3)

Figure 9.1: Bipolar fuzzy graph G

If we use the above definition, still the Propositions 9.2.1, 9.2.2 and Theorem 9.2.1
do not hold good at all.

Example 9.2.1. Consider the graph G* = (V,E) where V. = {a,b,c,d} and E =
{ab,be, cd, ad}. Now, let G = (V, A, B) be a bipolar fuzzy graph of G* (see Fig. 9.1).
Then, deg(a) = deg(b) = deg(c) = deg(d) = (1,—-0.6).
Hence, G is (1,—0.6)-regular. Also, S(G) = (1.2,—-0.4).
Here, n = (1,—0.6) and k = 4.
So, by Proposition 9.2.1, S(G) = % = (2, -1.2).
But, S(G) = (1.2,-0.4).

Remark 9.2.1. This example shows that Proposition 9.2.1 is not true.

Example 9.2.2. Let G be same as of Example 9.2.1. Then, degla] = deg[b] = deg[c] =
degld] = (1.5, —0.9). So, the graph G of Fig. 9.1 is (1.5, —0.9)-totally reqular.

Also, O(G) = (2,—1.2). Here, m = (1.5,—0.9) and k = 4.

So, 2S(G) + O(G) = 2(1.2, —0.4) + (2, —1.2) = (4.4, —2) and mk = (6, —3.6).

We see that, 25(G) + O(G) = (4.4,—-2) # (6, —3.6) = mk.

Remark 9.2.2. This example shows that Proposition 9.2.2 is not true.

Example 9.2.3. Let G* = (V, E) be an odd cycle where e; = vgvy, e = v1vU9, €3 =
voU3 = Vougy be the edges of G* such that vy = vs. Let G = (V, A, B) be a bipolar
fuzzy graph of G* where A(vg = v3) = A(vy) = A(vy) = (0.5,—0.3) and B(e;) =
(0.2,—-0.1), B(ea) = (0.4,—-0.1),B(e3) = (0.2,—0.1). Then, deg(vy) = deg(vy) =
deg(vs) = (1,—0.6), i.e. G is (1,—0.6)-regular but B is not a constant.

Again, consider another bipolar fuzzy graph G = (V, A, B) of G* where A(vy = v3) =
(0.5,-0.3), A(vy) = (0.3,—0.2), A(vy) = (0.4,—0.3) and B(e;) = B(ez) = B(e3) =
(0.2,—=0.1). In this case, deg(vy) = (0.7,—0.5),deg(vy) = (0.9, —0.6),
deg(ve) = (0.8, —0.5). So, G is not reqular although B is constant.
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Remark 9.2.3. This example shows that Theorem 9.2.1 is not true.

Remark 9.2.4. We also point out that in Definition 9.2.2 there is a typing mistake

which s corrected in the next section.

9.3 Main results

In this section, we mainly provide the modified version of Definitions 9.2.1, 9.2.2,

9.2.3 and a proof of Propositions 9.2.1, 9.2.2 and Theorem 9.2.1.

Definition 9.3.1. (The correction of Definition 9.2.1) The open neighborhood degree
of v €V in G is defined by deg(z) = (deg” (), deg™ (z)), where deg”(z) = > uh(xy)

TFY
ryel
and deg™ (v) =" uX(xy). If all the vertices of G have same open neighborhood
T#Y
zyel

degree (dy,ds), then G is said to be (dy,ds)-regular. In this case, we also call G as a

generalized regular bipolar fuzzy graph.

(0.7,-0.2) (0.7,-0.2)

(0.5, —0.2)

(0.3,-0.1)

(0.5,-0.2)

(0.7,-0.2) (0.7, E0.2)

Figure 9.2: (0.8, —0.3)-regular and (1.5, —0.5)-totally regular bipolar fuzzy graph G

Example 9.3.1. From Fig. 9.2 we have, deg(u) = deg(v) = deg(w) = deg(x) =
(0.8,—0.3). Hence, G is (0.8, —0.3)-regular.

Definition 9.3.2. (The correction of Definition 9.2.2) The order of G is denoted as
O(G) = (OP(@),0N(@)) where OF(G) = . pfi(v) and ON(G) = Y ufN(v). The
veV veV

size of G is denoted as S(G) = (ST(G), SN(GQ)) where ST(G) = > phb(uwv) and
uwek
SMG) = 2 piy(wv).

wek

Example 9.3.2. From Fig. 9.2, we have O(G) = (2.8,—-0.8) and S(G) = (1.6, —0.6).

Definition 9.3.3. (The correction of Definition 9.2.3) The closed neighborhood de-
gree of x € V in G is denoted as deg[z] = (deg”|x],deg"[z]), where deg”|x] =
deg®(x) + pk(z) and degMN[z] = deg” (z) + plY(z). If each verter of G has equal
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closed neighborhood degree (f1, f2), then G is said to be (fi, f2)-totally regular. In this

case, we call G as a generalized totally reqular bipolar fuzzy graph.

Example 9.3.3. The bipolar fuzzy graph G in Fig. 9.2 is (1.5, —0.5)-totally regular,
since deglu] = deg[v] = deglw] = deg[x] = (1.5, —0.5).

Proposition 9.3.1. Let G = (V, A, B) be a (dy, dy)-regular bipolar fuzzy graph. Then
size of G is given by S(G) = §(dy, ds) where |V| =n.

Proof. Immediate from the definition. O]

Proposition 9.3.2. Let G = (V, A, B) be a (f1, f2)-totally reqular bipolar fuzzy graph.
Then 25(G) + O(G) = n(fi, f2) where |V| = n.

Proof. Follows from the definition. n

Theorem 9.3.1. Let G = (V, A, B) be a bipolar fuzzy graph of an odd cycle G* =
(V,E). Then G is reqular if and only if B = (uk, u%) is constant.

Proof. Suppose G is a (dy, ds)-regular.
Let ej,e9,...,€9,41 be the edges of G* such that e; = v;_v; € E, vg,v; € V,
1=1,2,...,2n+ 1 and vy = V9, 41.
Let uh(ey) = ki and u®(ey) = ky where ky € [0,1] and ks € [—1,0].
G is (dy, dy)-regular implies that deg”(vy) = d; and deg” (v;) = ds.
This means, deg”(vy) = ph(ey) + ph(ex) = dy and
deg™ (v1) = piy(e1) + pis (e2) = do,
ie. ki + ph(ez) = dy and ko + pf¥(e2) = dy,
ie. uh(ey) =dy —ky and ¥ (es) = dy — k.
Again, deg® (vy) = 5 (e2) + ph(es) = dy and
deg™ (v2) = pis(e2) + pis (es) = do.
This implies, ub(es) = dy — (dy — k1) = k; and
p(e3) = dy — (dy — ko) = ky and so on.
ky if 1 1s odd
(dy — k1) if i is even
ko iof i ois  odd
(do — kg) if 1 is even

Therefore, ub(e1) = ph(eani1) = ki and pf(er) = pu (eani1) = ko

Therefore, uh(e;) =

and 3 (e;) =
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Since e; and eg, 1 are incident on the vertex vy and deg(vy) = (dy, ds) therefore,
pp(er) + ppeanst) = di and g (e1) 4 p (eang1) = da,

i.e. 2k = dy and 2k = do,

ie. k= % and ko = d2—2.

Therefore, puh(e;) = 4 and pf(e;) = 2 fori =1,2,...,2n+ 1.

Therefore, B is constant.

Conversely, let us assume that B be a constant. So, let B(ujvy) = (uk(uivy), ph (ugv1))

= (ky, ko) for all uyv; € E where k; € [0,1] and ks € [—1,0].
Then deg(v) = (deg”(v), deg™(v)) = ( & wh(uv), 55 wh(un)) = (2h, 2ks) for all

uFv u#v
uwer weE
v € V. Consequently, G is (2ky, 2ky)-regular bipolar fuzzy graph. H

9.4 Product bipolar fuzzy graphs

In this section, we define a new subclasses of bipolar fuzzy graphs, called product

bipolar fuzzy graphs.

Definition 9.4.1. A product bipolar fuzzy graph of a graph G* = (V, E) is a pair G =
P
B>

(
(V, A, B) where A = (uk, 1Y) is an bipolar fuzzy set in V and B = (uh, u¥) is a bipolar

fuzzy relation on 175 such that ug(my) < Mﬁ(:p) X ,uf;(y), Mg(ﬁy) > —(u%(w) % M%(y))
for all zy € V2 and pfy(zy) = p (wy) = 0 for all 3y € (V2 — E).

(0.08, —0.4) (0.07,-0.18)

V4
(0.3,-0.6) (0.4,—0.5)

Figure 9.3: Product bipolar fuzzy graph G

Example 9.4.1. Let us consider the graph G* = (V, E) where V' = {vy,v9,v3,v4} and

E = {vyvy,v9v3}. A product bipolar fuzzy graph G of G* is shown in Fig. 9.3.

Definition 9.4.2. A product bipolar fuzzy graph G = (V, A, B) of G* = (V, E) is said

to be strong if pi(vy) = pl(x) x pli(y) and piy(zy) = —p (x) x @ (y) for allzy € E.
The product bipolar fuzzy graph G in Fig. 9.3 is not strong.

Here after, we assume that G is a product bipolar fuzzy graph of the crisp graph
G*.
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9.5 Product bipolar fuzzy line graphs
In this section, first we define a product bipolar fuzzy intersection graph of a product

bipolar fuzzy graph. Then we define the product bipolar fuzzy line graphs.

Definition 9.5.1. Let P(S) = (S,T) be an intersection graph of a simple graph G* =
(V,E). Let G = (V, A, B) be a product bipolar fuzzy graph of G*. We define a product
bipolar fuzzy intersection graph P(G) = (Ay, By) of P(S) as follows:

(i) Ay and By are bipolar fuzzy subsets of S and T respectively,
(i) ply, (Si) = phi(vi), i, (Si) = ul) (v,
(iii) pg, (SiS;) = pp(vivy), pg, (SiS;) = ug (vivy) for all S;, S5 € S, S;8; € T.
In other words, any product bipolar fuzzy graph of P(S) is called a product bipolar

fuzzy intersection graph.
The following proposition is immediate.

Proposition 9.5.1. Let G = (V, A, B) be a product bipolar fuzzy graph of G* =
(V,E) and P(G) = (A1, B1) be a product bipolar intersection graph of P(S). Then the
following holds:

(a) P(G) is a product bipolar fuzzy graph of P(S),
(b) G= P(G).

Proof. (a) Since G is a product bipolar fuzzy graph, we have by Definition 9.5.1,
1, (SiS;) = pp(vivg) < pig(vi) x pis(vy) = ply, (Si) x iy, (S;) and
1, (SiS5) = py (vivg) > —(p (vi) x pi (v;)) = —(u, (Si) x i, (S;))-

Hence, P(G) is a product bipolar fuzzy graph.

(b) Let us define a mapping ¢ : V- — S by ¢(v;) = S; fori =1,2,...,n.

Then clearly ¢ is one to one mapping of V onto S.

Now v;v; € E if and only if 5;5; € T and T' = {¢(v;)p(v;) : vv; € E}.

Also, pli(vi) = ply, (Si) = 1y, (¢(vs)) and

() = 2, (5) = i, (6(v3) for all vy € V/,

p(vivg) = pp, (SiS;) = pp(é(vi)o(v;)) and

pz (vivy) = pg, (SiS;) = pg (o(vi)(vy)) for all viv; € E.

Hence, ¢ is an isomorphism of G onto P(G), i.e. G = P(G). O
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This proposition shows that any product bipolar fuzzy graph is isomorphic to a
product bipolar fuzzy intersection graph.

Next, we define the product bipolar fuzzy line graph of a product bipolar fuzzy
graph.

Definition 9.5.2. Let L(G*) = (Z,W) be a line graph of a simple graph G* = (V, E).
Let G = (A, B) be a product bipolar fuzzy graph of G*. Then a product bipolar fuzzy
line graph L(G) = (A1, By) of G is defined as follows:

(i) Ay and By are bipolar fuzzy subsets of Z and W respectively,
(i) p, (Sa) = pp(x) = pig(uava),

(iii) iy, (S2) = piy(x) = pjy (uevy),

(iv) pp, (SeSy) = pp(x) x pp(y) = pp(ugve) X pp(uyvy),

(v) u3, (SeSy) = —(u (@) x pg(y) = — (g (uzve) X pg (uyvy)) for all S,, S, € Z
and SyS, € W.

Figure 9.4: GG is a product bipolar fuzzy graph

Example 9.5.1. Let us consider a graph G* = (V| E) where V- = {v1,va,v3,v4} and
E = {x1 = 009,29 = 903,23 = w304, 14 = vgv1}. Let G = (V, A, B) be a product
bipolar fuzzy graph of G* (see Fig. 9.4).

Now, consider a line graph L(G*) = (Z, W) such that Z = {Sy,, Suy, Sas, Sz, } and
W = {854,545, Sy Sess SesSess SesSu, - Let Ay and By be bipolar fuzzy subsets of Z
and W respectively. Then by definition of product bipolar fuzzy line graph we have the

following:
1y, (Sey) = pip (1) = 0.14, pily, (S4,) = pip(x2) = 0.18,
1y, (Seg) = pip(w3) = 0.2, ply (Se,) = pip(wa) = 0.2,
1, (Say) = pgy (1) = —0.07, il (Sa,) = pfy (22) = —0.05,
1, (Say) = pig (x3) = —0.14, pf (Ss,) = pf(2a) = —0.18,
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14, (Say Say) = pg (1) X p(z2) = 0.14 % 0.18 = 0.0252,

1153, (Say Say) = pip(x2) X pip(23) = 0.18 x 0.2 = 0.036,

15, (SesSay) = pip(ws) X pg(z4) = 0.2 x 0.2 = 0.04,

114, (SeySay) = pg(24) X phy(21) = 0.2 x 0.14 = 0.028,

(N (a1 Say) = —(ufy (21) x p¥(x2)) = —(—=0.07 x —0.05) = —0.0035,
133, (SasSay) = —(ps (w2) X py(w3)) = —(=0.05 x —0.14) = —0.007,
118, (SeySay) = —(u (w3) X p(24)) = —(—0.14 x ~0.18) = —0.0252,
1y, (SeuSay) = —(pfy (24) X piy(21)) = —(—0.18 x —0.07) = —0.0126.

Hence, L(G) = (Ay, By) is the product bipolar fuzzy line graph of G. It may be noted

that, L(G) is neither reqular nor totally regular product bipolar fuzzy line graph.

(0.14,-0.07) (0.18, —0.05)
Sas

Say

(0.0252, —0.0035)

(0.028, —0.0126) L(G) (0.03618, —0.007)

(0.04, —0.0252)

Ses Sus
(0.2,-0.18) (0.2, —0.14)

Figure 9.5: The line graph L(G) of G

Proposition 9.5.2. A product bipolar fuzzy line graph is a strong product bipolar fuzzy
graph.

Proof. Follows from the definition of product bipolar fuzzy line graph. m

Proposition 9.5.3. If L(G) is a product bipolar fuzzy line graph of the product bipolar
fuzzy graph G, then L(G*) is the line graph of G*.

Proof. Since G = (V, A, B) is a product bipolar fuzzy graph and L(G) = (A, By) is a
product bipolar fuzzy line graph, therefore pf{ (S;) = pg(x) and plY (S.) = pg(x) for
allz e Fandso S, € Z < x e k.

Also, pg, (S2Sy) = pgp () x i (y) and pfy, (SuSy) = —(pg (x)x p (y)) for all S, S, € Z,
and so W = {S5,S,: 5, NS, # 0,2,y € E,x # y}. This completes the proof. ]

Proposition 9.5.4. L(G) = (A1, By) is a product bipolar fuzzy line graph of some
product bipolar fuzzy graph G = (V, A, B) if and only if p, (S2Sy) = pki, (Sa)xpy (Sy))
a’nd /’Lgl (Swsy) - _(/’L]X1 (S$> X /’L].Xl (Sy)) f07“ a’ll SxSy E W
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Proof. Suppose that pf; (S,5,) = pk (Ss) x p (S,)) and

U (5.5,) = —(u,(S2) X 1},(S,)) for all 8,5, € W'

Let us now define pfy(x) = pf (S;) and pf (z) = plY (S,) for all z € E.

Then, 1§, (S,5,) = 15, (S.) % 5, (8,)) = 1 (@) x i&(y)) and

1 (5.5,) = —(u, (S2) X 1, (S,)) = (e (2) x Y ().

A bipolar fuzzy set A = (&, u}) that yields that the property ukh(zy) < pli(x) x
KR () and i (oy) > —(u (@) x ) () will suffice.

The converse part follows from the Definition 9.5.2. n

Another characterization of product bipolar fuzzy line graphs of product bipolar

fuzzy graph is given in the following proposition.

Proposition 9.5.5. L(G) = (Ay, By) is a product bipolar fuzzy line graph of some
product bipolar fuzzy graph if and only if L(G*) = (Z, W) is a line graph satisfying

w5, (uv) = i, (w) x i, (v) and g (u) = — (42 () x 23, (0) for all wv € W.
Proof. Follows from the Propositions 9.5.3 and 9.5.4. [

Definition 9.5.3. Let Gy = (V1, Ay, By) and Gy = (V,, Ag, B) be two product bipolar
fuzzy graphs of the graphs G = (Vi, Ey) and G5 = (Va, Es) respectively. A homomor-
phism between G and G5 is a mapping ¢ : Vi — Vo such that

(i) ps, () < ph,(8(2)) and p (x) >y, (6(x)) for all v € VA, B
(ii) pig, (xy) < pup, ((x)p(y)) and pg, (zy) > pg, (9(x)p(y)) for all xy € V2.

A bijective homomorphism with the property that p’ (x) = pfs (p(x)) and plf (z) =
ph, (6(x)) for all x € Vi is called a (weak) vertez-isomorphism.

A bijective homomorphism with the property that pf (zy) < pg (6(x)d(y)) and
py, (xy) >l (o(x)d(y)) for all zy € ‘715, is called a (weak) line-isomorphism.

If ¢ is both (weak) vertez isomorphism and (weak) line-isomorphism, then ¢ is called
a (weak) isomorphism of G1 onto Gy. If Gy is isomorphic to Go, then we write Gy =

Ga.

Proposition 9.5.6. Gy = (Vi, Ay, By) and Gy = (Va, As, By) be two product bipolar
fuzzy graphs of the graphs G = (Vi, E1) and G5 = (Va, Ey) respectively. If ¢ is a weak

wsomorphism Gy onto Ga, then ¢ is an isomorphism of G5 onto G.
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Proof. Obvious. O

Proposition 9.5.7. Let L(G) = (A1, By) be the product bipolar fuzzy line graph cor-
responding to the product bipolar fuzzy graph G = (V, A, B) of G* = (V, E). Suppose
that G* is connected. Then the following hold:

(i) There ezists a weak isomorphism of G onto L(G) if and only if G* is a cycle
and for allv € V, x € E, pj(v) = pp(@), pi(v) = pg (@), ie. A= (i, 1)
and B = (u5, ul¥) are constant functions on V and E, respectively, taking on the
same value.

(i1) If ¢ is a weak isomorphism of G onto L(G), then ¢ is an isomorphism.

Proof. Suppose that ¢ is a weak isomorphism of G onto L(G). By Proposition 9.5.6,
¢ is an isomorphism of G* onto L(G*). By Proposition 9.5.3, G* is a cycle ( [55],
Theorem 8.2).

Let V= {vy,09,...,0,} and E = {z1 = v1vg, 29 = vovs3,...,2T, = v,01}, Where
V1Ug ... U1 1S a cycle.

Let us define the bipolar fuzzy sets pf (v;) = s;, u¥ (v;) = &; and

ph(vvig) = ti, ph(vivigl) = t; for i = 1,2,...,n where v,41 = vy, s;,t; € [0,1],
it € [—1,0].

Then for s,11 = s1, $p41 = 51,

(0) t; < 8; X Siy1

t; > —S,Z XS/H_l,Z':l,Q,...,TZ

Now, Z = {85, 0, ., 5.} and W = {Sy. Ss, SuySass -+ S Sar ).
Also for t,,.1 = t; and fn+1 =1,

1r, (Say) = p (i) = pp(vivin) = i,
ph, (Se) = py (25) = pg (vivigs) = ¢; and
SeiSein) = 1p(i) X pp(Tir1) =t X iy,
SaiSaia) = =1 (

V1, Upy2 = V2.

HBl(
MAl( 2i) X pg(Tis) = —t; X {41, i = 1,2...,n, where v, =

Since ¢ is an isomorphism of G* onto L(G*), ¢ maps V one-to-one onto Z. Also
¢ preserves adjacency. Hence, ¢ induces a permutation 7 of {1,2,...,n} such that
¢(U1) = S%(i) = S”ﬂ'(i)vﬂ(i+l) and ; = Vv — ¢(Ui)¢(vi+1) = var(i)”ﬂ'(i-‘rl)SUW(i+1)v7T(i+2)

fori=1,2,...,(n—1).
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Now, s; = pily(vi) < pily, ($(vi)) = 1, (So,y0m4m)) = Lrti);
S = 1 (v1) > 1Y (D(v3) = 1Y, (S yvmiirn)) = Lrti)s
ti = pp(Vivie) < pg, (B(0)e(vit1))

= 105, (Svyvmis 1y Somgis1yvncina))

= 113, (Sugyvaian) X 1By (Svninyvaian)

= lr(i) X tr(it1)s

ti = pf (vivi1) < iy, (D(vi)d(vit1))

135, (Somiyvmin sy Songisnyvninz))
= =13, (Soniyvmisn) X By (Soniiyvnisa))
= —t;r(i) X t;r(z-ﬂ) fori=1,2,...,n.
That is, s; < tr), Si > t'ﬂ(i) and

ORI

t; >~y X trgirn),i=1,2,...,n.

ti < Ta@) X tr(it)

By (b), we have t; < tpu), ti > txq) for i = 1,2,...,n and 50 tr) < taie(i)
t;r(i) > t;r(ﬁ(i)) for i =1,2,...,n. Continuing, we have

Ui Stry < oo Sty < iy

ti > tey > ... >ty > i and 50 ¢ = o), £ = ta@), i = 1,2,...,n, where 77+ is
the identity map. Again by (b), we have

ti < tr@) = tiv,

t/z > t/7'r(i+1) = t,(iJrl)a 1= ]-7 27 sy where tn-‘rl =tn, t,n-i-l = t,n
Hence by (a) and (b), we have t; = ... =1, =51 = ... 8y,
H=..=t,=§=...=5,.

Thus we have not only proved the conclusion about A and B being constant func-
tions, but also we have shown that (i7) holds.

Conversely, suppose that G* is a cycle and for all v € V, z € E, u{(v) = ph(x),
phY (v) = iy (x). By Proposition 9.5.3, L(G*) is the line graph of G*. Since G* is a
cycle, G* = L(G*) by ( [55], Theorem 8.2). This isomorphism induces an isomorphism
of G onto L(G) since pk(v) = ub(z), ¥ (v) = ph(z) for allv € V, z € E and so
A = B = A; = B; on their respective domains. O

Proposition 9.5.8. Let Gy and Gy be two product bipolar fuzzy graphs of the graphs
Gy = (W1, Ey) and G = (Va, Ey) respectively, such that G5 and G5 is connected. Let

L(Gy) and L(Gs) be the product bipolar fuzzy line graphs corresponding to Gy and G
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respectively. Suppose that it is not the case that one of G5 and G% is complete graph
K3 and other is bipartite complete graph Ky 3. If L(G1) = L(G2), then Gy and Gy are

line isomorphic.

Proof. Since L(Gy) = L(G,), therefore by Proposition ??, L(G}) = L(G3). Since
L(G7) and L(G3) are the line graphs of G} and G%, respectively, by Proposition 9.5.3,
we have that G} = G3 by ( [55], Theorem 8.3).

Let 9 be the isomorphism of L(G1) onto L(G2) and ¢ be the isomorphism of G} onto
G5. Then pj, (So) = piy, ((52)) = 114, (So(w)), 14, (S2) = pi, (V(Sz)) = pi, (S(w));
where the latter equalities holds by the proof of ( [55], Theorem 8.3) and so uj (z) =

1, (6(2)), py, (x) = ph, (¢(x)). Hence Gy and G, are line isomorphic.

9.6 Summary

In this chapter, we redefined open neighborhood degree and closed neighborhood
degree of a vertex in bipolar fuzzy graphs. Finally, we introduced generalized regular
bipolar fuzzy graphs and proved some results of it. We introduced a new subclasses
of bipolar fuzzy graphs namely product bipolar fuzzy graphs. Then, product bipolar

fuzzy line graphs are defined and studied several important results of it.



9.6. SUMMARY 158




Chapter 10

Conclusion

Nowadays, uncertainty and impreciseness present in almost all systems. An m-polar
fuzzy graph can be used to represent the real world problems which involve multi-case
of information and uncertainty. An m-polar fuzzy graph is a generalized structure of
a bipolar fuzzy graph which gives more precision, flexibility and compatibility to a
system when more than one agreements are to be dealt with. Thus, m-polar fuzzy
graphs are the most important research area for the researchers. Application of m-polar
fuzzy graphs can be found in image capturing, image segmentation, image shrinking,
data mining, communication, planning, scheduling, etc.

The first chapter is the introductory chapter of the thesis.

In Chapter 2, generalized m-polar fuzzy graphs is introduced. Several operations
have been defined on m-polar fuzzy graphs. Some useful properties of strong m-polar
fuzzy graphs, self-complementary m-polar fuzzy graphs and self-complementary strong
m-polar fuzzy graphs are discussed. We are now working to find many more useful
results of m-polar fuzzy graphs as an extension of this study.

In Chapter 3, three new operations, viz. direct product, semi-strong product and
strong product are defined on m-polar fuzzy graphs. A subclass of m-polar fuzzy
graphs called product m-polar fuzzy graph is defined and many properties of them are
discussed here. The degree of a vertex in m-polar fuzzy graphs are introduced from
two given m-polar fuzzy graphs GG; and G5 using the operations of Cartesian product,
composition, direct product, semi-strong product and strong product. At the end, an
application of 3-polar fuzzy influence graph is given. An algorithm can be designed to

find the degree of vertices of an m-polar fuzzy graph.
159
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In Chapter 4, the notions of density of an m-polar fuzzy graphs and balanced m-
polar fuzzy graphs are defined. Some results of balanced m-polar fuzzy graphs are
discussed here. Here also, an algorithm can be designed to find the density of an

m-polar fuzzy graph and to check whether the m-polar fuzzy graph is balanced or not.

In Chapter 5, our study describes the m-polar fuzzy multigraphs, m-polar fuzzy
planar graphs, and a very important consequence of m-polar fuzzy planar graphs
known as m-polar fuzzy dual graphs. The new parameter “degree of planarity” used
in this chapter characterizes an m-polar fuzzy graph in many ways. Several properties
can be investigated on regular m-polar fuzzy planar graphs, irregular m-polar fuzzy
planar graphs. The graphs such as m-polar fuzzy multigraph, m-polar fuzzy planar
graph, and m-polar fuzzy dual graph are also defined. In crisp planar graph, no edge
intersects each other. But, the edges of any m-polar fuzzy graph may be m-polar
fuzzy weak or m-polar fuzzy strong. Using the concept of m-polar fuzzy weak edge,
we define m-polar fuzzy planar graph in such a way that an edge may intersect other
edges. But, this facility violates the definition of planarity of graph. Since the role
of m-polar fuzzy weak edge is insignificant, the intersection between an m-polar fuzzy
fuzzy weak edge with any edge is less important. Motivating from this idea, we allow
the intersection of edges in m-polar fuzzy planar graph. It is well known that if the
membership values of all edges become one, the graph becomes crisp graph. Keeping
this idea in mind, we define a new term called degree of planarity of an m-polar fuzzy
graph. If the degree of planarity of an m-polar fuzzy graph is 1 = (1,1,...,1), then
no edge crosses other. This leads to the crisp planar graph. Thus, the planarity value
measures the degree of planarity of an m-polar fuzzy graph. This is a very interesting
concept of m-polar fuzzy graph theory. Strong m-polar fuzzy planar graph has been
exemplified. Another important term of planar graph is ‘face’ which is redefined in
m-polar fuzzy planar graph. In this chapter, new theories have been investigated for
m-polar fuzzy planar graph. The m-polar fuzzy dual graph is defined for the m-polar
fuzzy planar graph whose degree of planarity is 1 = (1,1,...,1). These theories will
be helpful to improve algorithms in different fields including computer vision, image
segmentation, etc. This idea can be extended to the other types of fuzzy graphs such

as m-polar fuzzy soft planar graphs, m-polar fuzzy rough planar graphs, etc.

In Chapter 6, the notion of weak self complement m-polar fuzzy graphs, order, size,
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busy vertices and free vertices of an m-polar fuzzy graphs are defined. Self complement
m-polar fuzzy graphs have many important role in the theory of m-polar fuzzy graphs.
If an m-polar fuzzy graph is not self complement, then also we can say that it is self
complement in some weaker sense. We can establish some useful results with this
graph. This motivates to define weak self complement m-polar fuzzy graphs in this
chapter. A necessary condition is mentioned for an m-polar fuzzy graph to be weak self
complement. Several properties of them are discussed. A relative study of complement
and operations on m-polar fuzzy graphs have been made. Some real life problems have
been modeled using the concepts of m-polar fuzzy graphs. Many more weak notions
can be introduced on m-polar fuzzy graphs to achieve important results.

Chapter 7 deals with the concept of edge regular, strongly regular, biregular, par-
tially edge regular and fully edge regular m-polar fuzzy graphs. Some properties of
them are studied. Finally, we introduced the notion of strongly edge irregular and
strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are
also studied to characterize strongly edge irregular and strongly edge totally irregular
m-polar fuzzy graphs.

In Chapter 8, we mainly generalized the usual concept of isomorphism in m-polar
fuzzy graphs which we call as m-polar ¥»-morphism. The action of m-polar ¢-morphism
on m-polar fuzzy graphs are discussed. Then, dy degree, total do degree of a vertex,
(2, k)-regularity and totally (2,[)-regularity are defined in m-polar fuzzy graphs. A
real life situation of a company has been modeled in terms of 4-polar fuzzy graphs as
an application.

In Chapter 9, generalized regular bipolar fuzzy graphs are introduced. A subclass
of bipolar fuzzy graphs namely product bipolar fuzzy graph is defined. Then the
notion of product bipolar fuzzy line graph is introduced and investigated some of its
properties. A necessary and sufficient condition is given for a product bipolar fuzzy
graph to be isomorphic to its corresponding product bipolar fuzzy line graph. It is
also examined when an isomorphism between two product bipolar fuzzy graphs follows
from an isomorphism of their corresponding fuzzy line graphs.

The natural extension of these work are

(i) m-polar fuzzy soft graphs,
(ii) m-polar fuzzy soft planar graphs,
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(iii) m-polar fuzzy soft hypergraphs,

)
(iv) m-polar fuzzy soft competition graphs,
(v) m-polar fuzzy rough graphs,

)

(vi) Applications of m-polar fuzzy soft graphs on decision making problems, etc.
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