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Abstract

In this thesis, different types of m-polar fuzzy graphs have been considered. The

major problems considered in the thesis are generalizedm-polar fuzzy graphs and their

properties, operations on m-polar fuzzy graphs, degree of vertices of m-polar fuzzy

graphs, density of m-polar fuzzy graphs, m-polar fuzzy planar graphs, isomorphism

and weak self complement m-polar fuzzy graphs, edge regular m-polar fuzzy graphs,

the applications of m-polar fuzzy graphs, generalized regular bipolar fuzzy graphs and

product bipolar fuzzy line graphs.

This thesis consists of ten chapters. In the first chapter, we provided the basic defi-

nitions of graph and different types of fuzzy graph which are needed in the subsequent

chapters and further, a history of the problems.

In Chapter 2, we introduced generalized m-polar fuzzy graphs. Some operations

have been defined to formulate these graphs. Some properties of strong m-polar fuzzy

graphs, self complementary m-polar fuzzy graphs and self complementary strong m-

polar fuzzy graphs are discussed.

In Chapter 3, we have defined three new operations on m-polar fuzzy graph such

as direct product, semi-strong product and strong product. It is proved that any

of the products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient

conditions are established for each one of them to be strong and also proved that strong

product of two complete m-polar fuzzy graphs is complete. If any of the products of

two m-polar fuzzy graphs G1 and G2 are strong, then it is shown that at least G1 or

G2 must be strong. The degree of a vertex in m-polar fuzzy graphs which are obtained

from two given m-polar fuzzy graphs G1 and G2 using the operations of Cartesian

product, composition, direct product, semi-strong product and strong product. At

the end of this chapter, 3-polar fuzzy influence graph is introduced as an application.

In Chapter 4, density of m-polar fuzzy graphs is defined and then introduced the

notion of balanced m-polar fuzzy graphs. Some characterizations of balanced m-polar

fuzzy graphs are given.

In Chaper 5,m-polar fuzzy planar graphs,m-polar fuzzy dual graphs are defined and

some important properties are established. Here, the “degree of planarity” is used to

measure the nature of planarity of an m-polar fuzzy planar graph. Also, we introduced

some terms likem-polar fuzzy multiset, m-polar fuzzy multigraphs, m-polar fuzzy dual



graph. Some theorems have been proved on degree of planarity. Depending on the

degree of planarity, the considerable edge has been introduced.

In Chapter 6, weak self complement m-polar fuzzy graphs is defined. A necessary

condition is mentioned for an m-polar fuzzy graph to be weak self complement. Some

properties of self complement and weak self complement m-polar fuzzy graphs are

discussed. The order, size, busy vertices and free vertices of an m-polar fuzzy graphs

are also defined and proved that isomorphic m-polar fuzzy graphs have same order,

size and degree. Also, we have proved some results of busy vertices in isomorphic and

weak isomorphicm-polar fuzzy graphs. A relative study of complement and operations

on m-polar fuzzy graphs have been made. Some real life problems have been modeled

using the concepts of m-polar fuzzy graphs.

In Chapter 7, the concept of edge regular, strongly regular and biregular m-polar

fuzzy graph are introduced. Some properties of them are studied. Also, the concept

of partially edge regular m-polar fuzzy graph and fully edge regular m-polar fuzzy

graph are introduced with suitable illustrations. The notion of strongly edge irregular

and strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are

also studied to characterize strongly edge irregular and strongly edge totally irregular

m-polar fuzzy graphs.

In Chapter 8, we used m-polar fuzzy sets to introduce the notion of m-polar ψ-

morphism on m-polar fuzzy graphs. The action of m-polar ψ-morphism on m-polar

fuzzy graphs is studied and we established some results on weak and co-weak isomor-

phism. d2-degree and total d2-degree of a vertex in m-polar fuzzy graphs are defined

and studied (2, k)-regularity and totally (2, k)-regularity. A real life situation of a

company has been modeled in terms of 4-polar fuzzy graphs as an application.

In Chapter 9, we introduced generalized regular bipolar fuzzy graphs and investi-

gated some its properties. Then, we define a product bipolar fuzzy intersection graph

of a product bipolar fuzzy graph and the product bipolar fuzzy line graphs. Some

characterizations of product bipolar fuzzy line graphs are also made.

Finally, Chapter 10 contains some concluding remarks and scopes of further research

on the problems that have been studied in the thesis.
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Chapter 1

Introduction

Graphs can be used as a modeling tool for many problems of practical importance.

For instance, a network of cities, which are represented by vertices, and connections

among them make a graph. The well-known traveling salesman problem asks for the

shortest possible tour, which visits all the cities exactly once. There are numerous

applications like this. Graph theory was born in 1736 with Euler’s paper in which he

solved the Konigsberg bridge problem. This problem lead to the concept of Eulerian

graph. In 1840, Mobious gave the idea of complete graph and bipartite graph and

Kuratowski proved that they are planar by means of recreational problems. Graphs

are very convenient tools for representing the relationships among objects, which are

represented by vertices. In their turn, relationships among vertices are represented

by connections. In general, any mathematical object involving points and connections

among them can be called a graph or a hypergraph. For a great diversity of problems

such pictorial representations may lead to a solution. Examples of such applications

include databases, physical networks, organic molecules, map colorings, signal-flow

graphs, web graphs, tracing mazes as well as less tangible interactions occurring in

social networks, ecosystems and in a flow of a computer program. Thus, graphs can

serve as a mathematical models to solve an appropriate graph-theoretic problem, and

then interpret the solution in terms of the original problem. At present, graph theory

is a dynamic field in both theory and applications.

There are several types of graphs which represent real world problems. These are

discussed below.

1
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1.1 Some preliminaries on graphs

Pictorial representation of a graph consists of vertices (representing objects) and

edges (representing connections) between them. Formal definition is as follows:

Definition 1.1.1. (Graph) A graph is an ordered pair G = (V,E) of two sets V and

E, where V is the set of vertices, nodes or points each representing the objects and E

is the set of edges, arcs or lines which is a subset of V × V , i.e. a relation defined on

V .

A multigraph [15] is a graph that may contain multiple edges between any two ver-

tices, but it does not contain any self loops. A drawing of a geometric representation

of a graph on any surface such that no edges intersect is called embedding [15].

Graph has many variations such as directed graph, undirected graph, simple graph,

finite graph, infinite graph, etc. In a directed graph the relation defined on V is not

symmetric but in undirected graph the relation defined on V is symmetric. In a graph,

loops may occur that is, a vertex has a relation to itself. Also, there may have more

than one edges between two vertices, called parallel edges. Simple graphs have no

multiple edges and loops at all. If in a graph, there are finite number of vertices

and finite number of edges, the graph is called finite. Otherwise, it is infinite. Most

commonly, unless stated otherwise, graph means undirected simple finite graph.

In a directed graph
−→
G = (V,

−→
E ), a walk in

−→
G is an alternating sequence W =

v1
−→e1v2−→e2 . . . vk−1

−→ekvk of vertices vi and arcs −→ei of
−→
G such that tail of −→ei is vi and head

is vi+1 for every i = 1, 2, . . . , k − 1. A walk is closed if v1 = vk. A trail is a walk in

which all arcs are distinct. A path is a walk in which all vertices are distinct. A path

v1, v2, . . . , vk with k ≥ 3 is a cycle if v1 = vk. The length of a path or a cycle is the

number of its edges.

When a vertex vi is an end vertex of some edge ej, vi and ej are said to be incident

with (on or to) each other. Two nonparallel edges are said to be adjacent if they are

incident on a common vertex. Similarly, two vertices are said to be adjacent if they

are the end vertices of the same edge. The number of edges incident on a vertex vi

with self-loops counted twice, is called the degree d(vi) of vertex vi. The degree of

a vertex is sometimes also referred to as its valency. Let us now consider a graph G

with e edges and n vertices v1, v2, . . . , vn. Since each edge contributes two degrees,
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the sum of the degrees of all vertices in G is twice the number of edges in G. That is,
n∑

i=1

d(vi) = 2e.

Definition 1.1.2. A graph in which all vertices are of equal degree is called a regular

graph (or simply a regular).

A vertex having no incident edge is called an isolated vertex. In other words, isolated

vertices are vertices with zero degree. A regular graph of degree 0 has no lines at all. If

G is regular of degree 1, then every component contains exactly one line; if it is regular

of degree 2, every component is a cycle.

The minimum degree among the vertices of G is denoted δ(G) while △(G) is the

largest such number. If δ(G) = △(G) = r, then all points have the same degree and

G is called regular of degree r.

In geometry two figures are thought of as equivalent (and called congruent) if they

have identical behavior in terms of geometric properties. Likewise, two graphs are

thought of as equivalent (and called isomorphic) if they have identical behavior in

terms of graph-theoretic properties. More precisely, two graphs G1 and G2 are said

to be isomorphic (to each other) if there is a one-to-one correspondence between their

vertices and between their edges such that the incidence relationship is preserved.

In other words, suppose that edge e1 is incident on vertices v1 and v2 in G1 then the

corresponding edge e2 in G2 must be incident on the vertices v3 and v4 that correspond

to v1 and v2 respectively.

Definition 1.1.3. A graph G is planar if it can be drawn in the plane with its edges

only intersecting at vertices of G. So the graph is non-planar if it can not be drawn

without crossing.

In 1930, Kuratowski [64] invented some important results on planar graphs. A planar

graph with cycles divides the plane into a set of regions, also called faces. The length

of a face in a plane graph G is the total length of the closed walk(s) in G bounding the

face. The portion of the plane lying outside a graph embedded in a plane is infinite

region. In graph theory, the dual graph of a given planar graph G is a graph which has

a vertex corresponding to each plane region of G, and the graph has an edge joining

two neighboring regions for each edge in G, for a certain embedding of G. Whitney’s

planarity criterion [134] gives a characterization based on the existence of an algebraic
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dual. MacLane’s planarity criterion [66] gives an algebraic characterization of finite

planar graphs. Fraysseix Rosenstiehl’s [44] planarity criterion gives a characterization

based on the existence of a bipartition of the co-tree edges of a depth-first search tree.

Schnyder’s theorem [129] gives a characterization of planarity in terms of partial order

dimension.

In mathematical area of graph theory, an intersection graph is a graph that repre-

sents the pattern of intersection of family of sets. An interval graph is the intersection

of multiset of intervals on real line. Interval graphs are useful in resource alloca-

tion problem in operations research. Besides, interval graphs are used extensively in

mathematical modeling, archaeology, developmental psychology, ecological modeling,

mathematical sociology and organization theory. Tolerance graph [54] is another im-

portant graph. Tolerance graphs were introduced in order to generalize some well

known applications of interval graphs. The main motivation was to model resource

allocation and certain scheduling problems, in which resources, such as rooms and

vehicles, can tolerate sharing among users. Tolerance graphs find in a natural way for

applications in biology and bio informatics. The tolerance graphs find numerous other

applications in constrained-based temporal reasoning, data transmission through net-

works to efficiently scheduling aircraft and crews, as well as contributing to genetic

analysis and studies of the brain. The definition of tolerance graph is given below.

Definition 1.1.4. [54] Tolerance graphs are generalization of interval graphs in which

each vertex can be represented by an interval and a tolerance such that an edge occurs

if and only if the overlap of corresponding intervals is at least as large as the tolerance

associated with one of the vertices. Hence, a graph G = (V,E) is a tolerance graph

if there is a set I = {Iv : v ∈ V } of closed real intervals and a set {Tv : v ∈ V } of

positive real numbers such that (x, y) ∈ E if |Ix ∩ Iy| ≥ min{Tx, Ty}. The collection

⟨I, T ⟩ of intervals and tolerances is called tolerance representation of the graph G.

Bogart [26] et al. introduced proper and unit tolerance graphs. Brigham et al. [28]

investigated different properties of tolerance competition graphs. Mertzios and Zaks

[77] recognized of tolerance and bounded tolerance graphs.

Threshold graphs play an important role in graph theory as well as in several applied

areas such as psychology, computer science, scheduling theory, etc. These graphs can

be used to control the flow of information between processors, much like the traffic
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lights used in controlling the flow of the traffic. Acharya and Vartak [2] introduced

open neighbourhood graphs. Chvatal and Hammer [39] solved set-packing problems

and introduced threshold graphs. Andelic and Simic [12] discussed some notes on the

threshold graphs. The definition of threshold graph is given below.

Definition 1.1.5. [39] A graph G = (V,E) is a threshold graph when there exists

non-negative reals wv, v ∈ V and t such that W (U) ≤ t if and only if U ⊆ V is stable

set where W (U) =
∑
v∈U

wv.

So, G = (V,E) is a threshold graph whenever one can assign vertex weights such

that a set of vertices is stable if and only if its total weight does not exceed a certain

threshold. The threshold dimension, t(G) of a graph G is the minimum number k

of threshold subgraphs T1, T2, . . . , Tk of G that cover the set of edges G. Threshold

partition number, denoted by tp(G), is the minimum number of edge disjoint threshold

subgraphs needed to cover E(G).

Formally, an edge cover of a graph G is a set of edges C ⊂ E such that each vertex

is incident with at least one edge in C. The set C is said to cover the vertices of G.

Definition 1.1.6. [98] Ferrers digraph is a related digraph to threshold graph. A

digraph
−→
G = (V,

−→
E ) is said to be a Ferrers digraph if it does not contain vertices

x, y, z, w, not necessarily distinct, satisfying
−−−→
(x, y),

−−−→
(z, w) ∈

−→
E and

−−−→
(x,w),

−−−→
(z, y) /∈

−→
E .

For a digraph
−→
G = (V,

−→
E ), the underlying loop less graph U(

−→
G ) = (V,E), where

E = {(u, v) : u, v ∈ V, u ̸= v,
−−−→
(u, v) ∈

−→
E }.

A split graph is a graph in which the vertices can be partitioned into a clique and

an independent set.

Alternating 4-cycle of a graph G = (V,E) is a configuration consisting of distinct

vertices a, b, c, d such that (a, b), (c, d) ∈ E and (a, c), (b, d) /∈ E. By considering the

presence or absence of edges (a, d), (b, c), we see that the vertices of alternating 4-cycle

induce a path P4, a square C4, or a matching 2K2.

For the graph G = (V,E) with distinct positive vertex degrees δ1 < δ2 < . . . < δm

and δ0 = 0 (even no vertex of degree 0 exists), δm+1 = |V | − 1 degree partition is the

sequence Di = {v ∈ V : deg(v) = δi} for i = 0, 1, . . . ,m.

Two vertices u and v are incomparable if they do not belong to the same tree or if

there is no path from u to v and no path from v to u.
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Directed graphs are similarly defined except they have directed edges. The formal

definition is given below.

Definition 1.1.7. A directed graph (digraph)
−→
G is a graph which consists of non-

empty finite set V (
−→
G) of elements called vertices and a finite set

−→
E (

−→
G ) of ordered

pairs of distinct vertices called arcs.

The out-neighborhood [57] of a vertex v is the set N+(v) = {u ∈ V − v :
−−−→
(v, u) ∈

−→
E }. Similarly, the in-neighborhood [57] N−(v) of a vertex v is the set {w ∈ V − v :
−−−→
(w, v) ∈

−→
E }. The open neighborhood of a vertex is the union of out-neighborhood

and in-neighborhood of the vertex. A walk in
−→
G is an alternating sequence W =

x1
−→e1x2−→e2 . . . xk−1

−→ekxk of vertices xi and arcs −→ei of
−→
G such that tail of −→ei is xi and

head is xi+1 for every i = 1, 2, . . . , k − 1. A walk is closed if x1 = xk. A trail is a walk

in which all arcs are distinct. A path is a walk in which all vertices are distinct. A

path x1, x2, . . . , xk with k ≥ 3 is a cycle if x1 = xk.

For an undirected graph, open-neighborhood [2] N(x) of the vertex x is the set of

all vertices adjacent to x in the graph. Open neighborhood graph [2] N(G) of G is a

graph whose vertex set is same as G and has an edge between two vertices x and y

in N(G) if and only if N(x) ∩ N(y) ̸= ϕ in G. Closed neighborhood N [x] of x is the

set N(x) ∪ {x}. Closed neighborhood graph N [G] of a graph G is similarly defined,

except has an edge in N [G] if and only if N [x] ∩ N [y] ̸= ϕ in G. (p)-neighborhood

graph (read as open p-neighborhood graph) [27], Np(G) of a graph G is a graph whose

vertex set is same as G and has an edge between two vertices x and y if and only if

|N(x) ∩N(y)| ≥ p (note that |X| is the number of elements in the crisp set X) in G.

Similarly [p]-neighborhood graph (closed p-neighborhood graph) Np[G] [27] is defined

except there is an edge if and only if |N [x] ∩N [y]| ≥ p in G.

In 1968, Cohen [41] introduced the notion of competition graphs in connection with

a problem in ecology. Let
−→
D = (V,

−→
E ) be a digraph, which corresponds to a food web.

A vertex x ∈ V (
−→
D) represents a species in the food web and an arc

−−−→
(x, s) ∈

−→
E (

−→
D)

means that x preys on the species s. If two species x and y have a common prey

s, they will compete for the prey s. Based on this analogy, Cohen defined a graph

which represents the relations of competition among the species in the food web.

The competition graph is also applicable in channel assignment, coding, modelling

of complex economic and energy systems, etc. [101]. Cable et al. [38] introduced
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niche graphs to represent ecological problems. Lundgren and Maybee [71] introduced

food webs with interval competition graph. The large research on competition graphs

can be found in [59–61, 122]. Cho et al. [37] introduced m-step competition graph

of a diagraph. Raychaudhuri and Roberts [101] introduced generalized competition

graphs and their applications. Sano [119, 120] investigated several properties on the

competition-common enemy graphs of digraphs.

Now, the competition graph is defined below.

Definition 1.1.8. [41] The competition graph C(
−→
G ) of a digraph

−→
G = (V,

−→
E ) is an

undirected graph G = (V,E) which has the same vertex set V and has an edge between

distinct two vertices x, y ∈ V if there exist a vertex a ∈ V and arcs
−−−→
(x, a),

−−−→
(y, a) ∈

−→
E

in
−→
G . We say that a graph G is a competition graph if there exists a digraph

−→
G such

that C(
−→
G) = G.

Another kind of competition graph is given below.

Definition 1.1.9. [60] If p is a positive integer, the p-competition graph Cp(
−→
G)

corresponding to the digraph
−→
G is defined to have a vertex set V with an edge be-

tween x and y in V if and only if, for some distinct vertices a1, a2, . . . , ap in V ,
−−−→
(x, a1),

−−−→
(y, a1),

−−−→
(x, a2),

−−−→
(y, a2), . . . ,

−−−−→
(x, ap),

−−−→
(y, ap) are arcs in

−→
G .

The m-step competition graph of a digraph is defined below.

Definition 1.1.10. [37] Let
−→
G be a digraph. Suppose

−→
G represents a food web, where

an arc from x to y implies that x is a predator of y. Let m be a positive integer. If

there is a path from x to z of length m, then we say that x is an m-step predator of

z, and z is its m-step prey. The m-step competition graph Cm(
−→
G ) is a graph with the

same vertices as
−→
G ; the vertices x and y are joined by an edge in Cm(

−→
G ) if they share

a common m-step prey in
−→
G . We say that x and y are in m-step competition if they

share an edge in Cm(
−→
G).

As is the case with most mathematical entities, it is convenient to consider a large

graph as a combination of small ones and to derive its properties from those of the

small ones. Since graphs are defined in terms of the sets of vertices and edges, it is

natural to employ the set-theoretical terminology to define operations between graphs.
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Definition 1.1.11. [55] Let G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) be two simple graphs.

The Cartesian product G∗ = G∗
1×G∗

2 = (V,E) of graphs G∗
1 and G

∗
2. Then V = V1×

V2 and E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) : z ∈ V2, x1y1 ∈ E1}.

The composition of the graph G∗
1 with G∗

2 is denoted by G∗
1[G

∗
2] = (V1 × V2, E

0),

where E0 = E ∪ {(x1, x2)(y1, y2) : x1y1 ∈ E1, x2 ̸= y2} and E is defined in G∗
1 × G∗

2.

Note that G∗
1[G

∗
2] ̸= G∗

2[G
∗
1].

The union of two simple graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) is the simple graph

with the vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G∗
1 and G∗

2 is denoted

by G∗ = G∗
1 ∪G∗

2 = (V1 ∪ V2, E1 ∪ E2).

The join of two simple graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) is the simple graph

with the vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ E ′, where E ′ is the set of all edges

joining the nodes of V1 and V2 and assume that V1 ∩ V2 = ∅. The join of G∗
1 and G∗

2

is denoted by G∗ = G∗
1 +G∗

2 = (V1 ∪ V2, E1 ∪ E2 ∪ E ′).

A (crisp) hypergraph on a set X is a pair H∗ = (X,E) where X is a finite set and E

is a finite family of nonempty subsets of X which satisfy the condition: Every member

of X is contained in some member of E. X is called the vertex set and E is the edge set

of H∗. Multiple or repeated edges are allowed. A hypergraph H∗ = (X,E) is simple if

E contains no repeated edges and whenever E1, E2 ∈ E and E1 ⊂ E2, then E1 = E2.

A hypergraph H∗ = (X;E1, E2, . . . , Ek) where X = {x1, x2, . . . , xn} can be mapped

to a hypergraph H∗∗ = (E; x1, x2, . . . , xn) whose vertices are the points e1, e2, . . . , ek

(corresponding to E1, E2, . . . , Ek), and whose edges are the sets X1, X2, . . . , Xn (cor-

responding to x1, x2, . . . , xn respectively) where Xj = {xj ∈ Ei, i ≤ k}, j = 1, 2, . . . , n.

The hypergraph H∗∗ is called the dual hypergraph of H.

Suppose H∗
1 = (X1, E1) and H∗

2 = (X2, E2) are crisp hypergraphs. Then H∗
1 is

partial hypergraph of H∗
2 if E1 ⊆ E2, this relationship is denoted by H∗

1 ≤ H∗
2 . A

sequence of crisp hypergraphs H∗
i = (Xi, Ei), 1 ≤ i ≤ n is said to be ordered if

H1 < H2 < . . . < Hn. The sequence {H∗
i |1 ≤ i ≤ n} is simply ordered if it is ordered

and if whenever E ∈ Ei+1\Ei, then E ̸⊆ Xi.

Almost all of our traditional tools for formal modeling, reasoning and computing are

crisp, deterministic and explicit in character. Explicitness accepts that parameters of a

system either belong to the system or not. In reality, if complexity of systems increases,

the explicitness of systems reduces. Uncertainty has a pivotal role in any efforts to
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maximize the usefulness of parameters of systems or models. One of the meanings

attributed to the term ‘uncertainty’ is “vagueness”, i.e. the difficulty of making sharp

or precise distinction. This applies even to many terms used in our day to day life,

such as ‘tall’, ‘nice’, ‘congested’, etc. It is important to realize that this imprecision

or vagueness that are characteristic of natural language does not necessarily imply

a loss of accuracy or meaningfulness. A mathematical frame work to describe this

phenomena was suggested by Zadeh [138–141] in his seminal paper entitled “Fuzzy

Sets”. Kosko [65], in his book, calls this as mismatch problem: The world is gray

but science is black and white. Thus, the membership in a fuzzy set is not a matter

of affirmation or denial, but rather a matter of degree. The research on fuzzy sets

is increasing till the date due to its wide applications. Major applications of fuzzy

set include image processing, optimization of networks, video traffic modelling and

classification, shortest path problem, neural networks, etc.

1.2 Fuzzy Sets
In 1965, fuzzy set theory was introduced by Zadeh, Iranian-American Mathematician

and Professor of computer science, as a generalization of Cantor’s set theory. In the

literature of fuzzy sets, the word fuzzy often stands for the word vague (formless,

unclear).

Definition 1.2.1. (Crisp set) A classical set is a collection of well defined objects

with a crisp boundary. A crisp set A is characterized by a characteristic function which

is denoted by χA and is defined by

χA(x) =

 1, if x ∈ A

0, otherwise.

The idea of membership function of a fuzzy set is coming from the characteristic

function of crisp set.

Definition 1.2.2. (Fuzzy set) A fuzzy set A on a set X is characterized by a mapping

m : X → [0, 1], which is called the membership function. A fuzzy set is denoted by

A = (X,mA).

In the theory of fuzzy sets the membership degrees of elements range over the interval

[0, 1]. The membership degree expresses the degree of belongingness of elements to a
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fuzzy set. The membership degree 1 denote that an element completely belongs to

its corresponding fuzzy set and the membership degree 0 denote that an element does

not belong to the fuzzy set. The membership degrees in the interval (0, 1) denote the

partial belongingness to the fuzzy set.

A (crisp) multiset over a non-empty set V is simply a mapping d : V → N , where

N is the set of natural numbers. Yager [135] first discussed fuzzy multisets, although

he used the term “fuzzy bag”. An element of nonempty set V may occur more than

once with possibly the same or different membership values. A natural generalization

of this interpretation of multiset leads to the notion of fuzzy multiset, or fuzzy bag,

over a non-empty set V as a mapping C̃ : V × [0, 1] → N . The membership values of

v ∈ V are denoted by vµj , j = 1, 2, . . . , p where p = max{j : vµj ̸= 0}. So the fuzzy

multiset can be denoted as M = {(v, vµj), j = 1, 2, . . . , p|v ∈ V }.

Operations on fuzzy sets

The fuzzy set theory is extended with definitions for set theoretic operations. Zadeh

first defined basic operations. Over time, other authors have suggested additional and

alternative operations. The following definitions provide an overview of a selection of

fundamental operations on fuzzy set and characteristics in order to provide a general

understanding of fuzzy set theory. Furthermore, different types of set operations that

combine fuzzy sets are presented.

Definition 1.2.3. [138] Let A = (X,mA) and B = (X,mB) be two fuzzy sets in X.

Then,

(i) A ⊆ B if and only if mA(x) ≤ mB(x) (sometimes A ⊆ B is denoted as A ≤ B)

for all x ∈ X,

(ii) A = B if and only if mA(x) = mB(x) for all x ∈ X,

(iii) the union of two fuzzy sets A and B is denoted by A ∪ B and is defined by the

membership function mA∪B(x) = max{mA(x),mB(x)} for all x ∈ X,

(iv) the intersection of two fuzzy sets A and B is denoted by A∩B and is defined by

the membership function mA∩B(x) = min{mA(x),mB(x)} for all x ∈ X.

Definition 1.2.4. (Cut level set) [83] Let A = (X,mA) be a fuzzy set. The t-cut

level set of A is the crisp set At = {x : mA(x) > t}.
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The support of A is supp(A) = {x ∈ X | mA(x) ̸= 0}. The core of A is the crisp

set of all members whose membership values are 1. A is non trivial if supp(A) is

nonempty. The height of A is h(A) = max{mA(x) | x ∈ X}. A is normal if h(A) = 1.

The family of all fuzzy subsets is denoted by F(x).

A fuzzy set A = (X,mA) is said to be convex if its membership value satisfies the

following conditionmA[λx1+(1−λ)x2] ≥ min[mA(x1),mA(x2)] for any x1, x2 ∈ X and

λ ∈ [0, 1]. The families of sets most often considered in connection with intersection

graphs are families of intervals of a linearly ordered set. Let X be a linearly ordered

set. A fuzzy interval I on X is normal, convex fuzzy subset of X. A fuzzy number

is a real fuzzy interval. The cardinality of a fuzzy set [140] A = (X,mA) is a positive

real number c(A) or |A| is the sum of membership values of the elements of X.

1.3 Fuzzy graphs

Nowadays, graphs do not represent all the systems properly due to the uncertainty

or haziness of the parameters of systems. For example, a social network may be repre-

sented as a graph where vertices represent an account (person, institution, etc.) and

edges represent the relation between the accounts. If the relations among accounts

are to be measured as good or bad according to the frequency of contacts among the

accounts, fuzziness should be added to representation. This and many other problems

lead to define fuzzy graphs. Rosenfeld [102] first introduced the fuzzy graphs consider-

ing fuzzy relations on fuzzy sets in 1975. Using this concept of fuzzy graph, Koczy [63]

used fuzzy graphs in the evaluation and optimization of networks. After that fuzzy

graph theory is a vast research area. Applications of fuzzy graph include data mining,

image segmentation, clustering, image capturing, networking, communication, plan-

ning, scheduling.

The definition of a fuzzy graph is given below.

Definition 1.3.1. (Fuzzy graph) [102] A fuzzy graph ξ = (V, σ, µ) is a non-empty

set V together with a pair of functions σ : V → [0, 1] and µ : V × V → [0, 1] such

that for all x, y ∈ V , µ(x, y) ≤ min{σ(x), σ(y)}, where σ(x) and µ(x, y) represent the

membership values of the vertex x and of the edge (x, y) in ξ respectively.

A loop at a vertex x in a fuzzy graph is represented by µ(x, x) ̸= 0. An edge is

non-trivial if µ(x, y) ̸= 0.
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An example of a fuzzy graph is shown in Figure 1.1.
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y y
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2

1

1

1
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Figure 1.1: An example of fuzzy graph

Some terminologies of fuzzy graphs

Fuzzy subgraph of a fuzzy graph is a fuzzy graph whose vertex set is a subset of the

vertex set of the given fuzzy graph. The formal definition is given below.

Definition 1.3.2. (Fuzzy subgraph) [83] The fuzzy graph ξ′ = (V ′, τ, ν) is called a

fuzzy subgraph of ξ if τ(x) ≤ σ(x) for all x ∈ V ′ and ν(x, y) ≤ µ(x, y) for all x, y ∈ V ′

where V ′ ⊂ V .

For the fuzzy graph ξ = (V, σ, µ), an edge (x, y) is called strong [42] if

1

2
{σ(x) ∧ σ(y)} ≤ µ(x, y)

and it is called weak, otherwise. The strength of an edge (u, v) is denoted by

I(u,v) =
µ(u, v)

σ(u) ∧ σ(v)
.

An underlying crisp graph of a fuzzy graph ξ = (V, σ, µ) is a crisp graph ξ∗ =

(V, σ∗, µ∗) where σ∗ = {u ∈ V (ξ) |σ(u) > 0} and µ∗ = {(u, v) |µ(u, v) > 0}.

A path P in a fuzzy graph ξ = (V, σ, µ) is a sequence of distinct vertices v1, v2, . . . ,

vn(n ≥ 2) such that µ(vi, vi+1) > 0, i = 1, 2, . . . , (n − 1). Here, (n − 1) is called the

length of the path P . A path P is a cycle if v1 = vn and n ≥ 4. That is P = (V, σ, µ)

is a cycle in ξ if and only if (V, σ∗, µ∗) is a cycle in ξ∗. A cycle P = (V, σ, µ) is a fuzzy

cycle if it contains more than one weak edge (i.e., there is no unique (x, y) ∈ ν∗ such

that µ(x, y) = ∧{µ(u, v) : (u, v) ∈ ν∗}). Notice that, if a fuzzy graph is complete then

the fuzzy graph is strong, but not vice versa. A fuzzy subgraph ξ′ = (V ′, τ, ν) of a

fuzzy graph ξ = (V, σ, µ) is said to be a fuzzy clique if (ξ′)∗ is a clique and every cycle

in ξ′ is a fuzzy cycle.
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The union of two fuzzy graphs ξ1 = (V1, σ1, µ1) and ξ2 = (V, σ2, µ2) is denoted

by ξ1 ∪ ξ2 = (V1 ∪ V2, σ1 ∪ σ2, µ1 ∪ µ2), where for all x ∈ V1 ∪ V2, (σ1 ∪ σ2)(x) =

σ1(x) ∨ σ2(x) with σ1(x) = 0 whenever x /∈ σ∗
1 and σ2(x) = 0 whenever x /∈ σ∗

2, for

all (x, y) ∈ V1 ∪ V2 × V1 ∪ V2, (µ1 ∪ µ2)(x, y) = µ1(x, y) ∨ µ2(x, y) with µ1(x, y) = 0

whenever (x, y) /∈ µ∗
1 and µ2(x, y) = 0 whenever (x, y) /∈ µ∗

2.

The strength of connectedness between two vertices u and v is

µ∞(u, v) = sup{µk(u, v)|k = 1, 2, · · · }, where µk(u, v) = sup{µ(u, u1) ∧ µ(u1, u2) ∧

. . . ∧ µ(uk−1, v)|u1, u2, . . . , uk−1 ∈ V }. In a fuzzy graph, an arc (u, v) is said to be

strong arc [73] or strong edge, if µ(u, v) ≥ µ∞(u, v) and otherwise it is weak.

Definition 1.3.3. A fuzzy graph ξ = (V, σ, µ) is said to be bipartite if the vertex set

V can be partitioned into two nonempty sets V1 and V2 such that µ(v1, v2) = 0 if

v1, v2 ∈ V1 or v1, v2 ∈ V2. Further, if µ(v1, v2) = min{σ(v1), σ(v2)} for all v1 ∈ V1 and

v2 ∈ V2, then ξ is called a complete bipartite fuzzy graph.

If an edge (x, y) of a fuzzy graph satisfies the condition µ(x, y) = min{σ(x), σ(y)},

then this edge is called effective edge [86]. Two vertices are said to be effective adjacent

if they are the end vertices of the same effective edge. Then the effective incident degree

of a fuzzy graph is defined as number of effective incident edges on a vertex v. If all

the edges of a fuzzy graph are effective, then the fuzzy graph becomes complete fuzzy

graph. A pendent vertex in a fuzzy graph is defined as a vertex of an effective incident

degree one. A fuzzy edge is called a fuzzy pendant edge [113], if one end vertex is fuzzy

pendant vertex. The membership value of the pendant edge is the minimum among

the membership values of the end vertices.

A fuzzy graph ξ = (V, σ, µ) is said to be regular [85] if d(v) = k, a positive real

number, for all v ∈ V . If each vertex of ξ has same total degree k, then ξ is said to

be a totally regular fuzzy graph. A fuzzy graph is said to be irregular [88], if there is

a vertex which is adjacent to vertices with distinct degrees. A fuzzy graph is said to

be neighbourly irregular [88], if every two adjacent vertices of the graph have different

degrees. A fuzzy graph is said to be totally irregular, if there is a vertex which is

adjacent to vertices with distinct total degrees. If every two adjacent vertices have

distinct total degrees of a fuzzy graph then it is called neighbourly total irregular [88].

A fuzzy graph is called highly irregular [88] if every vertex of G is adjacent to vertices

with distinct degrees.
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Like complete graph, the definition of complete fuzzy graph is given below.

Definition 1.3.4. (Complete fuzzy graph) [10] A fuzzy graph ξ = (V, σ, µ) is

complete if µ(u, v) = min{σ(u), σ(v)} for all u, v ∈ V , where (u, v) denotes the edge

between the vertices u and v.

The complement of fuzzy graph ξ = (V, σ, µ) [83] is the fuzzy graph ξ′ = (V, σ′, µ′)

where σ′(u) = σ(u) for all u ∈ V and

µ′(u, v) =

 0, if µ(u, v) > 0

σ(u) ∧ σ(v), otherwise.

Operations on fuzzy graphs

Many operations are defined on fuzzy graphs. Some of them are introduced here.

Definition 1.3.5. [10] The semi-strong product of two fuzzy graphs G1 = (V1, σ1, µ1)

and G2 = (V2, σ2, µ2) of the graphs G
∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively, where

it is assumed that V1∩V2 = ∅, is defined to be the fuzzy graph G1•G2 = (σ1•σ2, µ1•µ2)

of the graph G∗ = (V1 × V2, E) such that E = {(u, v1)(u, v2)|u ∈ V1, v1v2 ∈ E2} ∪

{(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} and

(i) (σ1 • σ2)(u, v) = σ1(u) ∧ σ2(v) for all (u, v) ∈ V1 × V2,

(ii) (µ1 • µ2)((u, v1)(u, v2)) = σ1(u) ∧ µ2(v1v2),

(iii) (µ1 • µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧ µ2(v1v2).

Definition 1.3.6. [10] The strong product of two fuzzy graphs G1 = (V1, σ1, µ1) and

G2 = (V2, σ2, µ2) of the graphs G
∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively, where it is

assumed that V1 ∩V2 = ∅, is defined to be the fuzzy graph G1⊗G2 = (σ1⊗σ2, µ1⊗µ2)

of the graph G∗ = (V1 × V2, E) such that E = {(u, v1)(u, v2)|u ∈ V1, v1v2 ∈ E2} ∪

{(u1, w)(u2, w)|w ∈ V2, u1u2 ∈ E1} ∪ {(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} and

(i) (σ1 ⊗ σ2)(u, v) = σ1(u) ∧ σ2(v) for all (u, v) ∈ V1 × V2,

(ii) (µ1 ⊗ µ2)((u, v1)(u, v2)) = σ1(u) ∧ µ2(v1v2),

(iii) (µ1 ⊗ µ2)((u1, w)(u2, w)) = σ2(w) ∧ µ1(u1u2),

(iv) (µ1 ⊗ µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧ µ2(v1v2).

Definition 1.3.7. [10] The direct product of two fuzzy graphs G1 = (V1, σ1, µ1) and

G2 = (V2, σ2, µ2) of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively such that
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V1 ∩ V2 = ∅, is defined to be the fuzzy graph G1 ⊓G2 = (σ1 ⊓ σ2, µ1 ⊓ µ2) of the graph

G∗ = (V1 × V2, E) such that E = {(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} and

(i) (σ1 ⊓ σ2)(u, v) = σ1(u) ∧ σ2(v) for all (u, v) ∈ V1 × V2,

(ii) (µ1 ⊓ µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧ µ2(v1v2).

Directed fuzzy graphs (or simply fuzzy digraph) are the fuzzy graphs in which the

fuzzy relations between edges are not necessarily symmetric. The definition of directed

fuzzy graph is as follows:

Definition 1.3.8. (Directed fuzzy graph) [82] Directed fuzzy graph
−→
ξ = (V, σ, µ) is

a non-empty set V together with a pair of functions σ : V → [0, 1] and µ : V×V → [0, 1]

such that for all x, y ∈ V , µ
−−−→
(x, y) ≤ σ(x) ∧ σ(y).

Since −→µ is well defined, a fuzzy digraph has at most two directed edges (which

must have opposite directions) between any two vertices. Here −→µ (u, v) is denoted

by the membership value of the edge
−−−→
(u, v). The loop at a vertex x is represented

by −→µ (x, x) ̸= 0. Here −→µ need not be symmetric as −→µ (x, y) and −→µ (y, x) may have

different values. The underlying crisp graph of a directed fuzzy graph is the graph

similarly obtained except the directed arcs are replaced by undirected edges.

There are many variations in fuzzy graphs such as (i) Fuzzy intersection graph,

(ii) Fuzzy hypergraph, (iii) Fuzzy threshold graph, (iv) Fuzzy tolerance graph, (v) Fuzzy

planar graph, (vi) Interval-valued fuzzy graph, (vii) Intuitionistic fuzzy graph, (viii) Bipo-

lar fuzzy graph, (ix) m-polar fuzzy graph, etc.

We now briefly describe these one by one as follows:

1.3.1 Fuzzy intersection graph

McAllister [76] first introduced the fuzzy intersection graph. The definition of fuzzy

intersection graph is given below.

Definition 1.3.9. Let F= {A1 = (X,m1), A2 = (X,m2), . . . , An = (X,mn)} be a

finite family of fuzzy sets defined on a set X and consider F as crisp vertex set V =

{v1, v2, . . . , vn}. The fuzzy intersection graph of F is the fuzzy graph Int(F)= (V, σ, µ)

where σ : V → [0, 1] is defined by σ(vi) = h(Ai) and µ : V × V → [0, 1] is defined by

µ(vi, vj) =

 h(Ai ∩ Aj), if i ̸= j

0, if i = j.
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1.3.2 Fuzzy hypergraphs

Goetschel [51] introduced fuzzy hypergraphs. The definition of fuzzy hypergraph is

given below:

Definition 1.3.10. Let X be a finite set and let E be a finite family of nontrivial

fuzzy sets on X (or subsets of X) such that X =
∪
{suppA|A ∈ E}. Then the pair

H= (X, E) is a fuzzy hypergraph on X.

X and E are respectively vertex set and fuzzy edge set of H. The height of H,

h(H), is defined by h(H) = max{h(A)|A ∈ E}. A fuzzy hypergraph is simple if E

has no repeated fuzzy edges and whenever A,B ∈ E and A ⊆ B, then A = B. A

fuzzy hypergraph H= (X, E) is support simple if whenever A,B ∈ E , A ⊆ B and

supp(A) = supp(B), then A = B. Suppose A = (X1, µ) ∈ ξ,X1 ⊆ X and c ∈ (0, 1].

The c−cut of A is defined by Ac = {x ∈ X|µ(x) ≥ c}. If Ec = {Ac| ∈ E/{ϕ}} and

Xc =
∪
{Ac|A ∈ E}. If Ec ̸= ϕ, then the (crisp) hypergraph Hc = (Xc, Ec) is the c−

level hypergraph of H.

Suppose H1 = (X, E1) and H2 = (X, E2) are fuzzy hypergraphs. Then H1 is partial

hypergraph of H2 if E1 ⊆ E2. A fuzzy set A = (X,µ) with µ : X → [0, 1] is an ele-

mentary fuzzy set if µ is constant function or µ has range {0, a}, 0 ̸= a. An elementary

fuzzy hypergraph is a fuzzy hypergraph in which all fuzzy edges are elementary.

A fuzzy hypergraph H= (X, E) is a m tempered fuzzy hypergraph of a crisp hyper-

graph H∗ = (X,E) if there exists a fuzzy set A = (X,m) such that m : X → (0, 1]

and E= {γEi
|Ei ∈ E} where

γEi
(x) =

 min{m(e)|e ∈ Ei} if x ∈ Ei

0, otherwise

A fuzzy transversal T = (X, τ) of H is a fuzzy set defined on X with the property

that τh(A) ∩ µh(A) ̸= ϕ for each A ∈ E (recall that h(A) is the height of A). A minimal

fuzzy transversal T for H is a transversal of H with the property that if T1 < T , then

T1 is not a fuzzy transversal of H.

1.3.3 Fuzzy threshold graph

Multi-processor scheduling, bin packing, and the knapsack problem are the different

variations of set-packing problems and are being very well studied problem in com-

binatorial optimization. These problems have large impact on design and analysis of
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fuzzy threshold graph. All of these problems involve packing items of different sizes

into bins of finite capacities. Consider a parallel system consists of a set of independent

processing units each of which has a set of time-sharable resources such as CPU, one

or more disks, network controllers, etc. Here all units have variable capacities as well

as resources. Fuzzy threshold graph is defined as follows.

Definition 1.3.11. (Fuzzy threshold graph) [109] A fuzzy graph G = (V, σ, µ) is

called a fuzzy threshold graph if there exists a non-negative real number t such that∑
u∈U

σ(u) ≤ t if and only if U ⊆ V is an independent set in G.

1.3.4 Fuzzy tolerance graph

Fuzzy tolerance of a fuzzy interval is denoted by T and is defined by an arbitrary

fuzzy interval whose core length is a positive real number. If the real number is taken

as L and |ik − ik−1| = L where ik, ik−1 ∈ R, a set of real numbers, then the fuzzy

tolerance is a fuzzy set of the interval [ik−1, ik].

Fuzzy tolerance graph is defined by Samanta and Pal in [108]. They defined the

fuzzy tolerance graph G = (V, σ, µ) as the fuzzy intersection graph of finite family

of fuzzy intervals I = {I1, I2, . . . , In} on the real line along with tolerances T =

{T1, T2, . . . , Tn} associated to each vertex of vi ∈ V , where, σ : V → [0, 1] is defined by

σ(vi) = h(Ii) = 1 for all vi ∈ V and µ : V × V → [0, 1] is defined by

µ(vi, vj) =



1, if c(Ii ∩ Ij) ≥ min{c(Ti), c(Tj)}
s(Ii∩Ij)−min{s(Ti),s(Tj)}

s(Ii∩Ij) h(Ii ∩ Ij), else if s(Ii ∩ Ij) ≥

min{s(Ti), s(Tj)}

0, otherwise.

1.3.5 Fuzzy planar graph

Day by day, the necessity of flyovers, subway tunnels, pipelines, metro lines increases

due to demand in human kind. Number of crossing of routes increases the chance of

accident. The cost of crossing of subways in underground is also high. But, the under-

ground routes reduce the traffic jam. The system of routes without crossing is ideal for

a city. But, lack of space and money often requires crossings of routes. It is true that,

two congested crossing of routes is more safer than a congested and non-congested road
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crossing. The term “congested” has no specific meaning and measurement. To under-

stand the exact load of a route we generally use the terms for routes like “congested”,

“very congested”, “highly congested” routes, etc. These linguistic terms can be dealt

in mathematics by giving some positive membership values and negative membership

values in fuzzy sense. In mathematical sense, strong route means highly congested

route and weak route means low congested route. Thus crossing between a strong

route and a weak route is better than the crossing between two strong routes. That

is, in city planning, crossing between strong routes and weak routes are allowed. The

terms “strong route” and “weak route” lead strong edge and weak edge of a bipolar

fuzzy graph respectively. And the approval of using the crossing between strong and

weak edges lead to the concept of bipolar fuzzy planar graph. Abdul-jabbar et al. [1]

and Nirmala and Dhanabal [94] introduced the concept of fuzzy planar graph. Re-

cently, Samanta and Pal [114, 115] introduced fuzzy planar graph in a different way

where crossing of edges are allowed and studied different properties of it.

1.3.6 Fuzzy competition graph

Fuzzy competition graph is a generalization of competition graph. This graph is

related to fuzzy digraph. Fuzzy k-competition graph and m-step competition graph

are the variations of fuzzy competition graph. Before defining fuzzy competition graph,

we define some related terms.

Fuzzy out-neighbourhood [112] of a vertex v ∈ V of a directed fuzzy graph
−→D =

(V, σ, ν) is the fuzzy set N+(v) = (X+
v ,m

+
v ), where X

+
v = {u|ν(−→v, u) > 0} and m+

v :

X+
v → [0, 1] is defined by m+

v = ν(−→v, u).

Fuzzy in-neighbourhood [112] of a vertex v ∈ V of a directed fuzzy graph
−→
D =

(V, σ, ν) is the fuzzy set N−(v) = (X−
v ,m

−
v ), where X

−
v = {u|ν(−→u, v) > 0} and m−

v :

X−
v → [0, 1] is defined by m−

v = ν(−→u, v).

Fuzzy neighbourhood [112] of a vertex v ∈ V of a fuzzy graph G = (V, σ, µ) is the

fuzzy set N (v) = (Xv,mv), where Xv = {u|µ(u, v) > 0} and mv : Xv → [0, 1] is

defined by mv = µ(u, v).

The m-step fuzzy out-neighbourhood [115] of a vertex v ∈ V of a directed fuzzy

graph
−→
D = (V, σ, ν) is the fuzzy set N+

m(v) = (X+
v ,m

+
v ), where X

+
v = {u|−→µm(

−→v, u) =

min{ν(−−→v, u1), ν(−−−→u1, u2), . . . , ν(
−−−→um, u)} > 0, vu1u2 . . . umu is a path from v to u} and

m+
v : X+

v → [0, 1] is defined by m+
v = −→µm(

−→v, u). If there is more than one fuzzy
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path of length m then we should take the path which has minimum membership value

−→µm(
−→v, u).

The definition of fuzzy competition graph is as follows.

Definition 1.3.12. (Fuzzy competition graph) [112] The fuzzy competition graph

of a fuzzy digraph
−→
D = (V, σ, ν) is an undirected graph C(

−→
D ) = (V, σ, µ) which has the

same fuzzy vertex set as in
−→
D and has a fuzzy edge between two vertices u, v ∈ V in

C(
−→
D ) if and only if N+(u) ∩ N+(v) is non-empty fuzzy set in

−→
D . The membership

value of the edge (u, v) in C(
−→
D ) is µ(u, v) = (σ(u) ∧ σ(v))h(N+(u) ∩N+(v)).

The m-step fuzzy competition graph [115] of a digraph
−→
D = (V, σ, ν) is denoted by

Cm(
−→
D ) and is defined by Cm(

−→
D ) = (V, σ, µ) where µ(u, v) = (σ(u) ∧ σ(v))h(N+

m(u) ∩

N+
m(v)) for all u, v ∈ V .

There is another variation of fuzzy competition graph, called p-competition fuzzy

graph which is defined below.

Definition 1.3.13. (p-competition fuzzy graph) [112] Let p be a positive integer.

The p-competition fuzzy graph Cp(
−→
ξ ) = (V, σ, ν) of a fuzzy digraph

−→
ξ = (V, σ,−→µ ) is an

undirected fuzzy graph which has the same fuzzy vertex set as in
−→
ξ and has a fuzzy edge

between two vertices x and y of V in Cp(
−→
ξ ) if and only if | supp(N+(x)∩N+(y))| ≥ p.

The edge membership value of the edge (x, y) in Cp(
−→
ξ ) is ν(x, y) =

n− p+ 1

n
[σ(x) ∧

σ(y)]h(N+(x) ∩N+(y)) where n = | supp(N+(x) ∩N+(y))|.

Therefore, fuzzy p-competition graphs are graphs with edges between the vertices,

if the vertices have exactly p number of common neighbourhoods. On the other hand,

there is another variation of competition graph known as fuzzy k-competition graph

[112], where edges between two vertices exists if the minimum membership value of

the common out-neighbourhoods of the vertices is more than positive real number k.

Formal definition is given below.

Definition 1.3.14. (Fuzzy k-competition graph) [112] Let k be a non-negative

number. The fuzzy k-competition graph Ck(
−→
G ) = (V, σ, ν) of a fuzzy digraph

−→
G =

(V, σ, µ) is an undirected fuzzy graph which has the same vertex set as in
−→
G and has a

fuzzy edge between two vertices x, y ∈ V in Ck(
−→
G) if and only if |N+(x)∩N+(y)| > k.

The edge membership value between x and y in Ck(
−→
G) is ν(x, y) =

k′ − k

k′
[σ(x) ∧

σ(y)]h(N+(x) ∩N+(y)) where k′ = |N+(x) ∩N+(y)|.
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1.3.7 Interval-valued fuzzy graph

An interval number [3] D is an interval [a−, a+] with 0 ≤ a− ≤ a+ ≤ 1. For two

interval numbers D1 = [a−1 , a
+
1 ] and D2 = [a−2 , a

+
2 ], we have the following:

(i) D1 +D2 = [a−1 , a
+
1 ] + [a−2 , a

+
2 ] = [a−1 + a−2 − a−1 · a−2 , a+1 + a+2 − a+1 · a+2 ],

(ii) min{D1, D2} = [min{a−1 , a−2 },min{a+1 , a+2 }],

(iii) max{D1, D2} = [max{a−1 , a−2 },max{a+1 , a+2 }],

(iv) D1 ≤ D2 ⇔ a−1 ≤ a−2 and a+1 ≤ a+2 ,

(v) D1 = D2 ⇔ a−1 = a−2 and a+1 = a+2 ,

(vi) D1 < D2 ⇔ D1 ≤ D2 but D1 ̸= D2,

(vii) kD1 = [ka−1 , ka
+
2 ], where 0 ≤ k ≤ 1.

An interval-valued fuzzy set A on a set X is a mapping µA : X → [0, 1]×[0, 1], called

the membership function, i.e. µA(x) = [µ−
A(x), µ

+
A(x)]. The support of A is supp(A) =

{x ∈ X|µ−
A(x) ̸= 0} and the core of A is core(A) = {x ∈ X|µ−

A(x) = 1}. The support

length is s(A) = | supp(A)| and the core length is c(A) = | core(A)|. The height of A is

h(A) = max{µA(x)|x ∈ X} = [h−(A), h+(A)] = [max{µ−
A(x)},max{µ+

A(x)}], ∀x ∈ X.

Let F = {A1, A2, · · · , An} be a finite family of interval-valued fuzzy subsets on a

set X. The intersection of two interval-valued fuzzy sets (IVFSs) A1 and A2 is an

interval-valued fuzzy set defined by

A1 ∩ A2 =
{(
x,
[
min{µ−

A1
(x), µ−

A2
(x)},min{µ+

A1
(x), µ+

A2
(x)}

])
: x ∈ X

}
.

The union of two IVFSs A1 and A2 is a IVFS defined by

A1 ∪ A2 =
{(
x,
[
max{µ−

A1
(x), µ−

A2
(x)},max{µ+

A1
(x), µ+

A2
(x)}

])
: x ∈ X

}
.

An interval-valued fuzzy relation B on a set X is denoted as µB : X × X →

[0, 1]× [0, 1] such that

µ−
B(x, y) ≤ min{µ−

A(x), µ
−
A(y)}

µ+
B(x, y) ≤ min{µ+

A(x), µ
+
A(y)}

An interval-valued fuzzy graph [4] of a crisp graph G∗ = (V,E) is a graph G =

(V,A,B), where A = [µ−
A, µ

+
A] is an interval-valued fuzzy set on V and B = [µ−

B, µ
+
B] is

an interval-valued fuzzy relation on E. An edge (x, y), x, y ∈ V in an interval-valued
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fuzzy graph is said to be independent strong if µ−
B(x, y) ≥ 1

2
min{µ−

A(x), µ
−
A(y)}. An

interval-valued fuzzy digraph
−→
G = (V,A,

−→
B ) is an interval-valued fuzzy graph where

the fuzzy relation
−→
B is antisymmetric.

An interval-valued fuzzy graph G = (V,A,B) is said to be complete interval-

valued fuzzy graph if µ−(x, y) = min{σ−(x), σ−(y)} and µ+(x, y) = min{σ+(x), σ+(y)},

∀x, y ∈ V .

1.3.8 Intuitionistic fuzzy graph

An intuitionistic fuzzy set [13, 14] A on the set X is characterized by a mapping

m : X → [0, 1], which is called as a membership function and n : X → [0, 1], which

is called as a non-membership function. An intuitionistic fuzzy set is denoted by

A = (X,mA, nA). The membership function of the intersection of two intuitionistic

fuzzy sets A = (X,mA, nA) and B = (X,mB, nB) is defined as mA∩B = min{mA,mB}

and the non-membership function nA∩B = max{nA, nB}. We write A = (X,mA, nA) ⊆

B = (X,mB, nB) if and only if mA(x) ≤ mB(x) and nA(x) ≥ nB(x) for all x ∈ X.

Parvathi and Karunambigai [97] defined the intuitionistic fuzzy graph as below.

Definition 1.3.15. [97] An intuitionistic fuzzy graph is of the form G = (V, σ, µ)

where σ = (σ1, σ2), µ = (µ1, µ2) and V = {v0, v1, . . . , vn} such that

(i) σ1 : V → [0, 1] and σ2 : V → [0, 1], denote the degree of membership and non-

membership functions of the vertex set V respectively and 0 ≤ σ1(vi)+σ2(vi) ≤ 1

for every vi ∈ V (i = 1, 2, . . . , n),

(ii) µ1 : V ×V → [0, 1] and µ2 : V ×V → [0, 1], where µ1(vi, vj) and µ2(vi, vj) denote

the the degree of membership and non-membership value of the edge (vi, vj) respec-

tively such that µ1(vi, vj) ≤ min{σ1(vi), σ1(vj)} and µ2(vi, vj) ≥ max{σ2(vi), σ2(vj)},

0 ≤ µ1(vi, vj) + µ2(vi, vj) ≤ 1 for every (vi, vj) ∈ V × V .

1.3.9 Bipolar fuzzy graph

In 1994, the concept of bipolar fuzzy set is introduced by Zhang [143] as a general-

ization of fuzzy set. A bipolar fuzzy set is a generalization of Zadeh’s fuzzy set. The

range of the membership value of a bipolar fuzzy set is [−1, 1]. In a bipolar fuzzy

set, the membership value 0 of an element means that the element is not connected

with the corresponding property, the membership value within (0, 1] of an element



1.3. FUZZY GRAPHS 22

implies that the element satisfies the property with certain negotiations (higher the

value indicates that there is lower amount of negotiations), and the negative member-

ship value within [−1, 0) of an element means that the element satisfies the implicit

counter-property to some extent.

Let X be a non-empty set. A bipolar fuzzy set [142, 143] B in X is characterized

by B = {(x, µP
B(x), µ

N
B (x))|x ∈ X}, where µP

B : X → [0, 1] and µN
B : X → [−1, 0] are

positive membership function and negative membership function respectively. The

positive membership value µP
B(x) is used to denote the amount which the element

x satisfies the property corresponding to a bipolar fuzzy set B, and the negative

membership value µN
B (x) denotes the amount which the element x satisfies the implicit

counter-property to some extent corresponding to a bipolar fuzzy set B.

For every two bipolar fuzzy sets A = (µP
A, µ

N
A ) and B = (µP

B, µ
N
B ) on X,

(A ∩B)(x) = (min(µP
A(x), µ

P
B(x)),max(µ

N
A (x), µ

N
B (x))).

(A ∪B)(x) = (max(µP
A(x), µ

P
B(x)),min(µ

N
A (x), µ

N
B (x))).

Akram [3, 5, 6] introduced bipolar fuzzy graphs, regular bipolar fuzzy graphs and

investigated some properties of it. Later on, Yang et al. [136] modified their definition

of bipolar fuzzy graphs and introduced generalized bipolar fuzzy graphs. The definition

is given as follows.

Definition 1.3.16. (Generalized bipolar fuzzy graph) [136] A bipolar fuzzy graph

of a graph G∗ = (V,E) is a pair G = (V,A,B) where A = (µP
A, µ

N
A ) is a bipolar fuzzy

set in V and B = (µP
B, µ

N
B ) is a bipolar fuzzy relation on Ṽ 2 such that µP

B(xy) ≤

min{µP
A(x), µ

P
A(y)}, µN

B (xy) ≥ max{µN
A (x), µ

N
A (y)} for all xy ∈ Ṽ 2 and µP

B(xy) =

µN
B (xy) = 0 for all xy ∈ (Ṽ 2 − E).

1.3.10 m-polar fuzzy graph

In 2014, Chen et al. [36] introduced the notion of m-polar fuzzy set as a generaliza-

tion of bipolar fuzzy set and showed that bipolar fuzzy sets and 2-polar fuzzy sets are

cryptomorphic mathematical notions and that we can obtain concisely one from the

corresponding one. The idea behind this is that “multipolar information” (not just

bipolar information which correspond to two-valued logic) exists because data of real

world problems are sometimes come from multiple agents. For example, the exact de-

gree of telecommunication safety of mankind is a point in [0, 1]n (n ≈ 7×109) because
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different persons have been monitored different times. There are many other exam-

ples such as truth degrees of a logic formula which are based on n logic implication

operators (n ≥ 2), similarity degrees of two logic formulas which are based on n logic

implication operators (n ≥ 2), ordering results of a magazine, ordering results of a

university, and inclusion degrees (accuracy measures, rough measures, approximation

qualities, fuzziness measures, and decision preformation evaluations) of a rough set.

Here [0, 1]m (m-power of [0,1]) is considered to be a poset with point-wise order ≤,

where m is a natural number. ≤ is defined by x ≤ y ⇔ for each i = 1, 2, . . . ,m;

pi(x) ≤ pi(y) where x, y ∈ [0, 1]m and pi : [0, 1]m → [0, 1] is the i-th projection

mapping.

Definition 1.3.17. (m-polar fuzzy set) [36] An m-polar fuzzy set (or a [0, 1]m-set)

on X is a mapping A : X → [0, 1]m. The set of all m-polar fuzzy sets on X is denoted

by m(X).

Definition 1.3.18. (Operations) [45] Let A and B are two m-polar fuzzy sets in X.

Then A∪B and A∩B are also m-polar fuzzy sets in X defined by: for i = 1, 2, . . . ,m

and x ∈ X,

pi ◦ (A ∪B)(x) = max{pi ◦ A(x), pi ◦B(x)},

pi ◦ (A ∩B)(x) = min{pi ◦ A(x), pi ◦B(x)},

A ⊆ B if and only if pi ◦ A(x) ≤ pi ◦B(x) and

A = B if and only if pi ◦ A(x) = pi ◦B(x).

Definition 1.3.19. (m-polar fuzzy relation) [45] Let A be an m-polar fuzzy set on

a set X. An m-polar fuzzy relation on A is an m-polar fuzzy set B of X×X such that

B(x, y) ≤ min{A(x), A(y)} for all x, y ∈ X, i.e. pi◦B(x, y) ≤ min{pi◦A(x), pi◦A(y)}

for all x, y ∈ X, i = 1, 2, . . . ,m. An m-polar fuzzy relation B on X is called symmetric

if B(x, y) = B(y, x) for all x, y ∈ X.

Chen et al. [36] defined m-polar fuzzy graph in the following way:

Definition 1.3.20. (m-polar fuzzy graph) [36] An m-polar fuzzy graph with an un-

derlying pair (V,E) (where E ⊆ V ×V is symmetric) is defined to be a pair G = (A,B),

where A : V → [0, 1]m and B : E → [0, 1]m satisfying B(xy) ≤ min{A(x), A(y)} for

all xy ∈ E.
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1.4 Review of literature

After introduction of fuzzy graphs, several researches have been done. McAllis-

ter [76] characterised the fuzzy intersection graphs. After that Craine [40] charac-

terized fuzzy interval graphs. Then, Goetschel [51] introduced fuzzy hypergraphs as

an extension of crisp hypergraphs. He also described another important branch of

fuzzy hypergraph theory in his paper “Fuzzy colorings of fuzzy hypergraphs” [52].

In another paper, Goetschel and Voxman introduced the intersection in fuzzy hyper-

graphs [53]. Somasundaram et al. [123] discussed domination in fuzzy graphs. Morde-

son and Nair [81] defined successor and source of (fuzzy) finite state machines and

(fuzzy) directed graphs. Mordeson and Nair [83] has given the details of fuzzy graphs

and hypergraphs. After that, fuzzy line graphs, the operations on fuzzy graphs and

cycles and cocyles of fuzzy graphs was introduced by Mordeson and Peng [78–80]. Nair

et al. [89–91] introduced triangle and parallelogram laws on fuzzy graphs, cliques and

fuzzy cliques in fuzzy graphs, perfect and precisely perfect fuzzy graphs. Bhutani and

Battou [22] described M - strong fuzzy graphs. Bhutani and Rosenfeld [20] introduced

strong arcs in fuzzy graphs. Mathew and Sunitha [73,75] defined different types of arcs

in fuzzy graphs and studied Mengers theorem for fuzzy graphs. In another paper [74],

they analyzed node connectivity and arc connectivity of a fuzzy graph. Bhutani et

al. [24] presented some results on degrees of end nodes and cut nodes in fuzzy graphs.

Eslahchi and Onaghe [42] introduced vertex strength of fuzzy graphs. They also de-

fined strong fuzzy edges in fuzzy graphs. After that, Nagoorgani and Radha [85, 88]

introduced regular and irregular fuzzy graphs. Nagoorgani et al. [86, 87] also studied

fuzzy effective distance k-dominating sets and isomorphism properties of strong fuzzy

graphs. Jabbar et al. [1] introduced fuzzy dual graph. Nirmala and Dhanabal [94]

introduced special planar fuzzy graph configurations. To put an emphasis on real

problem, Samanta and Pal [114,115] studied fuzzy planar graph in a different way.

There are several variations of competition graphs in Cohen’s literature [41]. After

Cohen, some derivations of competition graphs have been found. Such as, Cho et

al. [37] introduced the m-step competition graph of a digraph. The p-competition

graph of a digraph has been defined by Kim et al. [60]. Brigham et al. [28] introduced

the tolerance competition graphs. The competition hypergraphs have been found in

Sonnatag et al. [124]. A recent work on fuzzy k-competition graphs and p-competition
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fuzzy graphs is available in [112].

Tolerance graphs [54] are generalization of interval graphs in which each vertex can

be represented by an interval and a tolerance such that an edge occurs if and only if the

overlap of corresponding intervals is at least as large as the tolerance associated with

one of the vertices. The original motivation of the paper was to solve the scheduling

problems. After that, ϕ-tolerance competition graph was introduced by [28] as the

generalization of p-competition graph.

Nayeem and Pal [93] have worked on shortest path problem on a network with

imprecise edge weight. Surveys of the large literature related to competition graph

can be found in [38]. To find shortest path in a complex network is a very emerging

work in this modern edge. There are various techniques to find shortest paths in a

network. The bipolar fuzzy hypergraph is a hypergraph in which each vertex and edge

are assigned bipolar fuzzy sets. Samanta and Pal [110] have introduced the bipolar

fuzzy hypergraphs which has emerge importance in complex networking systems.

Rosenfeld [102] introduced the concept of µ-distance in fuzzy graphs. Concepts of

eccentricity and centre in fuzzy graphs are introduced by Bhattacharya [18] using µ-

distance. Sameena and Sunitha [117, 118] have further studied on the g-distance of

fuzzy graphs. Automorphism, fuzzy end nodes, geodesics in fuzzy graphs are studied

by Bhutani et al. [19, 21, 23]. The g-eccentric nodes, g-boundary nodes and g-interior

nodes of a fuzzy graph are introduced by Linda and Sunitha [70].

Bershtein et al. [17] defined the cliques fuzzy set. Then, cliques and clique covers

in fuzzy graphs is introduced by Sun et al. [125]. Another variation of clique cover is

edge clique cover which is studied by Javadi and Hajebi [56]. In most research work

of clique cover, the main task is to find the clique cover number.

Chvatal and Hammer [39] first introduced the threshold graph. In 1979, Manca [72]

has derived an efficient matrix method for testing a given graph to see whether or not

it is a threshold graph. There is a great introduction to threshold graphs and their

applications in [98]. Due to the importance of fuzzy graphs, Samanta and Pal have

introduced the fuzzy threshold graphs in [109].

The reader may found the works on various extensions of fuzzy graphs in [29–

34, 103–106]. For further studies on fuzzy graphs and its variations the literatures

[7–9,11,17,25,43,50,111,113–116] may be very helpful.
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1.5 Motivation of the work

In many real world problems, sometimes data come from n agents (n ≥ 2), i.e.

“multipolar information” exists. These information can not be represented well by

means of fuzzy graphs or bipolar fuzzy graphs. Therefore m-polar fuzzy set is applied

to graphs to describe the relationships among several individuals. In this direction

Chen et al. [36] first defined m-polar fuzzy graph. We then introduced generalized m-

polar fuzzy graphs in Chapter 2. Some operations have been defined to formulate these

graphs. Some properties of strong m-polar fuzzy graphs, self complementary m-polar

fuzzy graphs and self complementary strong m-polar fuzzy graphs are discussed.

In Chapter 3, we have defined three new operations on m-polar fuzzy graph such

as direct product, semi-strong product and strong product. It is proved that any

of the products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient

conditions are established for each one of them to be strong and also proved that strong

product of two complete m-polar fuzzy graphs is complete. If any of the products of

two m-polar fuzzy graphs G1 and G2 are strong, then it is shown that at least G1 or

G2 must be strong. The degree of a vertex in m-polar fuzzy graphs which are obtained

from two given m-polar fuzzy graphs G1 and G2 using the operations of Cartesian

product, composition, direct product, semi-strong product and strong product. At

the end of this chapter, 3-polar fuzzy influence graph is introduced as an application.

In Chapter 4, density of m-polar fuzzy graphs is defined and then introduced the

notion of balanced m-polar fuzzy graphs. Some characterizations of balanced m-polar

fuzzy graphs are given.

There are many real world applications like design problems for circuits, subways,

utility lines with a graph structure in which crossing between edges is a nuisance. This

is not a big problem for electrical wires but it creates extra expenses for some types of

lines, i.e. burying one subway tunnel under another. These applications are designed

using the concept of planar graphs. In a city planning, subway tunnels, pipelines,

metro lines, etc. are all essential. There are chances of accident due to crossing. Routes

without crossing are preferable, but due to the lack of space crossing of such lines are

allowed. Crossing between congested and non-congested routes are more preferable

than the crossing between two congested routes. The term “congested” has no definite

meaning. We generally use “congested“, “very congested”, “highly congested” routes,
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etc. These terms are called linguistic terms and they have some membership values.

A congested route may be termed as strong route and low congested route may be

termed as weak route. Thus, crossing between strong and weak route may be allowed

in a city planning with certain amount of safety. The terms “strong route” and “weak

route” lead to strong edge and weak edge of an m-polar fuzzy graph respectively and

the permission of crossing between strong and weak edges leads to the concept of

m-polar fuzzy planar graphs. The m-fuzzy planar graph is introduced in Chapter 5.

m-polar fuzzy dual graphs and some subclasses of m-polar fuzzy planar graph are also

introduced here. Besides, some relations between these graphs are established.

Self complement m-polar fuzzy graphs have many important significance in the

theory of m-polar fuzzy graphs. If an m-polar fuzzy graph is not self complement

then also we can say that it is self complement in some weaker sense. Simultaneously,

we can establish some results with this graph. This motivates us to define weak self

complement m-polar fuzzy graphs in Chapter 6. A necessary condition is mentioned

for an m-polar fuzzy graph to be weak self complement. Some properties of self

complement and weak self complement m-polar fuzzy graphs are discussed. The order,

size, busy vertices and free vertices of an m-polar fuzzy graphs are also defined and

proved that isomorphic m-polar fuzzy graphs have same order, size and degree. Also,

we have proved some results of busy vertices in isomorphic and weak isomorphic m-

polar fuzzy graphs. A relative study of complement and operations on m-polar fuzzy

graphs have been made. Some real life problems have been modeled using the concepts

of m-polar fuzzy graphs.

In Chapter 7, the concept of edge regular, strongly regular and biregular m-polar

fuzzy graph are introduced. Some properties of them are studied. Also, the concept

of partially edge regular m-polar fuzzy graph and fully edge regular m-polar fuzzy

graph are introduced with suitable illustrations. The notion of strongly edge irregular

and strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are

also studied to characterize strongly edge irregular and strongly edge totally irregular

m-polar fuzzy graphs.

An m-polar fuzzy model is useful for multi-polar information, multi-agent, multi-

attribute and multi-object network models which gives more precision, flexibility, and

comparability to the system as compared to the classical, fuzzy and bipolar fuzzy
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models. In Chapter 8, we used m-polar fuzzy sets to introduce the notion of m-

polar ψ-morphism on m-polar fuzzy graphs. The action of m-polar ψ-morphism on

m-polar fuzzy graphs is studied and we established some results on weak and co-weak

isomorphism. d2-degree and total d2-degree of a vertex in m-polar fuzzy graphs are

defined and studied (2, k)-regularity and totally (2, k)-regularity. A real life situation

of a company has been modeled in terms of 4-polar fuzzy graphs as an application.

In Chapter 9, we introduced generalized regular bipolar fuzzy graphs and investi-

gated some its properties. Then we define a product bipolar fuzzy intersection graph

of a product bipolar fuzzy graph and the product bipolar fuzzy line graphs. Some

characterizations of product bipolar fuzzy line graphs are also made.

Chapter 10 is devoted to the conclusion of the thesis followed by the bibliography.

1.6 Summary

This chapter introduces and discusses some preliminary notions used in the rest

of the Thesis. Several types of graphs and fuzzy graphs are discussed. Some fuzzy

set theoretic definitions and notations are also focussed. Motivation of the work and

survey of related works of the thesis are discussed in this chapter.



Chapter 2

Fundamentals of m-polar fuzzy

graphs∗

2.1 Introduction

In 2014, Chen et al. [36] introduced the notion of m-polar fuzzy set as a generaliza-

tion of bipolar fuzzy set. The idea behind this is that “multipolar information” (not

just bipolar information which correspond to two-valued logic) exists because data

of real world problems are sometimes come from multiple agents. For example, the

exact degree of telecommunication safety of mankind is a point in [0, 1]n (n ≈ 7× 109)

because different persons have been monitored different times. There are many other

examples such as truth degrees of a logic formula which are based on n logic implica-

tion operators (n ≥ 2), similarity degrees of two logic formulas which are based on n

logic implication operators (n ≥ 2), ordering results of a magazine, ordering results of

a university, and inclusion degrees (accuracy measures, rough measures, approxima-

tion qualities, fuzziness measures, and decision preformation evaluations) of a rough

set. An m- polar fuzzy model is useful for multi-polar information, multi-agent, multi-

attribute and multi-object network models which gives more precision, flexibility, and

comparability to the system as compared to the classical, fuzzy and bipolar fuzzy mod-

els. Chen et al. [36] first defined m-polar fuzzy graphs. In this chapter, we modified

their definition and introduced generalized m-polar fuzzy graph. Cartesian product,

composition, union and join of two m-polar fuzzy graphs are defined. Some important

∗A part of the work presented in this chapter is published in Pacific Science Review A: Natural

Science and Engineering, 18(1) 38–46 (2016).
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properties of isomorphisms, strong m-polar fuzzy graphs, self complementary m-polar

fuzzy graphs and self complementary strong m-polar fuzzy graphs are discussed.

2.2 Generalized m-polar fuzzy graphs

Chen et al. [36] defined the m-polar fuzzy graph in the following way:

An m-polar fuzzy graph with an underlying pair (V,E) (where E ⊆ V × V is

symmetric) is defined to be a pair G = (A,B) where A : V → [0, 1]m and B : E →

[0, 1]m satisfying B(xy) ≤ min{A(x), A(y)} for all xy ∈ E.

According to the above definition, B is actually an m-polar fuzzy set in E ⊆ V ×V .

However, when the definition is used, B is actually an m-polar fuzzy set defined in Ṽ 2

satisfying B(xy) = 0 = (0, 0, . . . , 0) for all xy ∈ (Ṽ 2 − E). The above definition will

cause problems in calculating the complement of an m-polar fuzzy graphs. Therefore,

a generalized m-polar fuzzy graphs is defined below.

Before defining generalized m-polar fuzzy graph, we assume the following:

For a given set V , define an equivalence relation ∼ on V × V − {(x, x) : x ∈ V }

as follows: (x1, y1) ∼ (x2, y2) ⇔ either (x1, y1) = (x2, y2) or x1 = y2 and y1 = x2.

The quotient set obtained in this way is denoted by Ṽ 2 and the equivalence class that

contains the element (x, y) is denoted as xy or yx.

Throughout the chapter, G∗ = (V,E) represents a crisp graph and G = (V,A,B) is

an m-polar fuzzy graph of G∗.

Definition 2.2.1. An m-polar fuzzy graph (or generalized m-polar fuzzy graph) of

G∗ = (V,E) is a pair G = (V,A,B) where A : V → [0, 1]m is an m-polar fuzzy set

in V and B : Ṽ 2 → [0, 1]m is an m-polar fuzzy set in Ṽ 2 such that pi ◦ B(xy) ≤

min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m and B(xy) = 0 for all

xy ∈ (Ṽ 2 − E),
(
0 = (0, 0, . . . , 0) is the smallest element in [0, 1]m

)
.

Here, pi ◦A(x) denotes the ith degree of membership of the vertex x and pi ◦B(xy)

denotes the ith degree of membership of the edge xy. A is called the m-polar fuzzy

vertex set of G and B as the m-polar fuzzy edge set of G.

Example 2.2.1. Let X = {F1, F2, F3, F4} and M = {M1,M2,M3} be the set of four

friends and three movies respectively. Suppose they planed to watch movie. This sit-

uation can be represented as a 4-polar fuzzy graph G by considering the vertex set
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as M and the edge set as M ×M . Let A be a 4-polar fuzzy set of M . The mem-

bership value of Mi represents the preference degrees of the movie Mi corresponding

to the friends. Suppose A(M1) =< 0.9, 0.4, 0.6, 0.1 >, A(M2) =< 0.5, 0.3, 0.8, 0.1 >,

A(M3) =< 0.8, 0.9, 0.8, 0.2 >. This means the preference degrees of M1 corresponding

to F1, F2, F3 and F4 are 0.9, 0.4, 0.6 and 0.1 respectively. Similarly, for the others.

An edge between any two nodes represents the degrees of common features (i.e., love

story, comedy, fighting, horror) of the nodes. Let B(M1M2) =< 0.4, 0.2, 0.2, 0.1 >,

B(M2M3) =< 0.4, 0.2, 0.2, 0.2 >, B(M3M1) =< 0.4, 0.2, 0.3, 0.1 >. This means the

degrees of common features (i.e., love story, comedy, fighting, horror) of the movies

M1 and M2 are 0.4, 0.2, 0.2 and 0.1. In other words, both the movies M1 and M2 are

40% love story, 20% comedy, 20% fighting and 10% horror. Similarly for the others.

It is easy to verify that G of Fig. 2.1 is a 4-polar fuzzy graph.

y y

y

< 0.9, 0.4, 0.6, 0.1 >

< 0.8, 0.9, 0.8, 0.2 >

< 0.5, 0.3, 0.8, 0.1 >

< 0.4, 0.2, 0.2, 0.1 >

< 0.4, 0.3, 0.2, 0.1 >
< 0.4, 0.2, 0.2, 0.2 >

M1 M2

M3

Figure 2.1: Example of 4-polar fuzzy graph G

Here after, we assume an m-polar fuzzy graph to be a generalized m-polar fuzzy

graph.

2.3 Cartesian product, composition, union and join

on m-polar fuzzy graphs
In this section, four types of operations such as Cartesian product, composition,

union and join have been defined on m-polar fuzzy graphs to construct new types of

m-polar fuzzy graphs.

Definition 2.3.1. The Cartesian product G1 ×G2 of two m-polar fuzzy graphs G1 =

(V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2)

respectively is defined as a triplet (V1×V2, A1×A2, B1×B2) such that for i = 1, 2, . . . ,m

(i) pi ◦ (A1 × A2)(x1, x2) = min{pi ◦ A1(x1), pi ◦ A2(x2)} for all (x1, x2) ∈ V1 × V2.
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(ii) pi ◦ (B1 × B2)((x, x2)(x, y2)) = min{pi ◦ A1(x), pi ◦ B2(x2y2)} for all x ∈ V1,

x2y2 ∈ E2.

(iii) pi ◦ (B1 × B2)((x1, z)(y1, z)) = min{pi ◦ B1(x1y1), pi ◦ A2(z)} for all z ∈ V2,

x1y1 ∈ E1.

(iv) pi ◦ (B1 ×B2)((x1, x2)(y1, y2)) = 0 for all (x1, x2)(y1, y2) ∈ Ṽ1 × V2
2

− E.

Example 2.3.1. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two graphs such that V1 =

{a, b}, V2 = {c, d}, E1 = {ab} and E2 = {cd}. Consider the 3-polar fuzzy graphs

G1 = (V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗
1 and G∗

2 respectively where

A1 = {<0.3,0.4,0.6>
a

, <0.3,0.5,0.7>
b

}, B1 = {<0.1,0.2,0.5>
ab

}, A2 = {<0.1,0.4,0.5>
c

, <0.2,0.6,0.6>
d

},

B2 = {<0.1,0.3,0.4>
cd

}. Then it is easy to verify the following:

(B1 ×B2)((a, c)(a, d)) =< 0.1, 0.3, 0.4 >, (B1 ×B2)((a, c)(b, c)) =< 0.1, 0.2, 0.5 >,

(B1 ×B2)((b, c)(b, d)) =< 0.1, 0.3, 0.4 >, (B1 ×B2)((a, d)(b, d)) =< 0.1, 0.2, 0.5 >,

(B1 ×B2)((a, c)(b, d)) =< 0, 0, 0 >, (B1 ×B2)((b, c)(a, d)) =< 0, 0, 0 >.

Hence, G1 ×G2 is a 3-polar fuzzy graph of G∗
1 ×G∗

2 (see Fig. 2.2).

y

y

y

y

y y

y y

< 0.3, 0.4, 0.6 >

< 0.3, 0.5, 0.7 >

< 0.1, 0.2, 0.5 >

< 0.1, 0.4, 0.5 >

< 0.2, 0.6, 0.6 >

< 0.1, 0.3, 0.4 >

< 0.1, 0.4, 0.5 > < 0.2, 0.4, 0.6 >

< 0.1, 0.4, 0.5 > < 0.2, 0.5, 0.6 >

< 0.1, 0.3, 0.4 >

< 0.1, 0.3, 0.4 >

< 0.1, 0.2, 0.5 > < 0.1, 0.2, 0.5 >

G1 G2 G1 ×G2

(a, c) (a, d)

(b, d)(b, c)

a

b

c

d

Figure 2.2: Cartesian product of two 3-polar fuzzy graphs G1 and G2

Proposition 2.3.1. The Cartesian product G1 × G2 = (V1 × V2, A1 × A2, B1 × B2)

of two m-polar fuzzy graphs of the graphs G∗
1 and G∗

2 is an m-polar fuzzy graph of

G∗
1 ×G∗

2.

Proof. Let x ∈ V1, x2y2 ∈ E2. Then for i = 1, 2, . . . ,m

pi ◦ (B1 ×B2)((x, x2)(x, y2))

= min{pi ◦ A1(x), pi ◦B2(x2y2)}

≤ min{pi ◦ A1(x),min{pi ◦ A2(x2), pi ◦ A2(y2)}}

= min{min{pi ◦ A1(x), pi ◦ A2(x2)},min{pi ◦ A1(x), pi ◦ A2(y2)}}
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= min{pi ◦ (A1 × A2)(x, x2), pi ◦ (A1 × A2)(x, y2)}.

Let z ∈ V2, x1y1 ∈ E1. Then for i = 1, 2, . . . ,m

pi ◦ (B1 ×B2)((x1, z)(y1, z))

= min{pi ◦B1(x1y1), pi ◦ A2(z)}

≤ min{min{pi ◦ A1(x1), pi ◦ A1(y1)}, pi ◦ A2(z)}}

= min{min{pi ◦ A1(x1), pi ◦ A2(z)},min{pi ◦ A1(y1), pi ◦ A2(z)}}

= min{pi ◦ (A1 × A2)(x1, z), pi ◦ (A1 × A2)(y1, z)}.

Let (x1, x2)(y1, y2) ∈ Ṽ1 × V2
2

− E. Then for i = 1, 2, . . . ,m

pi◦(B1×B2)((x1, x2)(y1, y2)) = 0 ≤ min{pi◦(A1×A2)(x1, x2), pi◦(A1×A2)(y1, y2)}.

Definition 2.3.2. The composition G1[G2] = (V1×V2, A1◦A2, B1◦B2) of two m-polar

fuzzy graphs G1 = (V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗
1 = (V1, E1) and

G∗
2 = (V2, E2) respectively is defined as follows: for i = 1, 2, . . . ,m

(i) pi ◦ (A1 ◦ A2)(x1, x2) = min{pi ◦ A1(x1), pi ◦ A2(x2)} for all (x1, x2) ∈ V1 × V2.

(ii) pi ◦ (B1 ◦ B2)((x, x2)(x, y2)) = min{pi ◦ A1(x), pi ◦ B2(x2y2)} for all x ∈ V1,

x2y2 ∈ E2.

(iii) pi ◦ (B1 ◦ B2)((x1, z)(y1, z)) = min{pi ◦ B1(x1y1), pi ◦ A2(z)} for all z ∈ V2,

x1y1 ∈ E1.

(iv) pi ◦ (B1 ◦ B2)((x1, x2)(y1, y2)) = min{pi ◦ A2(x2), pi ◦ A2(y2), pi ◦ B1(x1y1)} for

all (x1, x2)(y1, y2) ∈ E0 − E, where E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2} ∪

{(x1, z)(y1, z) : z ∈ V2, x1y1 ∈ E1} and E0 = E ∪ {(x1, x2)(y1, y2) : x1y1 ∈

E1, x2 ̸= y2}.
(v) pi ◦ (B1 ◦B2)((x1, x2)(y1, y2)) = 0 for all (x1, x2)(y1, y2) ∈ Ṽ1 × V2

2

− E0.

y

y

y

y

y y

y y

< 0.2, 0.4, 0.5 >

< 0.3, 0.5, 0.4 >

< 0.2, 0.3, 0.4 >

< 0.1, 0.4, 0.5 >

< 0.2, 0.7, 0.6 >

< 0.1, 0.2, 0.3 >

< 0.1, 0.4, 0.5 > < 0.2, 0.4, 0.5 >

< 0.1, 0.4, 0.4 > < 0.2, 0.5, 0.4 >

< 0.1, 0.3, 0.4 > < 0.2, 0.3, 0.4 >

G1 G2 G1[G2]

(a, c) (a, d)

(b, d)(b, c)

a

b

c

d

< 0.1, 0.2, 0.3 >

< 0.1, 0.2, 0.3 >

< 0.1, 0.3, 0.4 >

< 0.1, 0.3, 0.4 >

Figure 2.3: Composition of two 3-polar fuzzy graphs G1 and G2
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Example 2.3.2. Let G∗
1 and G∗

2 be same as in Example 2.3.1. Let G1 = (V1, A1, B1)

and G2 = (V2, A2, B2) be two 3-polar fuzzy graphs of the graphs G∗
1 and G∗

2 respectively

where A1 = {<0.2,0.4,0.5>
a

, <0.3,0.5,0.4>
b

}, B1 = {<0.2,0.3,0.4>
ab

}, A2 = {<0.1,0.4,0.5>
c

, <0.2,0.7,0.6>
d

},

B2 = {<0.1,0.2,0.3>
cd

}. Then we have,

(B1 ◦B2)((a, c)(a, d)) =< 0.1, 0.2, 0.3 >, (B1 ◦B2)((b, c)(b, d)) =< 0.1, 0.2, 0.3 >,

(B1 ◦B2)((a, c)(b, c)) =< 0.1, 0.3, 0.4 >, (B1 ◦B2)((a, d)(b, d)) =< 0.2, 0.3, 0.4 >

(B1 ◦B2)((a, c)(b, d)) =< 0.1, 0.3, 0.4 >, (B1 ◦B2)((b, c)(a, d)) =< 0.1, 0.3, 0.4 >.

It can be easily checked that G1[G2] is a 3-polar fuzzy graph of G∗
1[G

∗
2] (see Fig. 2.3).

Proposition 2.3.2. The composition G1[G2] of two m-polar fuzzy graphs G1 and G2

is an m-polar fuzzy graph.

Proof. Let x ∈ V1, x2y2 ∈ E2. Then for each i = 1, 2, . . . ,m

pi ◦ (B1 ×B2)((x, x2)(x, y2))

= min{pi ◦ A1(x), pi ◦B2(x2y2)}

≤ min{pi ◦ A1(x),min{pi ◦ A2(x2), pi ◦ A2(y2)}}

= min{min{pi ◦ A1(x), pi ◦ A2(x2)},min{pi ◦ A1(x), pi ◦ A2(y2)}}

= min{pi ◦ (A1 × A2)(x, x2), pi ◦ (A1 × A2)(x, y2)}.

Let z ∈ V2, x1y1 ∈ E1. The proof is similar to the above.

Let (x1, y1)(x2, y2) ∈ E0 − E.

So x1y1 ∈ E1 and x2 ̸= y2.

Then we have for each i = 1, 2, . . . ,m

pi ◦ (B1 ◦B2)((x1, x2)(y1, y2))

= min{pi ◦ A2(x2), pi ◦ A2(y2), pi ◦B1(x1y1)}

≤ min{pi ◦ A2(x2), pi ◦ A2(y2),min{pi ◦ A1(x1), pi ◦ A1(y1)}}

= min{min{pi ◦ A1(x1), pi ◦ A2(x2)},min{pi ◦ A1(y1), pi ◦ A2(y2)}}

= min{pi ◦ (A1 × A2)(x1, x2), pi ◦ (A1 × A2)(y1, y2)}.

Hence G1[G2] is an m-polar fuzzy graph.

Definition 2.3.3. The union G1 ∪ G2 = (V1 × V2, A1 ∪ A2, B1 ∪ B2) of two m-polar

fuzzy graphs G1 = (V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗
1 = (V1, E1) and

G∗
2 = (V2, E2) respectively is defined as follows: for i = 1, 2, . . . ,m
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(i) pi ◦ (A1 ∪ A2)(x1, x2) =


pi ◦ A1(x) if x ∈ V1 − V2

pi ◦ A2(x) if x ∈ V2 − V1

max{pi ◦ A1(x), pi ◦ A2(x)} if x ∈ V1 ∩ V2.

(ii) pi ◦ (B1 ∪B2)(xy) =


pi ◦B1(xy) if xy ∈ E1 − E2

pi ◦B2(xy) if xy ∈ E2 − E1

max{pi ◦B1(xy), pi ◦B2(xy)} if xy ∈ E1 ∩ E2.

(iii) pi ◦ (B1 ∪B2)(xy) = 0 if xy ∈ Ṽ1 × V2
2

− E1 ∪ E2.

y

y

y

y

< 0.2, 0.4, 0.3 >

< 0.2, 0.3, 0.2 >

< 0.4, 0.5, 0.6 >

a y

y y

y

y y

yy

y

< 0.3, 0.6, 0.2 >

< 0.3, 0.7, 0.8 >

d

< 0.3, 0.4, 0.5 >

< 0.2, 0.5, 0.1 >< 0.1, 0.3, 0.2 > b

< 0.3, 0.6, 0.7 >

< 0.4, 0.5, 0.3 >

c

< 0.2, 0.4, 0.7 > < 0.2, 0.5, 0.6 >

< 0.2, 0.3, 0.5 > < 0.2, 0.5, 0.4 >

< 0.2, 0.5, 0.3 >

< 0.1, 0.4, 0.3 >

a b

c

f

G1

G2

< 0.2, 0.4, 0.7 > < 0.4, 0.5, 0.6 > < 0.3, 0.6, 0.7 >

< 0.3, 0.7, 0.8 >
< 0.4, 0.5, 0.3 >

a c

d f

b

< 0.2, 0.3, 0.2 >

< 0.2, 0.3, 0.5 >

< 0.3, 0.4, 0.5 >

< 0.1, 0.4, 0.3 >

< 0.2, 0.5, 0.4 >

< 0.2, 0.5, 0.3 >

G1 ∪G2

Figure 2.4: Union of two 3-polar fuzzy graphs G1 and G2

Example 2.3.3. Let G∗
1 and G∗

2 be two graphs such that V1 = {a, b, c, d}, E1 =

{ab, bc, ad, bd}, V2 = {a, b, c, f} and {ab, bc, bf, cf}. Consider the two 3-polar fuzzy

graphs G1 = (V1, A1, B1) and G2 = (V2, A2, B2) (see Fig. 2.4) where
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A1 = {<0.2,0.4,0.3>
a

, <0.4,0.5,0.6>
b

, <0.3,0.6,0.2>
c

, <0.3,0.7,0.8>
d

},

B1 = {<0.1,0.3,0.2>
ab

, <0.2,0.5,0.1>
bc

, <0.2,0.3,0.2>
ad

, <0.3,0.4,0.5>
bd

, <0,0,0>
cd

, <0,0,0>
ac

},

A2 = {<0.2,0.4,0.7>
a

, <0.2,0.5,0.6>
b

, <0.3,0.6,0.7>
c

, <0.4,0.5,0.3>
f

},

B2 = {<0.2,0.3,0.5>
ab

, <0.2,0.5,0.4>
bc

, <0.2,0.5,0.3>
cf

, <0.1,0.4,0.3>
bf

, <0,0,0>
af

, <0,0,0>
ac

}.

Clearly, G1 ∪G2 is a 3-polar fuzzy graph.

Proposition 2.3.3. The union G1 ∪G2 = (V1 × V2, A1 ∪A2, B1 ∪B2) of two m-polar

fuzzy graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively is an m-polar

fuzzy graph.

Proof. Let xy ∈ E1 ∩ E2. Then for i = 1, 2, . . . ,m

pi ◦ (B1 ∪B2)(xy)

= max{pi ◦B1(xy), pi ◦B2(xy)}

≤ max{min{pi ◦ A1(x), pi ◦ A1(y)},min{pi ◦ A2(x), pi ◦ A2(y)}}

= min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)}.

Similarly, if xy ∈ E1 − E2, then

pi ◦ (B1 ∪B2)(xy)

≤ min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)}

and if xy ∈ E2 − E1, then

pi ◦ (B1 ∪B2)(xy)

≤ min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)}.

This completes the proof.

Definition 2.3.4. The join G1 + G2 = (V1 ∪ V2, A1 + A2, B1 + B2) of two m-polar

fuzzy graphs G1 = (V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗
1 = (V1, E1) and

G∗
2 = (V2, E2) respectively is defined as follows:

(i) pi ◦ (A1 + A2)(x) = pi ◦ (A1 ∪ A2)(x) if x ∈ V1 ∪ V2.
(ii) pi ◦ (B1 +B2)(xy) = pi ◦ (B1 ∪B2)(xy) if xy ∈ E1 ∪ E2.

(iii) pi ◦ (B1 + B2)(xy) = min{pi ◦ A1(x), pi ◦ A2(y)} if xy ∈ E ′, where E ′ is the set

of all edges joining the nodes of V1 and V2, assuming that V1 ∩ V2 = ∅.
(iv) pi ◦ (B1 +B2)(xy) = 0 if xy ∈ Ṽ1 × V2

2

− E1 ∪ E2 ∪ E ′.

Proposition 2.3.4. The join G1 + G2 = (V1 ∪ V2, A1 + A2, B1 + B2) of two m-polar

fuzzy graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively is an m-polar

fuzzy graph of G∗
1 +G∗

2.
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Proof. Follows from the definition.

Proposition 2.3.5. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two underlying graphs

and V1 ∩ V2 = ∅. Let A1, A2, B1 and B2 be m-polar fuzzy subsets of V1, V2, Ṽ 2
1 and Ṽ 2

2

respectively. Then G1 ∪ G2 = (V1 × V2, A1 ∪ A2, B1 ∪ B2) is an m-polar fuzzy graph

of G∗
1 ∪ G∗

2 if and only if G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are m-polar fuzzy

graphs of G∗
1 and G∗

2, respectively.

Proof. Suppose G1 ∪G2 is an m-polar fuzzy graph of G∗
1 ∪G∗

2.

Let xy ∈ E1. Then xy /∈ E2 and x, y ∈ V1 − V2 and for i = 1, 2, . . . ,m

pi ◦B1(xy)

= pi ◦ (B1 ∪B2)(xy)

≤ min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)}

= min{pi ◦ A1(x), pi ◦ A1(y)}.

Let xy ∈ (Ṽ 2
1 − E1). Then for i = 1, 2, . . . ,m

pi ◦B1(xy) = pi ◦B1 ∪B2(xy) = 0.

This shows that G1 = (V1, A1, B1) is an m-polar fuzzy graph of G∗
1.

Similarly, we can show that G2 = (V2, A2, B2) is an m-polar fuzzy graph of G∗
2. The

converse follows from Proposition 2.3.3.

Proposition 2.3.6. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two underlying graphs

and let V1 ∩ V2 = ∅. Let A1, A2, B1 and B2 be m-polar fuzzy subsets of V1, V2, Ṽ 2
1 and

Ṽ 2
2 , respectively. Then G1+G2 = (V1∪V2, A1+A2, B1+B2) is an m-polar fuzzy graph

of G∗
1 + G∗

2 if and only if G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are m-polar fuzzy

graphs of G∗
1 and G∗

2, respectively.

Proof. Follows from Propositions 2.3.4 and 2.3.5.

2.4 Isomorphisms of m-polar fuzzy graphs
In this section, different types of isomorphisms are defined on m-polar fuzzy graphs.

Definition 2.4.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. A homomorphism

between G1 and G2 is a mapping ϕ : V1 → V2 such that for i = 1, 2, . . . ,m

(i) pi ◦ A1(x1) ≤ pi ◦ A2(ϕ(x1)) for all x1 ∈ V1,
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(ii) pi ◦B1(x1y1) ≤ pi ◦B2(ϕ(x1)ϕ(y1)) for all x1y1 ∈ Ṽ 2
1 .

Definition 2.4.2. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. An isomorphism

between G1 and G2 is a bijective mapping ϕ : V1 → V2 such that for i = 1, 2, . . . ,m

(i) pi ◦ A1(x1) = pi ◦ A2(ϕ(x1)) for all x1 ∈ V1,

(ii) pi ◦B1(x1y1) = pi ◦B2(ϕ(x1)ϕ(y1)) for all x1y1 ∈ Ṽ 2
1 .

In this case, we write G1
∼= G2.

Remark 2.4.1. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are two m-polar fuzzy

graphs. Then the canonical projection maps π1 : V1 × V2 → V1 and π2 : V1 × V2 → V2

are indeed homomorphisms from G1 ×G2 to G1 and G1 ×G2 to G2 respectively. This

can be seen as follows:

pi◦(A1×A2)(x1, x2) = min{pi◦A1(x1), pi◦A2(x2)} ≤ pi◦A1(x1) = pi◦A1(π1(x1, x2))

for all (x1, x2) ∈ V1 × V2 and pi ◦ (B1 × B2)((x1, z)(y1, z)) = min{pi ◦ B1(x1y1), pi ◦

A2(z)} ≤ pi ◦ B1(x1y1) = pi ◦ B1(π1(x1, z)π1(y1, z)) for all z ∈ V2 and x1y1 ∈ E1. In

a similar way we can check the other conditions also. This shows that the canonical

projection maps π1 : V1 × V2 → V1 is a homomorphism from G1 ×G2 to G1.

Definition 2.4.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively. A weak isomorphism

between G1 and G2 is a bijective mapping ϕ : V1 → V2 which satisfies the following

conditions:

(i) ϕ is a homomorphism, and

(ii) pi ◦ A1(x1) = pi ◦ A2(ϕ(x1)) for all x1 ∈ V1, i = 1, 2, . . . ,m.

In other words, a weak isomorphism preserves the weight of the nodes but not

necessarily the weights of the arcs.

y yy y< 0.3, 0.5, 0.7 > < 0.2, 0.4, 0.5 >

< 0.1, 0.4, 0.3 >

< 0.2, 0.4, 0.5 > < 0.3, 0.5, 0.7 >

< 0.2, 0.4, 0.4 >
a b c d

G1 G2

Figure 2.5: Weak isomorphism of G1 and G2
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Example 2.4.1. Consider two 3-polar fuzzy graphs G1 and G2 (see Fig. 2.5) of

the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively, where V1 = {a, b}, V2 =

{c, d}, E1 = {ab} and E2 = {cd}. Let us define a map ϕ : V1 → V2 such that ϕ(a) =

d, ϕ(b) = c. Then we have

p1 ◦ A1(a) = 0.2 = p1 ◦ A2(d) = p1 ◦ A2(ϕ(a)),

p2 ◦ A1(a) = 0.4 = p2 ◦ A2(d) = p2 ◦ A2(ϕ(a)),

p3 ◦ A1(a) = 0.5 = p3 ◦ A2(d) = p3 ◦ A2(ϕ(a)).

p1 ◦ A1(b) = 0.3 = p1 ◦ A2(c) = p1 ◦ A2(ϕ(b)),

p2 ◦ A1(b) = 0.5 = p2 ◦ A2(c) = p2 ◦ A2(ϕ(b)),

p3 ◦ A1(b) = 0.7 = p3 ◦ A2(c) = p3 ◦ A2(ϕ(b)).

p1 ◦B1(ab) = 0.1 < 0.2 = p1 ◦B2(dc) = p1 ◦B2(ϕ(a)ϕ(b)),

p2 ◦B1(ab) = 0.4 = p2 ◦B2(dc) = p2 ◦B2(ϕ(a)ϕ(b)),

p3 ◦B1(ab) = 0.3 < 0.4 = p3 ◦B2(dc) = p3 ◦B2(ϕ(a)ϕ(b)).

Hence, B1(ab) ̸= B2(ϕ(a)ϕ(b)).

This shows that the map ϕ is a weak isomorphism but not an isomorphism.

Definition 2.4.4. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. A co-weak iso-

morphism between G1 and G2 is a bijective mapping ϕ : V1 → V2 which satisfies the

following :

(i) ϕ is a homomorphism,

(ii) pi ◦B1(x1y1) = pi ◦B2(ϕ(x1y1)) for all x1y1 ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

In other words, a co-weak isomorphism preserves the weight of the arcs but not

necessarily the weights of the nodes.

y yy y< 0.3, 0.5, 0.7 > < 0.3, 0.6, 0.5 >

< 0.1, 0.4, 0.2 >

< 0.2, 0.4, 0.5 > < 0.4, 0.5, 0.6 >

< 0.1, 0.4, 0.2 >
a b c d

G1 G2

Figure 2.6: Co-weak isomorphism of G1 and G2

Example 2.4.2. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two crisp graphs defined

in Example 2.4.1. Consider the 3-polar fuzzy graphs G1 = (V1, A1, B1) and G2 =

(V2, A2, B2) of G∗
1 and G∗

2 (see Fig. 2.6). Consider the map ϕ : V1 → V2 defined by

ϕ(a) = d, ϕ(b) = c. Then we have the following:
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p1 ◦ A1(a) = 0.2 < 0.3 = p1 ◦ A2(d) = p1 ◦ A2(ϕ(a)),

p2 ◦ A1(a) = 0.4 < 0.6 = p2 ◦ A2(d) = p2 ◦ A2(ϕ(a)),

p3 ◦ A1(a) = 0.5 = 0.5 = p3 ◦ A2(d) = p3 ◦ A2(ϕ(a)).

Therefore, A1(a) ̸= A2(d) = A2(ϕ(a)).

Similarly, A1(b) ̸= A2(c) = A2(ϕ(b)).

But, p1 ◦B1(ab) = 0.1 = p1 ◦B2(dc) = p1 ◦B2(ϕ(a)ϕ(b)),

p2 ◦B1(ab) = 0.4 = p2 ◦B2(dc) = p2 ◦B2(ϕ(a)ϕ(b)),

p3 ◦B1(ab) = 0.2 = p3 ◦B2(dc) = p3 ◦B2(ϕ(a)ϕ(b)).

Therefore, B1(ab) = B2(dc) = B2(ϕ(a)ϕ(b)).

Hence, the map ϕ is a co-weak isomorphism but not an isomorphism.

2.5 Some properties of m-polar fuzzy graphs

The strong m-polar fuzzy graph is defined below.

Definition 2.5.1. An m-polar fuzzy graph G = (V,A,B) of the graph G∗ = (V,E) is

called strong if pi ◦B(xy) = min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ E, i = 1, 2, . . . ,m.

y y

y
< 0.2, 0.4, 0.5 >

< 0.3, 0.3, 0.1 >

< 0.2, 0.3, 0.1 >

x

y z
< 0.3, 0.5, 0.6 > < 0.4, 0.3, 0.1 >

< 0.2, 0.4, 0.5 >

Figure 2.7: Strong 3-polar fuzzy graph G

Example 2.5.1. Consider a graph G∗ = (V,E) such that V = {x, y, z}, E = {xy, yz, zx}.

Let G = (V,A,B) be the 3-polar fuzzy graph of G∗, where

A = {<0.2,0.4,0.5>
x

, <0.3,0.5,0.6>
y

, <0.4,0.3,0.1>
z

},

B = {<0.2,0.4,0.5>
xy

, <0.3,0.3,0.1>
yz

, <0.2,0.3,0.1>
zx

}.

Hence, G is a strong 3-polar fuzzy graph (see Fig. 2.7).

Proposition 2.5.1. If G1 and G2 are the strong m-polar fuzzy graphs of the graphs

G∗
1 = (V1, E1) G

∗
2 = (V2, E2) respectively, then G1×G2, G1[G2] and G1+G2 are strong

m-polar fuzzy graphs of the graphs G∗
1 ×G∗

2, G
∗
1[G

∗
2] and G

∗
1 +G∗

2.
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y
< 0.3, 0.5, 0.7 >

y
< 0.3, 0.5, 0.7 >

a
< 0.3, 0.5, 0.7 >

yy

y

y

y

< 0.4, 0.7, 0.8 >< 0.3, 0.5, 0.7 >

< 0.2, 0.4, 0.5 >

< 0.2, 0.4, 0.5 >

< 0.6, 0.3, 0.4 > < 0.7, 0.5, 0.9 >

< 0.2, 0.4, 0.2 >

< 0.6, 0.3, 0.4 >

< 0.2, 0.4, 0.2 >

a b

c a

cb

G1 is strong G2 is strong

y

y
< 0.6, 0.4, 0.5 >

< 0.6, 0.7, 0.8 >

< 0.7, 0.5, 0.9 >

b

c
G1 ∪G2 is not strong

< 0.2, 0.4, 0.2 >

Figure 2.8: Union of two strong 3-polar graphs G1 and G2 is not strong

Proof. Follows from the Propositions 2.3.1, 2.3.2 and 2.3.4.

Remark 2.5.1. The union of two strong m-polar fuzzy graphs is not necessarily a

strong m-polar fuzzy graph. For example, let us consider the 3-polar fuzzy graphs G1

and G2 as shown in Fig. 2.8.

Proposition 2.5.2. If G1 × G2 is a strong m-polar fuzzy graph, then at least G1 or

G2 must be strong.

Proof. Suppose that both G1 and G2 are not strong m-polar fuzzy graphs. Then there

exists at least one x1y1 ∈ E1 and at least one x2y2 ∈ E2 such that

(i) B1(x1y1) < min{A1(x1), A1(y1)} and B2(x2y2) < min{A2(x2), A2(y2)}.

Without loss of generality, we assume that

(ii) B2(x2y2) ≤ B1(x1y1) < min{A1(x1), A1(y1)} ≤ A1(x1).

Let E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) : z ∈ V2, x1y1 ∈ E1}.

Consider (x, x2)(x, y2) ∈ E. Then, by definition of G1 ×G2 and inequality (i) we have

(B1 ×B2)((x, x2)(x, y2))

= min{A1(x), B2(x2y2)} < min{A1(x), A2(x2), A2(y2)}

and (A1 × A2)(x, x2) = min{A1(x), A2(x2)},
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(A1 × A2)(x, y2) = min{A1(x), A2(y2)}.

Thus, min{(A1 × A2)(x, x2), (A1 × A2)(x, y2)}

= min{A1(x), A2(x2), A2(y2)}.

Hence, (B1 ×B2)((x, x2)(x, y2))

= min{A1(x), B2(x2y2)} < min{(A1 × A2)(x, x2), (A1 × A2)(x, y2)},

i.e. G1 × G2 is not strong m-polar fuzzy graph, which is a contradiction. Hence if

G1×G2 is strong m-polar fuzzy graph, then at least G1 or G2 must be strong m-polar

fuzzy graph.

Proposition 2.5.3. If G1[G2] is strong m-polar fuzzy graph, then at least G1 or G2

must be strong.

Proof. Follows from the previous Proposition.

Proposition 2.5.4. Let G = (V,A,B) be a strong m-polar fuzzy graph of a graph

G∗ = (V,E). If G = (V,A,B) satisfies A = A and B defined as follows:

for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m

pi ◦B(xy) =

 0 if 0 < pi ◦B(xy) ≤ 1

min{pi ◦ A(x), pi ◦ A(y)} if pi ◦B(xy) = 0.

Then G is a strong m-polar fuzzy graph of G∗ = (V, Ṽ 2 − E).

Proof. Obviously, the m-polar fuzzy sets A and B satisfy

pi ◦B(xy) ≤ min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Now, let xy ∈ Ṽ 2 − (Ṽ 2 − E) = E.

As G is strong m-polar fuzzy graph, therefore pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)}

for i = 1, 2, . . . ,m.

If B(xy) = 0, then pi ◦B(xy) = 0 for i = 1, 2, . . . ,m.

Therefore, pi ◦B(xy)

= min{pi ◦ A(x), pi ◦ A(y)}

= pi ◦B(xy) = 0, i = 1, 2, . . . ,m.

Hence, B(xy) = 0.

If for i = 1, 2, . . . ,m, 0 < pi ◦B(xy) ≤ 1 then pi ◦B(xy) = 0, i.e. B(xy) = 0.

Hence, for all xy ∈ Ṽ 2 − (Ṽ 2 − E) = E, B(xy) = 0. Therefore, G is an m-polar

fuzzy graph of G∗ = (V, Ṽ 2 − E).
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On the other hand, for all xy ∈ (Ṽ 2 − E), we have by Definition 2.2.1, B(xy) = 0,

i.e. pi◦B(xy) = 0 for each i = 1, 2, . . . ,m. Then pi◦B(xy) = min{pi◦A(x), pi◦A(y)},

i = 1, 2, . . . ,m. So, G is a strong m-polar fuzzy graph of G∗ = (V, Ṽ 2 − E).

Definition 2.5.2. The strong m-polar fuzzy graph G = (V,A,B) defined above is

called the complement of the strong m-polar fuzzy graph G = (V,A,B).

Definition 2.5.3. A strong m-polar fuzzy graph G is called self complementary if

G ∼= G.
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Figure 2.9: Self-complementary 3-polar fuzzy graphs

Example 2.5.2. Let G∗ = (V,E) be a graph, where V = {a, b, c, d} and E =

{ab, ac, cd} and G = (V,A,B)(see Fig. 2.9) be a strong 3-polar fuzzy graph of G∗,

where

A = {<0.1,0.2,0.3>
a

, <0.1,0.2,0.3>
b

, <<0.1,0.2,0.3>
c

, <0.1,0.2,0.3>
d

},

B = {<0.1,0.2,0.3>
ab

, <0.1,0.2,0.3>
ac

, <0.1,0.2,0.3>
cd

, <0,0,0>
bd

, <0,0,0>
ad

, <0,0,0>
bc

}.

Then G is self complementary.

Let G = (V,A,B) be the complement of G, where A = A,

B = {<0,0,0>
ab

, <0,0,0>
ac

, <0,0,0>
cd

, <0.1,0.2,0.3>
bd

, <0.1,0.2,0.3>
ad

, <0.1,0.2,0.3>
bc

}.

Let us now define a mapping ϕ : V → V by ϕ(a) = b, ϕ(b) = c, ϕ(c) = d, ϕ(d) = a.

Then clearly, ϕ is a bijective mapping and

A(a) = A(ϕ(a)), A(b) = A(ϕ(b)), A(c) = A(ϕ(c)), A(d) = A(ϕ(d)).

B(ab) =< 0.1, 0.2, 0.3 >= B(ϕ(a)ϕ(b)), B(ac) =< 0.1, 0.2, 0.3 >= B(ϕ(a)ϕ(c)),

B(cd) =< 0.1, 0.2, 0.3 >= B(ϕ(c)ϕ(d)), B(bc) =< 0, 0, 0 >= B(ϕ(b)ϕ(c)),

B(bd) =< 0, 0, 0 >= B(ϕ(b)ϕ(d)), B(ad) =< 0, 0, 0 >= B(ϕ(a)ϕ(d)).

Hence, ϕ is an isomorphism from G onto G, i.e. G ∼= G.
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Proposition 2.5.5. Let G = (V,A,B) be a strong m-polar fuzzy graph of the graph

G∗ = (V,E) and G = (V,A,B) be the complement of G. Then,

pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)} − pi ◦B(xy) for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Proof. Let xy ∈ Ṽ 2.

If 0 < pi ◦B(xy) ≤ 1 for each i = 1, 2, . . . ,m then by Definition 2.2.1, xy ∈ E.

As G is strong, min{pi◦A(x), pi◦A(y)}−pi◦B(xy) = 0 = pi◦B(xy), i = 1, 2, . . . ,m.

If pi ◦B(xy) = 0 for i = 1, 2, . . . ,m then

min{pi ◦ A(x), pi ◦ A(y)} − pi ◦B(xy)

= min{pi ◦ A(x), pi ◦ A(y)}

= pi ◦B(xy).

Hence the result.

Proposition 2.5.6. Let G be a self complementary strong m-polar fuzzy graph. Then∑
x ̸=y pi ◦B(xy) = 1

2

∑
x̸=ymin{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Proof. Let G = (V,A,B) be a self complementary strong m-polar fuzzy graph. Then

pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)}} for all xy ∈ E, i = 1, 2, . . . ,m and there exists

an isomorphism ϕ : G → G such that pi ◦ A(x) = pi ◦ A(ϕ(x)) for all x ∈ V and

pi ◦B(xy) = pi ◦B(ϕ(x)ϕ(y)) for all xy ∈ Ṽ 2.

Let xy ∈ Ṽ 2. Then by Proposition 2.5.5, for i = 1, 2, . . . ,m

pi ◦B(ϕ(x)ϕ(y)) = min{pi ◦ A(ϕ(x)), pi ◦ A(ϕ(y))} − pi ◦B(ϕ(x)ϕ(y)),

i.e. pi ◦B(xy) = min{pi ◦ A(ϕ(x)), pi ◦ A(ϕ(y))} − pi ◦B(ϕ(x)ϕ(y)).

Therefore,∑
x ̸=y pi ◦B(xy) +

∑
x ̸=y pi ◦B(ϕ(x)ϕ(y)) =

∑
x ̸=ymin{pi ◦ A(ϕ(x)), pi ◦ A(ϕ(y))}

=
∑

x ̸=ymin{pi ◦ A(x), pi ◦ A(y)},

i.e. 2
∑

x ̸=y pi ◦B(xy) =
∑

x ̸=ymin{pi ◦ A(x), pi ◦ A(y)},

i.e.
∑

x ̸=y pi ◦B(xy) = 1
2

∑
x ̸=ymin{pi ◦ A(x), pi ◦ A(y)}.

Proposition 2.5.7. Let G = (V,A,B) be a strong m-polar fuzzy graph of G∗ = (V,E).

If pi ◦ B(xy) = 1
2
min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m then G is

self complementary.

Proof. If G = (V,A,B) is a strong m-polar fuzzy graph satisfying

pi ◦ B(xy) = 1
2
min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m then the

identity mapping I : V → V is an isomorphism from G to G.
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Clearly I satisfies the first condition for isomorphism, i.e. A(x) = A(I(x)) for all

x ∈ V and by Proposition 2.5.5, we have for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m

pi ◦B(I(x)I(y))

= pi ◦B(xy)

= min{pi ◦ A(x), pi ◦ A(y)} − pi ◦B(xy)

= min{pi ◦ A(x), pi ◦ A(y)} − 1
2
min{pi ◦ A(x), pi ◦ A(y)}

= 1
2
min{pi ◦ A(x), pi ◦ A(y)}

= pi ◦B(xy).

i.e. pi ◦B(I(x)I(y)) = pi ◦B(xy) for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m,

i.e. I also satisfies the second condition for isomorphism.

Therefore, G ∼= G, i.e. G is self complementary.

From Propositions 2.5.6 and 2.5.7, we have the following.

Corollary 2.5.1. Let G = (V,A,B) be a strong m-polar fuzzy graph of G∗ = (V,E).

Then G is self complementary if and only if pi ◦ B(xy) = 1
2
min{pi ◦ A(x), pi ◦ A(y)}

for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Proposition 2.5.8. Let G1 and G2 be two strong m-polar fuzzy graphs. Then G1
∼= G2

if and only if G1
∼= G2.

Proof. Assume that, G1
∼= G2.

Then there exists a bijective mapping ϕ : V1 → V2 satisfying A1(x) = A2(ϕ(x)) for

all x ∈ V1 and pi ◦B1(xy) = pi ◦B2(ϕ(x)ϕ(y)) for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Let xy ∈ Ṽ 2
1 .

If pi ◦B1(xy) = 0 for i = 1, 2, . . . ,m then

pi ◦B1(xy)

= min{pi ◦ A1(x), pi ◦ A1(y)}

= min{pi ◦ A2(ϕ(x), pi ◦ A2(ϕ(y)}

= pi ◦B2(ϕ(x)ϕ(y)).

If 0 < pi ◦B1(xy) ≤ 1 for i = 1, 2, . . . ,m then, 0 < pi ◦B2(ϕ(x)ϕ(y)) ≤ 1.

Therefore, pi ◦B1(xy) = 0 = pi ◦B2(ϕ(x)ϕ(y)).

So, G1
∼= G2.

Conversely, let G1
∼= G2.



2.6. APPLICATIONS 46

Then there exists a bijective mapping ψ : V1 → V2 satisfying A1(x) = A2(ψ(x)) for

all x ∈ V1 and pi ◦B1(xy) = pi ◦B2(ψ(x)ψ(y)) for all xy ∈ Ṽ 2
1 .

Let xy ∈ Ṽ 2
1 .

If pi ◦B1(xy) = 0 for i = 1, 2, . . . ,m then

pi ◦B2(ψ(x)ψ(y))

= pi ◦B1(xy)

= min{pi ◦ A1(x), pi ◦ A1(y)}

= min{pi ◦ A1(x), pi ◦ A1(y)}

= min{pi ◦ A2(ψ(x)), pi ◦ A2(ψ(y))}

= min{pi ◦ A2(ψ(x)), pi ◦ A2(ψ(y))}.

Again, pi ◦B2(ψ(x)ψ(y))

= min{pi ◦ A2(ψ(x)), pi ◦ A2(ψ(y))} − pi ◦B2(ψ(x)ψ(y))

So, pi ◦B2(ψ(x)ψ(y)) = 0 = pi ◦B1(xy)), i = 1, 2, . . . ,m.

If 0 < pi ◦B1(xy) ≤ 1 for i = 1, 2, . . . ,m then

pi ◦B2(ψ(x)ψ(y))

= pi ◦B1(ψ(x)ψ(y)) = 0.

Thus we have,

pi ◦B2(ψ(x)ψ(y))

= min{pi ◦ A2(ψ(x)), pi ◦ A2(ψ(y))} − 0

= min{pi ◦ A2(ψ(x)), pi ◦ A2(ψ(y))}

= min{pi ◦ A1(ψ(x)), pi ◦ A1(ψ(y))}

= pi ◦B1(xy).

Hence, G1
∼= G2.

2.6 Applications

1-polar fuzzy graphs is nothing but the most familiar fuzzy graphs which has many

applications in cluster analysis, solving fuzzy intersection equations, database theory,

problem concerning group structure, etc. The further possible applications of m-polar

fuzzy graphs in real world problems can be viewed in case of bipolar fuzzy graphs, i.e.

2-polar fuzzy graphs. Bipolar fuzzy graphs has many applications in social networks,

engineering, computer science, database theory, expert systems, neural networks, arti-

ficial intelligence, signal processing, pattern recognition, robotics, computer networks,
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medical diagnosis, etc. Also, m-polar fuzzy graphs (m > 2) is very useful in many

decision making situations. This happens when a group of friends decides which movie

to watch, when a company decides which product design to manufacture, and when

a democratic country elects its leader. For instance, consider the case of a company.

In a company, a group of people decides which product design to manufacture. In

such case, different product design can be taken as nodes. An edge is drawn between

two nodes if there is some m-polar fuzzy relationship between them. We assume that

the membership value of each node represents the degrees of preference of the product

design corresponding to the group of people of the company. The degrees of prefer-

ence (within [0, 1]) represent the individual preference of the peoples. Thus, a node

has multi-preference degrees corresponding to a product design. Similarly, the degree

of relationship between the nodes measures the edge relationship value. Between two

product designs, one design may have better looks, may be very demandable, may be

cheap, etc. So, there are multipolar information between two product designs. This

type of network is an ideal example of m-polar fuzzy graphs. It is very important for a

company to decide which product design to manufacture so that they can make profit

as much as possible. A very good product design is gladly acceptable to the peoples if

it is also cheap in price. The determination of which product design to manufacture

is called the decision making problem. By taking the very good decision (very good

product design), one company can spread their product all over the world keeping in

mind that the product design is very good, demandable, cheap, easily accessible, etc.

Moreover, the results of m-polar fuzzy graphs can be applicable in various areas of

engineering, computer science, artificial intelligence, neural networks, social networks,

etc.

2.7 Summary

Graph theory is an extremely useful tool in solving the combinatorial problems

in different areas including algebra, number theory, geometry, topology, operations

research, optimization and computer science. Since researches or modelings on real

world problems often involve multi-agent, multi-attribute, multi-object, multi-index,

multi-polar information, uncertainty, or and limits process, therefore m-polar fuzzy

graphs is very useful. The m-polar fuzzy models gives more precision, flexibility and



2.7. SUMMARY 48

comparability to the system as compared to the classical, fuzzy and bipolar fuzzy

models. Therefore, the concept of generalized m-polar fuzzy graph is introduced and

studied several important results of it.



Chapter 3

Operations and degrees of m-polar

fuzzy graphs∗

3.1 Introduction

Graph operations are very important topic in graph theory. Also, they are conve-

niently used in many combinatorial applications, computer science, geometry, algebra,

number theory and operation research. In various situations they present a suitable

construction means. For examples, in partition theory, we deal with complex objects.

A typical such object is a fuzzy graph and fuzzy hypergraph with large chromatic

number that we do not know how to compute exactly the chromatic number of these

graphs. In such cases, these operations have the main role in solving problems. Hence,

in this chapter, three new operations are defined on m-polar fuzzy graph such as di-

rect product, semi-strong product and strong product. It is proved that any of the

products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient con-

ditions are established for each one of them to be strong and also proved that strong

product of two complete m-polar fuzzy graphs is complete. If any of the products of

two m-polar fuzzy graphs G1 and G2 are strong, then it is shown that at least G1 or

G2 must be strong. We study about the degree of a vertex in m-polar fuzzy graphs

which are obtained from two given m-polar fuzzy graphs G1 and G2 using the op-

erations of Cartesian product, composition, direct product, semi-strong product and

strong product. Finally, the concept of product m-polar fuzzy graph is introduced

∗A part of the work presented in this chapter is published in Pacific Science Review A: Natural

Science and Engineering 17(1) 14–22 (2016).
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and proved that every product m-polar fuzzy graph is an m-polar fuzzy graph. Some

operations like union, direct product, ring sum are defined to construct new product

m-polar fuzzy graphs.

3.2 Products on m-polar fuzzy graphs
Here direct product of two m-polar fuzzy graphs is defined.

Definition 3.2.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the underlying graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively such

that V1 ∩ V2 = ∅. The direct product of G1 and G2 is defined to be the m-polar

fuzzy graph G1 ⊓ G2 = (A1 ⊓ A2, B1 ⊓ B2) of the graph G∗ = (V1 × V2, E) where,

E = {(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} ⊆ Ṽ1 × V2
2

and for each i = 1, 2, . . . ,m

(i) pi ◦ (A1 ⊓ A2)(u, v) = pi ◦ A1(u) ∧ pi ◦ A2(v) for all (u, v) ∈ V1 × V2,

(ii) pi ◦ (B1 ⊓ B2)((u1, v1)(u2, v2)) = pi ◦ B1(u1u2) ∧ pi ◦ B2(v1v2) for all u1u2 ∈ E1

and v1v2 ∈ E2,

(iii) pi ◦ (B1 ⊓B2)((w, x)(y, z)) = 0 for all (w, x)(y, z) ∈ (Ṽ1 × V2
2

− E).

Below, the direct product of m-polar fuzzy graphs is explained by an example.
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Figure 3.1: Direct product of G1 and G2

Example 3.2.1. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two crisp graphs such that

V1 = {u, v}, V2 = {w, x}, E1 = {uv} and E2 = {wx}. Consider two 3-polar fuzzy

graphs G1 = (V1, A1, B1) and G2 = (V2, A2, B2) of the graphs G∗
1 = (V1, E1) and

G∗
2 = (V2, E2) respectively. Using the definition of direct product, G1⊓G2 is constructed

(see Fig. 3.1). It is easy to see that G1 ⊓G2 is a 3-polar fuzzy graph.

Theorem 3.2.1. The direct product G1 ⊓G2 of two m-polar fuzzy graphs G1 and G2

is an m-polar fuzzy graph.
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Proof. Let (u1, v1)(u2, v2) ∈ E. Then u1u2 ∈ E1 and v1v2 ∈ E2.

Hence for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊓B2)((u1, v1)(u2, v2))

= pi ◦B1(u1u2) ∧ pi ◦B2(v1v2)

≤ pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 ⊓ A2)(u1, v1) ∧ pi ◦ (A1 ⊓ A2)(u2, v2)

Also, for all (w, x)(y, z) ∈ (Ṽ1 × V2
2

− E), i = 1, 2, . . . ,m

pi ◦ (B1 ⊓B2)((w, x)(y, z)) = 0 ≤ pi ◦ (A1 ⊓ A2)(w, x) ∧ pi ◦ (A1 ⊓ A2)(y, z).

This shows that G1 ⊓G2 is an m-polar fuzzy graph.

Theorem 3.2.2. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are two strong m-polar

fuzzy graphs, then G1 ⊓G2 is also strong.

Proof. Let (u1, v1)(u2, v2) ∈ E.

Since G1 and G2 are strong, therefore for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊓B2)((u1, v1)(u2, v2))

= pi ◦B1(u1u2) ∧ pi ◦B2(v1v2)

= pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 ⊓ A2)(u1, v1) ∧ pi ◦ (A1 ⊓ A2)(u2, v2).

Hence, G1 ⊓G2 is strong m-polar fuzzy graph.

Now, semi-strong product is defined between two m-polar fuzzy graphs to construct

a new m-polar fuzzy graph.

Definition 3.2.2. The semi-strong product of twom-polar fuzzy graphs G1 = (V1, A1, B1)

of G∗
1 = (V1, E1) and G2 = (V2, A2, B2) of G∗

2 = (V2, E2), where it is assumed that

V1∩V2 = ∅, is defined to be the m-polar fuzzy graph G1•G2 = (A1•A2, B1•B2) of G
∗ =

(V1 × V2, E), where E = {(u, v1)(u, v2)|u ∈ V1, v1v2 ∈ E2} ∪ {(u1, v1)(u2, v2)|u1u2 ∈

E1, v1v2 ∈ E2} ⊆ Ṽ1 × V2
2

satisfying the following: for each i = 1, 2, . . . ,m

(i) pi ◦ (A1 • A2)(u, v) = pi ◦ A1(u) ∧ pi ◦ A2(v) for all (u, v) ∈ V1 × V2,

(ii) pi◦(B1•B2)((u, v1)(u, v2)) = pi◦A1(u)∧pi◦B2(v1v2) for all u ∈ V1 and v1v2 ∈ E2,

(iii) pi ◦ (B1 • B2)((u1, v1)(u2, v2)) = pi ◦ B1(u1u2) ∧ pi ◦ B2(v1v2) for all u1u2 ∈ E1,

v1v2 ∈ E2 and

(iv) pi ◦ (B1 •B2)((w, x)(y, z)) = 0 for all (w, x)(y, z) ∈ (Ṽ1 × V2
2

− E).
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Figure 3.2: Semi-strong product of G1 and G2

We demonstrate this product in the following example.

Example 3.2.2. Consider the 3-polar fuzzy graphs G1 = (V1, A1, B1) and G2 =

(V2, A2, B2) as in Example 3.2.1. Then G1 • G2 is calculated using the above defi-

nition. It is easy to see that G1 •G2 is a 3-polar fuzzy graph (see Fig. 3.2).

Theorem 3.2.3. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are m-polar fuzzy graphs,

then G1 •G2 is an m-polar fuzzy graph.

Proof. Let (u, v1)(u, v2) ∈ E. Then u ∈ V1 and v1v2 ∈ E2. Since G2 is an m-polar

fuzzy graph, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 •B2)((u, v1)(u, v2))

= pi ◦ A1(u) ∧ pi ◦B2(v1v2)

≤ pi ◦ A1(u) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 • A2)(u, v1) ∧ pi ◦ (A1 • A2)(u, v2).

Let (u1, v1)(u2, v2) ∈ E.

Then u1u2 ∈ E1 and v1v2 ∈ E2.

G1 and G2 being m-polar fuzzy graphs, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 •B2)((u1, v1)(u2, v2))

= pi ◦B1(u1u2) ∧ pi ◦B2(v1v2)

≤ pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 • A2)(u1, v1) ∧ pi ◦ (A1 • A2)(u2, v2).

Finally, for all (w, x)(y, z) ∈ (Ṽ1 × V2
2

− E), i = 1, 2, . . . ,m

pi ◦ (B1 •B2)((w, x)(y, z)) = 0 ≤ pi ◦ (A1 • A2)(w, x) ∧ pi ◦ (A1 • A2)(y, z).

Theorem 3.2.4. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are strong m-polar fuzzy

graphs, then G1 •G2 is a strong m-polar fuzzy graph.
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Proof. Let (u, v1)(u, v2) ∈ E. Then u ∈ V1 and v1v2 ∈ E2.

G2 being strong, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 •B2)((u, v1)(u, v2))

= pi ◦ A1(u) ∧ pi ◦B2(v1v2)

= pi ◦ A1(u) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 • A2)(u, v1) ∧ pi ◦ (A1 • A2)(u, v2).

If (u1, v1)(u2, v2) ∈ E. Then u1u2 ∈ E1 and v1v2 ∈ E2.

Now, G1 and G2 being strong, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 •B2)((u1, v1)(u2, v2))

= pi ◦B1(u1u2) ∧ pi ◦B2(v1v2)

= pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 • A2)(u1, v1) ∧ pi ◦ (A1 • A2)(u2, v2).

Hence, G1 •G2 is strong m-polar fuzzy graph.

The strong product between m-polar fuzzy graphs is an important operation of

m-polar fuzzy graph which is defined below.

Definition 3.2.3. The strong product of two m-polar fuzzy graphs G1 = (V1, A1, B1) of

G∗
1 = (V1, E1) and G2 = (V2, A2, B2) of G

∗
2 = (V2, E2) such that V1 ∩ V2 = ∅, is defined

to be the m-polar fuzzy graph G1 ⊗ G2 = (A1 ⊗ A2, B1 ⊗ B2) of G∗ = (V1 × V2, E),

where E = {(u, v1)(u, v2)|u ∈ V1, v1v2 ∈ E2} ∪ {(u1, w)(u2, w)|w ∈ V2, u1u2 ∈ E1} ∪

{(u1, v1)(u2, v2)|u1u2 ∈ E1, v1v2 ∈ E2} ⊆ Ṽ1 × V2
2

such that the following condition

holds: for each i = 1, 2, . . . ,m

(i) pi ◦ (A1 ⊗ A2)(u, v) = pi ◦ A1(u) ∧ pi ◦ A2(v) for all (u, v) ∈ V1 × V2,

(ii) pi ◦ (B1 ⊗ B2)((u, v1)(u, v2)) = pi ◦ A1(u) ∧ pi ◦ B2(v1v2) for all u ∈ V1 and

v1v2 ∈ E2,

(iii) pi ◦ (B1 ⊗ B2)((u1, w)(u2, w)) = pi ◦ B1(u1u2) ∧ pi ◦ A2(w) for all w ∈ V2 and

u1u2 ∈ E1,

(iv) pi ◦ (B1 ⊗ B2)((u1, v1)(u2, v2)) = pi ◦ B1(u1u2) ∧ pi ◦ B2(v1v2) for all u1u2 ∈ E1

and v1v2 ∈ E2 and

(v) pi ◦ (B1 ⊗B2)((w, x)(y, z)) = 0 for all (w, x)(y, z) ∈ (Ṽ1 × V2
2

− E).

We now give an example which illustrates that the strong product of m-polar fuzzy

graphs is again an m-polar fuzzy graph.
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Example 3.2.3. Consider the 3-polar fuzzy graphs G1 = (V1, A1, B1) and G2 =

(V2, A2, B2) as in Example 3.2.1. Also consider the strong product G1 ⊗ G2 which

is shown in Fig. 3.3.
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Figure 3.3: Strong product of G1 and G2

It is easily checked that, G1 ⊗G2 is a 3-polar fuzzy graph.

Theorem 3.2.5. The strong product G1⊗G2 of two m-polar fuzzy graphs is an m-polar

fuzzy graph.

Proof. Follows from the definition of strong product.

Theorem 3.2.6. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are complete m-polar

fuzzy graphs, then G1 ⊗G2 is complete.

Proof. By Theorem 3.2.5, we know that the strong product of m-polar fuzzy graphs is

an m-polar fuzzy graph. Since G1 and G2 are complete, therefore every pair of vertices

are adjacent in the graph G1 ⊗G2 and hence E = Ṽ1 × V2
2

.

Let (u, v1)(u, v2) ∈ E. Since G2 is complete, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊗B2)((u, v1)(u, v2))

= pi ◦ A1(u) ∧ pi ◦B2(v1v2)

= pi ◦ A1(u) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 ⊗ A2)(u, v1) ∧ pi ◦ (A1 ⊗ A2)(u, v2).

Let (u1, w)(u2, w) ∈ E.

Since G1 is complete, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊗B2)((u1, w)(u2, w))

= pi ◦B1(u1u2) ∧ pi ◦ A2(w)

= pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(w)

= pi ◦ (A1 ⊗ A2)(u1, w) ∧ pi ◦ (A1 ⊗ A2)(u2, w).
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Finally, let (u1, v1)(u2, v2) ∈ E.

Then since G1 and G2 are complete, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊗B2)((u1, v1)(u2, v2))

= pi ◦B1(u1u2) ∧ pi ◦B2(v1v2)

= pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2)

= pi ◦ (A1 ⊗ A2)(u1, v1) ∧ pi ◦ (A1 ⊗ A2)(u2, v2).

Hence, G1 ⊗G2 is complete.

Theorem 3.2.7. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are m-polar fuzzy graphs

such that G1 ⊓G2 is strong, then at least one of G1 and G2 must be strong.

Proof. Let us assume that both G1 and G2 are not strong m-polar fuzzy graphs. Then

there exist at least one u1v1 ∈ E1 and u2v2 ∈ E2 such that for each i = 1, 2, . . . ,m

pi ◦B1(u1v1) < pi ◦ A1(u1) ∧ pi ◦ A1(v1) and

pi ◦B2(u2v2) < pi ◦ A2(u2) ∧ pi ◦ A2(v2).

Now, for each i = 1, 2, . . . ,m we have

pi ◦ (B1 ⊓B2)((u1, v1)(u2, v2))

= pi ◦B1(u1u2) ∧ pi ◦B2(v1v2)

< pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2) (from the above assumption)

= pi ◦ (A1 ⊓ A2)(u1, v1) ∧ pi ◦ (A1 ⊓ A2)(u2, v2).

This shows that, G1⊓G2 is not strong, which is a contradiction. So our assumption

is wrong. This means at least one of G1 and G2 is strong.

The following result follows from the preceding theorem.

Theorem 3.2.8. If G1 = (V1, A1, B1) and G2 = (V2, A2, B2) are two m-polar fuzzy

graphs such that G1 •G2 or G1 ⊗G2 is strong, then at least one of G1 and G2 must be

strong.

3.3 Product m-polar fuzzy graphs

In this section, a new type of m-polar fuzzy graphs, known as product m-polar fuzzy

graphs are defined.

Definition 3.3.1. A product m-polar fuzzy graph of a graph G∗ = (V,E) is a pair

G = (V,A,B) where A : V → [0, 1]m is an m-polar fuzzy set in V and B : Ṽ 2 → [0, 1]m
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is an m-polar fuzzy set in Ṽ 2 such that pi◦B(xy) ≤ pi◦A(x)×pi◦A(y) for all xy ∈ Ṽ 2,

i = 1, 2, . . . ,m.

Remark 3.3.1. Since pi ◦ A(x) and pi ◦ A(y) are less than or equal to 1 for each

i = 1, 2, . . . ,m, it follows that pi ◦B(xy) ≤ pi ◦A(x)× pi ◦A(y) ≤ pi ◦A(x)∧ pi ◦A(y)

for all xy ∈ Ṽ 2. Hence, every product m-polar fuzzy graph is an m-polar fuzzy graph.

Definition 3.3.2. A product m-polar fuzzy graph G = (V,A,B) is said to be complete

if pi ◦B(xy) = pi ◦ A(x)× pi ◦ A(y) for each i = 1, 2, . . . ,m and x, y ∈ V .

Definition 3.3.3. The complement of the product m-polar fuzzy graph G = (V,A,B)

is an m-polar fuzzy graph G = (V,A,B) where A = A and B is defined by

pi ◦B(xy) = pi ◦A(x)× pi ◦A(y)− pi ◦B(xy) for each i = 1, 2, . . . ,m and xy ∈ Ṽ 2.

Remark 3.3.2. Since for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m

pi ◦B(xy) = pi ◦ A(x)× pi ◦ A(y)− pi ◦B(xy) ≤ pi ◦ A(x)× pi ◦ A(y),

therefore G is a product m-polar fuzzy graph.

Definition 3.3.4. The union G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) of two product m-polar

fuzzy graphs G1 = (V1, A1, B1) of G
∗
1 = (V1, E1) and G2 = (V2, A2, B2) of G

∗
2 = (V2, E2)

is defined as follows: for each i = 1, 2, . . . ,m

(i) pi ◦ (A1 ∪ A2)(x) =


pi ◦ A1(x) if x ∈ V1 − V2

pi ◦ A2(x) if x ∈ V2 − V1

pi ◦ A1(x) ∨ pi ◦ A2(x) if x ∈ V1 ∩ V2.

(ii) pi ◦ (B1 ∪B2)(xy) =


pi ◦B1(xy) if xy ∈ E1 − E2

pi ◦B2(xy) if xy ∈ E2 − E1

pi ◦B1(xy) ∨ pi ◦B2(xy) if xy ∈ E1 ∩ E2.

Proposition 3.3.1. The direct product G1 ⊓ G2 of two product m-polar fuzzy graphs

G1 = (V1, A1, B1) and G2 = (V2, A2, B2) is a product m-polar fuzzy graph.

Proof. Let (u1, v1)(u2, v2) ∈ E. Then u1u2 ∈ E1 and v1v2 ∈ E2.

Now for each i = 1, 2, . . . ,m we have

pi ◦ (B1 ⊓B2)((u1, v1)(u2, v2))

= min{pi ◦B1(u1u2), pi ◦B2(v1v2)}

≤ min{pi ◦ A1(u1)× pi ◦ A1(u2), pi ◦ A2(v1)× pi ◦ A2(v2)}
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= min{pi ◦ A1(u1), pi ◦ A2(v1)} × {pi ◦ A1(u2), pi ◦ A2(v2)}

= pi ◦ (A1 ⊓ A2)(u1, v1)× pi ◦ (A1 ⊓ A2)(u2, v2).

Hence the result.

Remark 3.3.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two complete product

m-polar fuzzy graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively. Then

G1 ⊓ G2 may not be complete. For example, let us take product 3-polar fuzzy graphs

G1 and G2 which are complete but G1 ⊓G2 is not complete (see Fig. 3.4).
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Figure 3.4: G1 and G2 are complete product 3-polar fuzzy graphs but G1 ⊓G2 is not

complete

Definition 3.3.5. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be the product m-polar

fuzzy graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. Then, the

ring sum of G1 and G2 is denoted by G = G1 ⊕G2 = (A1 ⊕ A2, B1 ⊕ B2) and defined

as follows: for each i = 1, 2, . . . ,m

(i) pi ◦ (A1 ⊕ A2)(u) = pi ◦ (A1 ∪ A2)(u) for all u ∈ V1 ∪ V2 and

(ii) pi ◦ (B1 ⊕B2)(uv) =


pi ◦B1(uv) if uv ∈ E1 − E2

pi ◦B2(uv) if uv ∈ E2 − E1

0 otherwise.

Proposition 3.3.2. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be the product m-

polar fuzzy graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. Then

the ring sum G = G1 ⊕G2 = (A1 ⊕ A2, B1 ⊕B2) is a product m-polar fuzzy graph.

Proof. We will show the following: for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊕B2)(uv) ≤ pi ◦ (A1 ⊕ A2)(u)× pi ◦ (A1 ⊕ A2)(v) for all uv ∈ E1 ∪ E2.

Case (i): Let uv ∈ E1 − E2 and u, v ∈ V1 − V2. Then for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊕B2)(uv)
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= pi ◦B1(uv)

≤ pi ◦ A1(u)× pi ◦ A1(v)

= pi ◦ (A1 ⊕ A2)(u)× pi ◦ (A1 ⊕ A2)(v).

Case (ii): Let uv ∈ E1 − E2 and u ∈ V1 − V2, v ∈ V1 ∩ V2.

Then for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊕B2)(uv)

= pi ◦B1(uv)

≤ pi ◦ A1(u)×max{pi ◦ A1(v), pi ◦ A2(v)}

≤ pi ◦ (A1 ∪ A2)(u)× pi ◦ (A1 ∪ A2)(v)

= pi ◦ (A1 ⊕ A2)(u)× pi ◦ (A1 ⊕ A2)(v).

Case (iii): Let uv ∈ E1 − E2 and u, v ∈ V1 ∩ V2.

Then for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊕B2)(uv)

= pi ◦B1(uv)

≤ max{pi ◦ A1(u), pi ◦ A2(u)} ×max{pi ◦ A1(v), pi ◦ A2(v)}

≤ pi ◦ (A1 ∪ A2)(u)× pi ◦ (A1 ∪ A2)(v)

= pi ◦ (A1 ⊕ A2)(u)× pi ◦ (A1 ⊕ A2)(v).

Similarly, we can show that if uv ∈ E2 − E1, then also for each i = 1, 2, . . . ,m

pi ◦ (B1 ⊕B2)(uv) ≤ pi ◦ (A1 ⊕ A2)(u)× pi ◦ (A1 ⊕ A2)(v).

Hence the result.

3.4 Degrees of vertices in m-polar fuzzy graphs

In this section, we study about the degree of a vertex in m-polar fuzzy graphs which

are obtained from two given m-polar fuzzy graphs G1 and G2 using the operations

of Cartesian product, composition, direct product, semi-strong product and strong

product.

3.4.1 Degree of a vertex in Cartesian product

Now, we compute the degree of a vertex in the Cartesian product. By the definition

of Cartesian product, for any vertex (x1, x2) ∈ V1 × V2, the degree of it is denoted by

dG1×G2(x1, x2) = (p1 ◦ dG1×G2(x1, x2), p2 ◦ dG1×G2(x1, x2), . . . , pm ◦ dG1×G2(x1, x2)) and
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is defined by

pi ◦ dG1×G2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 ×B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1) for i = 1, 2, . . . ,m.

Theorem 3.4.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs. If B2 ⊆ A1 and B1 ⊆ A2, then dG1×G2(x1, x2) = dG1(x1) + dG2(x2) for all

(x1, x2) ∈ V1 × V2.

Proof. For each i = 1, 2, . . . ,m we have,

pi ◦ dG1×G2(x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x1y1∈E1

pi ◦B1(x1y1)

= pi ◦ dG1(x1) + pi ◦ dG2(x2).

Hence, dG1×G2(x1, x2) = dG1(x1) + dG2(x2).
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Figure 3.5: Cartesian product of G1 and G2

Example 3.4.1. Let us consider the 3-polar fuzzy graphs G1, G2 and their Cartesian

product G1×G2 (see Fig. 3.5). For this graph, B2 ⊆ A1 and B1 ⊆ A2. So, by Theorem

3.4.1,

p1 ◦ dG1×G2(x1, x2) = p1 ◦ dG1(x1) + p1 ◦ dG2(x2)
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= 0.4 + 0.3 = 0.7,

p2 ◦ dG1×G2(x1, x2) = p2 ◦ dG1(x1) + p2 ◦ dG2(x2)

= 0.3 + 0.2 = 0.5,

p3 ◦ dG1×G2(x1, x2) = p3 ◦ dG1(x1) + p3 ◦ dG2(x2)

= 0.2 + 0.3 = 0.5.

So, dG1×G2(x1, x2) = (0.7, 0.5, 0.5).

Also, from Fig. 3.5, dG1×G2(x1, x2)

= (0.3 + 0.4, 0.2 + 0.3, 0.3 + 0.2)

= (0.7, 0.5, 0.5).

Hence, dG1×G2(x1, x2) = (0.7, 0.5, 0.5).

Similarly, we can find the degrees of all other vertices in G1 × G2. This can be

verified from the Fig. 3.5 also.

Theorem 3.4.2. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs such that A1 ⊆ B2, then B1 ⊆ A2 and conversely.

Proof. By definition of m-polar fuzzy graphs, we have

pi ◦Bj(xy) ≤ min{pi ◦Aj(x), pi ◦Aj(y)} for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m and j = 1, 2.

Therefore, pi ◦Bj ≤ max{pi ◦ Aj} and

min{pi ◦Bj} ≤ pi ◦ Aj for i = 1, 2, . . . ,m and j = 1, 2.

Also, since A1 ⊆ B2, max{pi ◦ A1} ≤ min{pi ◦B2} for i = 1, 2, . . . ,m.

Hence, pi ◦B1 ≤ max{pi ◦ A1}

≤ min{pi ◦B2}

≤ pi ◦ A2 for i = 1, 2, . . . ,m,

i.e. B1 ⊆ A2.

The converse part can be proved in a similar way.

Theorem 3.4.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs.

(i) If A1 ⊆ B2 and A1 is constant function with A1(x) = (c1, c2, . . . , cm) = c for all

x ∈ V1, then dG1×G2(x1, x2) = dG1(x1) + cdG∗
2
(x2).

(ii) If A2 ⊆ B1 and A2 is constant function with A2(x) = (k1, k2, . . . , km) = k for all

x ∈ V2, then dG1×G2(x1, x2) = dG2(x2) + kdG∗
1
(x1).
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Proof. (i) Because A1 ⊆ B2, by Theorem 3.4.2, B1 ⊆ A2.

Then for i = 1, 2, . . . ,m,

pi ◦ dG1×G2(x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦ A1(x1) +
∑

x1y1∈E1

pi ◦B1(x1y1)

=
∑

x2y2∈E2

ci + pi ◦ dG1(x1)

= cidG∗
2
(x2) + pi ◦ dG1(x1).

Hence, dG1×G2(x1, x2) = dG1(x1) + cdG∗
2
(x2).

(ii) Proof is similar to the above case.

3.4.2 Degree of a vertex in composition

Now, we calculate the degree of a vertex in the composition of two m-polar fuzzy

graphs. By the definition of composition, for any vertex (x1, x2) ∈ V1 × V2, the degree

of it is denoted by dG1[G2](x1, x2) = (p1 ◦ dG1[G2](x1, x2), p2 ◦ dG1[G2](x1, x2), . . . , pm ◦

dG1[G2](x1, x2)) and is defined by

pi ◦ dG1[G2](x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 ◦B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x2 ̸=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦ A2(y2) ∧ pi ◦B1(x1y1)

for i = 1, 2, . . . ,m.

Theorem 3.4.4. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs. If B2 ⊆ A1 and B1 ⊆ A2, then dG1[G2](x1, x2) = |V2|dG1(x1) + dG2(x2) for all

(x1, x2) ∈ V1 × V2.



3.4. DEGREES OF VERTICES IN M -POLAR FUZZY GRAPHS 62

Proof. For each i = 1, 2, . . . ,m we have,

pi ◦ dG1[G2](x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x2 ̸=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦ A2(y2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x2=y2,x1y1∈E1

pi ◦B1(x1y1)

+
∑

x2 ̸=y2,x1y1∈E1

pi ◦B1(x1y1)

(Since pi ◦ A1 ≥ pi ◦B2 and pi ◦ A2 ≥ pi ◦B1)

= pi ◦ dG2(x2) + |V2|pi ◦ dG1(x1).

Hence, dG1[G2](x1, x2) = |V2|dG1(x1) + dG2(x2).
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Figure 3.6: Composition of G1 and G2

Example 3.4.2. Consider the 3-polar fuzzy graphs G1, G2 and their composition G1[G2]

(see Fig. 3.6). Here, B2 ⊆ A1 and B1 ⊆ A2. Therefore, by Theorem 3.4.4 we have,

p1 ◦ dG1[G2](x1, x2) = p1 ◦ dG1(x1)|V2|+ p1 ◦ dG2(x2) = 0.3× 2 + 0.2 = 0.8,

p2 ◦ dG1[G2](x1, x2) = p2 ◦ dG1(x1)|V2|+ p2 ◦ dG2(x2) = 0.4× 2 + 0.3 = 1.1,

p3 ◦ dG1[G2](x1, x2) = p3 ◦ dG1(x1)|V2|+ p3 ◦ dG2(x2) = 0.5× 2 + 0.4 = 1.4.

Therefore, dG1[G2](x1, x2) = (0.8, 1.1, 1.4).

Again from the Fig. 3.6,

dG1[G2](x1, x2) = (p1 ◦ dG1[G2](x1, x2), p2 ◦ dG1[G2](x1, x2), p3 ◦ dG1[G2](x1, x2))

= (0.3 + 0.2 + 0.3, 0.4 + 0.3 + 0.4, 0.5 + 0.4 + 0.5) = (0.8, 1.1, 1.4).
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In the same way, we can find the degree of all vertices in G1[G2]. This can be verified

from the Fig. 3.6.

Theorem 3.4.5. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs.

(i) If A1 ⊆ B2 and A1 is constant function with A1(x) = (c1, c2, . . . , cm) = c for all

x ∈ V1, then dG1[G2](x1, x2) = |V2|dG1(x1) + cdG∗
2
(x2).

(ii) If A2 ⊆ B1 and A2 is constant function with A2(x) = (k1, k2, . . . , km) = k for all

x ∈ V2, then dG1[G2](x1, x2) = dG2(x2) + k|V2|dG∗
1
(x1).

Proof. (i) Because A1 ⊆ B2, by Theorem 3.4.2, B1 ⊆ A2. Now for i = 1, 2, . . . ,m we

have,

pi ◦ dG1[G2](x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x2 ̸=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦ A2(y2) ∧ pi ◦B1(x1y1)

=
∑

x2y2∈E2

pi ◦ A1(x1) +
∑

x2=y2,x1y1∈E1

pi ◦B1(x1y1)

+
∑

x2 ̸=y2,x1y1∈E1

pi ◦B1(x1y1)

=
∑

x2y2∈E2

ci + |V2|
∑

x1y1∈E1

pi ◦B1(x1y1)

= cidG∗
2
(x2) + |V2|pi ◦ dG1(x1).

Hence, dG1[G2](x1, x2) = |V2|dG1(x1) + cdG∗
2
(x2).

(ii) Similarly to the above case.

3.4.3 Degree of a vertex in direct product

Degree of a vertex in the direct product is as follows. By definition of direct product

for any vertex (x1, x2) ∈ V1 × V2, the degree of (x1, x2) is denoted by dG1⊓G2(x1, x2) =

(p1 ◦ dG1⊓G2(x1, x2), p2 ◦ dG1⊓G2(x1, x2), . . . , pm ◦ dG1⊓G2(x1, x2)) and is defined by

pi ◦ dG1⊓G2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 ⊓B2)((x1, x2)(y1, y2))

=
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2) for i = 1, 2, . . . ,m.
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Theorem 3.4.6. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs. If B1 ⊆ B2, then dG1⊓G2(x1, x2) = dG1(x1). Also, if B2 ⊆ B1, then

dG1⊓G2(x1, x2) = dG2(x2) for all (x1, x2) ∈ V1 × V2.

Proof. Let B1 ⊆ B2 i.e., pi ◦B2 ≥ pi ◦B1 for each i = 1, 2, . . . ,m. Then we have,

pi ◦ dG1⊓G2(x1, x2) =
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2)

=
∑

x1y1∈E1

pi ◦B1(x1y1) = pi ◦ dG1(x1) for i = 1, 2, . . . ,m.

Hence, dG1⊓G2(x1, x2) = dG1(x1).

Similarly, if B2 ⊆ B1 then dG1⊓G2(x1, x2) = dG2(x2).
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Figure 3.7: The direct product of G1 and G2

Example 3.4.3. In this example we consider the direct product of two 3-polar fuzzy

graphs and calculate the degree of vertices in the direct product. Let us now consider

the 3-polar fuzzy graphs G1, G2 and their direct product G1 ⊓G2 (see Fig. 3.7). Here,

we see that pi ◦B2 ≥ pi ◦B1 for i = 1, 2, 3, i.e. B1 ⊆ B2. Hence by Theorem 3.4.6,

p1 ◦ dG1⊓G2(x1, x2) = p1 ◦ dG1(x1) = 0.3, p2 ◦ dG1⊓G2(x1, x2) = p2 ◦ dG1(x1) = 0.3,

p3 ◦ dG1⊓G2(x1, x2) = p3 ◦ dG1(x1) = 0.4. So, dG1⊓G2(x1, x2) = (0.3, 0.3, 0.4). Similarly,

we can find the degree of all other vertices in G1 ⊓G2. This can also be verified from

Fig. 3.7.

3.4.4 Degree of a vertex in semi-strong product

Next, we consider the semi-strong product of twom-polar fuzzy graphs and calculate

the degree of vertices of it. For any vertex vertex (x1, x2) ∈ V1 × V2 in the semi-

strong product G1 • G2, the degree of (x1, x2) is denoted by dG1•G2(x1, x2) = (p1 ◦
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dG1•G2(x1, x2), p2 ◦ dG1•G2(x1, x2), . . . , pm ◦ dG1•G2(x1, x2)) and is defined by

pi ◦ dG1•G2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 •B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2) for i = 1, 2, . . . ,m.

Theorem 3.4.7. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs. If B1 ⊆ B2 ⊆ A1, then dG1•G2(x1, x2) = dG1(x1) + dG2(x2) for all (x1, x2) ∈

V1 × V2.

Proof. Let B1 ⊆ B2 ⊆ A1, i.e. pi ◦ A1 ≥ pi ◦ B2 ≥ pi ◦ B1 for each i = 1, 2, . . . ,m.

Then, for i = 1, 2, . . . ,m and (x1, x2) ∈ V1 × V2,

pi ◦ dG1•G2(x1, x2) =
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi •B2(x2y2)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi •B2(x2y2)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x1y1∈E1

pi ◦B1(x1y1)

= pi ◦ dG2(x2) + pi ◦ dG1(x1).

Hence, dG1•G2(x1, x2) = dG1(x1) + dG2(x2) for all (x1, x2) ∈ V1 × V2.

Example 3.4.4. Consider the 3-polar fuzzy graphs G1, G2 and their semi-strong prod-

uct G1 •G2 (see Fig. 3.8). Here, we see that pi ◦A1 ≥ pi ◦B2 ≥ pi ◦B1 for i = 1, 2, 3,

i.e. B1 ⊆ B2 ⊆ A1. Hence by Theorem 3.4.7, we have

p1 ◦ dG1•G2(x1, x2) = p1 ◦ dG1(x1) + p1 ◦ dG2(x2) = 0.2 + 0.2 = 0.4,

p2 ◦ dG1•G2(x1, x2) = p2 ◦ dG1(x1) + p2 ◦ dG2(x2) = 0.2 + 0.3 = 0.5,

p3 ◦ dG1•G2(x1, x2) = p3 ◦ dG1(x1) + p3 ◦ dG2(x2) = 0.3 + 0.4 = 0.7.

So, dG1⊓G2(x1, x2) = (0.4, 0.5, 0.7).

Again, from the Fig. 3.8, we have

dG1⊓G2(x1, x2) = (0.2 + 0.2, 0.2 + 0.3, 0.3 + 0.4) = (0.4, 0.5, 0.7).

Similarly, we can find the degrees of all vertices in G1 • G2 which can be verified

from the figure also.
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Figure 3.8: Semi-strong product of G1 and G2

3.4.5 Degree of a vertex in strong product

Finally, we compute the degree of a vertex in strong product of m-polar fuzzy

graphs. By definition of strong product, for any vertex (x1, x2) ∈ V1 × V2 in G1 ⊗

G2, the degree of (x1, x2) is denoted by dG1⊗G2(x1, x2) = (p1 ◦ dG1⊗G2(x1, x2), p2 ◦

dG1⊗G2(x1, x2), . . . , pm ◦ dG1⊗G2(x1, x2)) and is defined by

pi ◦ dG1⊗G2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 ⊗B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2) for i = 1, 2, . . . ,m.

Theorem 3.4.8. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs. If B2 ⊆ A1, B1 ⊆ A2 and B1 ⊆ B2, then dG1⊗G2(x1, x2) = |V2|dG1(x1)+dG2(x2)

for all (x1, x2) ∈ V1 × V2.
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Figure 3.9: Strong product of G1 and G2
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Proof. For i = 1, 2, . . . ,m and (x1, x2) ∈ V1 × V2 we have,

pi ◦ dG1⊗G2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

pi ◦ (B1 ⊗B2)((x1, x2)(y1, y2))

=
∑

x1=y1,x2y2∈E2

pi ◦ A1(x1) ∧ pi ◦B2(x2y2)

+
∑

x2=y2,x1y1∈E1

pi ◦ A2(x2) ∧ pi ◦B1(x1y1)

+
∑

x1y1∈E1,x2y2∈E2

pi ◦B1(x1y1) ∧ pi ◦B2(x2y2)

=
∑

x2y2∈E2

pi ◦B2(x2y2) +
∑

x2=y2,x1y1∈E1

pi ◦B1(x1y1)

+
∑

x1y1∈E1

pi ◦B1(x1y1)

= pi ◦ dG2(x2) + |V2|pi ◦ dG1(x1).

This shows that, dG1⊗G2(x1, x2) = |V2|dG1(x1) + dG2(x2).

Example 3.4.5. Let us consider the 3-polar fuzzy graphs G1, G2 and their strong

product G1 ⊗ G2 (see Fig. 3.9). Here, pi ◦ A1 ≥ pi ◦ B2, pi ◦ A2 ≥ pi ◦ B1 and

pi ◦ B1 ≤ pi ◦ B2 for i = 1, 2, 3, i.e. B2 ⊆ A1, B1 ⊆ A2 and B1 ⊆ B2. Hence by

Theorem 3.4.8, we have

p1 ◦ dG1⊗G2(x1, x2) = p1 ◦ dG2(x2) + |V2|p1 ◦ dG1(x1) = 0.3 + 2× 0.3 = 0.9,

p2 ◦ dG1⊗G2(x1, x2) = p2 ◦ dG2(x2) + |V2|p2 ◦ dG1(x1) = 0.2 + 2× 0.2 = 0.6,

p3 ◦ dG1⊗G2(x1, x2) = p3 ◦ dG2(x2) + |V2|p3 ◦ dG1(x1) = 0.3 + 2× 0.2 = 0.7.

So, dG1⊗G2(x1, x2) = (0.9, 0.6, 0.7). Again, from the Fig. 3.9 we see that,

dG1⊗G2(x1, x2) = (0.3 + 0.3 + 0.3, 0.2 + 0.2 + 0.2, 0.3 + 0.2 + 0.2) = (0.9, 0.6, 0.7).

Similarly, we can find the degrees of all vertices in the strong product from the

Theorem 3.4.8 as well as from the Fig. 3.9 directly.

3.5 3-polar fuzzy influence graphs

A directed graph (or digraph) is a graph whose edges have direction and called arcs

(edges). Arrows on arcs are used to encode the directional information: an arc from

the vertex x to the vertex y indicates that one may move from x to y but not from y

to x. We write xy ∈ E to mean x → y ∈ E, and if e = xy ∈ E, we say x and y are

adjacent such that x is a starting node and y is an ending node.
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Definition 3.5.1. An m-polar fuzzy digraph of a digraph G∗ = (V,E) is a pair G =

(V,A,B), where A : V → [0, 1]m is an m-polar fuzzy set on V and B : Ṽ 2 → [0, 1]m

is an m-polar fuzzy set in Ṽ 2 such that pi ◦ B(xy) ≤ min{pi ◦ A(x), pi ◦ A(y)} for all

xy ∈ Ṽ 2, for each i = 1, 2, . . . ,m and B(xy) = 0 for all xy ∈ (Ṽ 2 − E). B need not

be symmetric, i.e. B(xy) ̸= B(yx).

Graph models have broad application in many disciplines of mathematics, social

sciences, natural sciences and computer sciences. In studies of group behavior, it is

inspected that many people can influence thinking of others. A digraph can be use to

model such behavior and this graph is called an influence graph. We will present the

influence of a person in a social group on Gtalk.

Let V={Asit, Sankar, Kartik, Prabir, Shakti} be the set of five persons in a social

group. The influence degree depends on the legitimate prevailing, unity building, and

appealing to values. Then, we have a 3-polar fuzzy influence graph G = (V,A,B),

where vertices represent the person of a social group and edges represent the influence

of a person on other. From the above Fig. 3.10, we see that Kartik influence Asit,

Sankar and Prabir. Kartik’s 60% hold on Asit is due to legitimate prevailing, 40% is

due to unity building, 50% is due to appealing to values. His 70% hold on Sankar is

due to legitimate prevailing, 60% is due to unity building, 50% is due to appealing to

values. Similarly, for Prabir also. Asit influence Sankar, Sankar influence Shakti and

Prabir. So, we observe that Kartik is the most influential person in the group.

y y

y y y

< 0.6, 0.4, 0.5 > < 0.7, 0.6, 0.5 >

< 0.7, 0.5, 0.4 > < 0.5, 0.5, 0.3 >

< 0.5, 0.4, 0.4 >

< 0.4, 0.3, 0.2 >

< 0.3, 0.2, 0.2 >

Asit Sankar

PrabirKartik

< 0.6, 0.4, 0.3 >

Shakti

< 0.7, 0.6, 0.3 >

< 0.5, 0.5, 0.3 >

< 0.4, 0.4, 0.2 >

-

6

- ?

>

-s

< 0.5, 0.3, 0.2 >

Figure 3.10: 3-polar fuzzy influence graph

3.6 Summary

The main goal of this chapter is to define three new operations on m-polar fuzzy

graph such as direct product, semi-strong product and strong product, and study
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their properties. Some subclasses ofm-polar fuzzy graphs, namely the productm-polar

fuzzy graphs are also introduced here. Some operations like union, direct product, ring

sum are defined to construct new product m-polar fuzzy graphs. We have calculated

the degree of vertices in G1 ×G2, G1 ◦G2, G1 ⊗G2 and G1 •G2 in terms of the degree

of vertices of the graphs G1 and G2 under some conditions. This will be helpful when

the graphs are very large. The degrees and edges of any graph are very important

parameters. The number of edges is not evaluated in this chapter. Finally, 3-polar

fuzzy influence graph is introduced as an applications.
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Chapter 4

Density of m-polar fuzzy graphs

4.1 Introduction

The density of a crisp graph G∗ = (V,E) is defined by D(G∗) = 2
∑

|E|
|V |(|V |−1)

. This gives

the number of edges per unit vertex. D(G∗) is non-negative for any graph G∗ and its

maximum value is 1, when G∗ is complete. Thus, 0 ≤ D(G∗) ≤ 1. Higher value of

D(G∗) represent more edges in G∗. If G∗ has no edges, then D(G∗) is 0. DensityD(G∗)

of a graph G∗ is concerned with the patterns of connections of the entire networks.

Graphs for which D(H) ≤ D(G) for all subgraph H of G, are called balanced graph.

Balanced graph first arose in the study of random graphs and balanced m-polar fuzzy

graphs defined here is based on density functions. A graph with maximum density is

complete and graph with minimum density is a null graph. There are several papers

written on balanced extension of graph which has tremendous applications in artificial

intelligence, signal processing, robotics, computer networks and decision making. Al-

Hawary [10] first introduced the concept of balanced fuzzy graphs. In this chapter, the

density of an m-polar fuzzy graph is defined and studied the notion of balanced m-

polar fuzzy graph and established necessary and sufficient conditions for the preceding

products of two balanced m-polar fuzzy graphs to be balanced.

4.2 m-polar fuzzy graphs and its subgraphs

Definition 4.2.1. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ = (V,E). The

m-polar fuzzy graph H = (P,C,D) is called an m-polar fuzzy subgraph of G induced

by P if P ⊆ V , C(x) = A(x) for all x ∈ P and D(xy) = B(xy) for all xy ∈ P̃ 2.

71
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y yy

y y

< 0.3, 0.4, 0.6 > < 0.3, 0.4, 0.6 >

< 0.4, 0.6, 0.3 > < 0.4, 0.6, 0.3 >

< 0.7, 0.5, 0.3 >

< 0.2, 0.4, 0.3 >

< 0.3, 0.3, 0.2 > < 0.3, 0.3, 0.2 >< 0.2, 0.4, 0.1 >

u uw

v v

G H

Figure 4.1: Example of 3-polar fuzzy subgraph of the graph G

Example 4.2.1. H is a 3-polar fuzzy subgraph of G (see Fig. 4.1).

4.3 Balanced m-polar fuzzy graphs

This section is began by defining the density of anm-polar fuzzy graph and balanced

m-polar fuzzy graphs. Then it is proved that any complete m-polar fuzzy graph is

balanced, but the converse is not true always.

Definition 4.3.1. The density of an m-polar fuzzy graph G = (V,A,B) of G∗ = (V,E)

is D(G) = (p1 ◦D(G), p2 ◦D(G), . . . , pm ◦D(G)), where for each i = 1, 2, . . . ,m

pi ◦D(G) =

2(
∑

u,v∈V
pi ◦B(uv))∑

u,v∈V
(pi ◦ A(u) ∧ pi ◦ A(v))

.

G is said to be balanced if pi ◦D(H) ≤ pi ◦D(G) for all non-empty subgraphs H of G,

i = 1, 2, . . . ,m.

z z

z

< 0.3, 0.4, 0.5 >

< 0.3, 0.4, 0.5 >

< 0, 1, 0.2, 0.2 >

< 0.3, 0.4, 0.5 >

< 0, 1, 0.2, 0.2 >

a

b

c
< 0, 1, 0.2, 0.2 >

Figure 4.2: 3-polar fuzzy balanced graph G

Example 4.3.1. Consider the 3-polar fuzzy graph G = (V,A,B) of G∗ = (V,E) where

V = {a, b, c}, E = {ab, bc, ca}, A = {<0.3,0.4,0.5>
a

, <0.3,0.4,0.5>
b

, <0.3,0.4,0.5>
c

},

B = {<0.1,0.2,0.2>
ab

, <0.1,0.2,0.2>
bc

, <0.1,0.2,0.2>
ca

}. We have,

p1 ◦D(G) = 2(p1◦B(ab)+p1◦B(bc)+p1◦B(ca))
(p1◦A(a)∧p1◦A(b)+p1◦A(b)∧p1◦A(c)+p1◦A(c)∧p1◦A(a))

= 2(0.1+0.1+0.1)
0.3+0.3+0.3

= 0.67.
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Similarly, p2 ◦D(G) = 1 and p3 ◦D(G) = 0.8. Hence, D(G) = (0.67, 1, 0.8).

The non-empty subgraphs of G are H1 = {a, b}, H2 = {b, c} and H3 = {c, a}.

Then D(H1) = (2×0.1
0.3

, 2×0.2
0.4

, 2×0.2
0.5

) = (0.67, 1, 0.8),

D(H2) = (2×0.1
0.3

, 2×0.2
0.4

, 2×0.2
0.5

) = (0.67, 1, 0.8) and

D(H3) = (2×0.1
0.3

, 2×0.2
0.4

, 2×0.2
0.5

) = (0.67, 1, 0.8).

We see that, D(H1) = D(H2) = D(H3) = D(G) = (0.67, 1, 0.8).

Hence, G is a balanced 3-polar fuzzy graph (see Fig. 4.2).

Definition 4.3.2. An m-polar fuzzy graph G is said to be strictly balanced if pi ◦

D(H) = pi ◦D(G) for all non-empty subgraphs H of G, i = 1, 2, . . . ,m.

Example 4.3.2. The 3-polar fuzzy graph of Fig. 4.2 is actually a strictly balanced

3-polar fuzzy graph.

Theorem 4.3.1. Any complete m-polar fuzzy graph is balanced.

Proof. Let G = (V,A,B) be a complete m-polar fuzzy graph and H be a non-empty

subgraph of G. Then for each i = 1, 2, . . . ,m

pi ◦D(G) =

2(
∑

u,v∈V
pi ◦B(uv))∑

u,v∈V
(pi ◦ A(u) ∧ pi ◦ A(v))

=

2(
∑

u,v∈V
pi ◦ A(u) ∧ p◦A(v))∑

u,v∈V
(pi ◦ A(u) ∧ pi ◦ A(v))

= 2

and

pi ◦D(H) =

2(
∑

u,v∈V (H)

pi ◦B(uv))∑
u,v∈V (H)

(pi ◦ A(u) ∧ pi ◦ A(v))
≤

2(
∑

u,v∈V (H)

pi ◦ A(u) ∧ pi ◦ A(v))∑
u,v∈V (H)

(pi ◦ A(u) ∧ pi ◦ A(v))
= 2

(where V (H) represents the vertex of H). This shows that G is balanced.

The converse of the above theorem is not true always. For example, the 3-polar

fuzzy graph in Fig. 4.2 is balanced but not complete.

Below we will discuss two types of m-polar fuzzy graphs each with density equal to

1 = (1, 1, . . . , 1).

Theorem 4.3.2. Every self-complementary strong m-polar fuzzy graph has density

equal to 1 = (1, 1, . . . , 1).
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Proof. Let G = (V,A,B) be a self-complementary strong m-polar fuzzy graph of

G∗ = (V,E). Then by Proposition 6.12 of [45], we have for each i = 1, 2, . . . ,m and

xy ∈ Ṽ 2,

∑
x ̸=y

pi ◦B(xy) =
1

2

∑
x ̸=y

(pi ◦ A(x) ∧ pi ◦ A(y)).

Hence,

pi ◦D(G) =

2(
∑

u,v∈V
pi ◦B(uv))∑

u,v∈V
(pi ◦ A(u) ∧ pi ◦ A(v))

= 1(by the above)

for each i = 1, 2, . . . ,m. Thus, D(G) = 1.

y y

y

y y

y

< 1, 1, 1 >

< 1, 1, 1 >

< 0, 3, 0.3, 0.3 >

< 1, 1, 1 >

< 0.2, 0.2, 0.2 >

< 1, 1, 1 > < 1, 1, 1 >

< 1, 1, 1 >G

u w

v

u

v

w
< 1, 1, 1 >

< 0.7, 0.7, 0.7 > < 0.8, 0.8, 0.8 >

G

Figure 4.3: G is a 3-polar fuzzy graph with density (1, 1, 1) but not self-complementary

and strong

The converse of this theorem is not true in general. For example, the 3-polar fuzzy

graph in Fig. 4.3 has density equal to (1,1,1), but it is not self-complementary strong.

Here, we see that D(G) = (1, 1, 1) but G � G.

Theorem 4.3.3. Let G = (V,A,B) be a strictly balanced m-polar fuzzy graph and let

G = (V,A,B) be its complement. Then, D(G) +D(G) = (2, 2, . . . , 2).

Proof. Let H be any nonempty subgraph of G.

Since G is strictly balanced pi ◦D(H) = pi ◦D(G) for every H ⊆ G, i = 1, 2, . . . ,m.

Now, for all uv ∈ Ṽ 2 and i = 1, 2, . . . ,m we have

pi ◦B(uv) = pi ◦ A(u) ∧ pi ◦ A(v)− pi ◦B(uv),

i.e. pi◦B(uv)
pi◦A(u)∧pi◦A(v)

= 1− pi◦B(uv)
pi◦A(u)∧pi◦A(v)

,

i.e.
∑

u,v∈V

pi◦B(uv)
pi◦A(u)∧pi◦A(v)

= 1−
∑

u,v∈V

pi◦B(uv)
pi◦A(u)∧pi◦A(v)

,

i.e. 2(
∑

u,v∈V

pi◦B(uv)
pi◦A(u)∧pi◦A(v)

) = 2− 2(
∑

u,v∈V

pi◦B(uv)
pi◦A(u)∧pi◦A(v)

),

i.e. pi ◦D(G) = 2− pi ◦D(G),
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i.e. pi ◦D(G) + pi ◦D(G) = 2,

i.e. D(G) +D(G) = (2, 2, . . . , 2).

This completes the proof.

Theorem 4.3.4. The complement of strictly balanced m-polar fuzzy graph is strictly

balanced.

Proof. Follows from the definition.

Theorem 4.3.5. Let G = (V,A,B) be a strong m-polar fuzzy graph such that for each

i = 1, 2, . . . ,m and uv ∈ Ṽ 2, pi ◦B(uv) = 1
2
(pi ◦A(u)∧ pi ◦A(v)). Then, D(G) = 1 =

(1, 1, . . . , 1).

Proof. Since G = (V,A,B) is a strong m-polar fuzzy graph such that for each i =

1, 2, . . . ,m and uv ∈ Ṽ 2, pi ◦B(uv) = 1
2
(pi ◦A(u)∧pi ◦A(v)), therefore by Proposition

6.13 of [45], we have G is self-complementary. Hence, by Theorem 4.3.2, it follows that

D(G) = 1.

Next, necessary and sufficient conditions are established for the direct product,

semi-strong product and strong product of two m-polar fuzzy graphs to be balanced.

Theorem 4.3.6. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. Then, D(Gk) ≤ D(G1 ⊓ G2)

for k = 1, 2 if and only if D(G1) = D(G2) = D(G1 ⊓G2).

Proof. Let D(Gk) ≤ D(G1 ⊓G2) for k = 1, 2. Then for i = 1, 2, . . . ,m

pi ◦D(G1) =

2(
∑

u1,u2∈V1

pi ◦B1(u1u2))∑
u1,u2∈V1

(pi ◦ A1(u1) ∧ pi ◦ A1(u2))

≥

2(
∑

u1,u2∈V1
v1,v2∈V2

pi ◦B1(u1u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2))

∑
u1,u2∈V1
v1,v2∈V2

(pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2))

=

2(
∑

u1,u2∈V1
v1,v2∈V2

pi ◦B1(u1u2) ∧ pi ◦B2(v1v2))

∑
u1,u2∈V1
v1,v2∈V2

(pi ◦ A1(u1) ∧ pi ◦ A1(u2) ∧ pi ◦ A2(v1) ∧ pi ◦ A2(v2))
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=

2(
∑

u1,u2∈V1
v1,v2∈V2

pi ◦ (B1 ⊓B2)(u1, v1)(u2, v2))

∑
u1,u2∈V1
v1,v2∈V2

(pi ◦ (A1 ⊓ A2)(u1, v1) ∧ pi ◦ (A1 ⊓ A2)(u2, v2))
= pi ◦D(G1 ⊓G2).

Hence, pi ◦D(G1) ≥ pi ◦D(G1 ⊓G2) for each i = 1, 2, . . . ,m,

i.e D(G1) ≥ D(G1 ⊓G2).

Similarly, D(G2) ≥ D(G1 ⊓G2).

Therefore, D(G1) = D(G2) = D(G1 ⊓G2).

Theorem 4.3.7. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two balanced m-polar

fuzzy graphs. Then, G1 ⊓G2 is balanced if and only if D(G1) = D(G2) = D(G1 ⊓G2).

Proof. Suppose D(G1 ⊓G2) is balanced.

Then D(Gk) ≤ D(G1 ⊓ G2) for k = 1, 2 and by Theorem 4.3.6, D(G1) = D(G2) =

D(G1 ⊓G2).

Conversely, let D(G1) = D(G2) = D(G1 ⊓G2) and H be a non-empty subgraph of

G1 ⊓G2. Then there exist subgraphs H1 of G1 and H2 of G2.

Let pi ◦D(G1) = pi ◦D(G2) =
qi
ri
,

pi ◦D(H1) =
si
ti
and

pi ◦D(H2) =
ai
bi

for i = 1, 2, . . . ,m and ai, bi, qi, ri, si, ti ∈ R.

Since G1 and G2 are balanced, therefore for i = 1, 2, . . . ,m

pi ◦D(H1) =
si
ti
≤ pi ◦D(G1) =

qi
ri

and

pi ◦D(H2) =
ai
bi
≤ pi ◦D(G2) =

qi
ri
.

Thus, siri + airi ≤ tiqi + biqi,

i.e si+ai
ti+bi

≤ qi
ri

for i = 1, 2, . . . ,m.

Hence, pi ◦D(H) ≤ si+ai
ti+bi

≤ qi
ri
= pi ◦D(G1 ⊓G2) for i = 1, 2, . . . ,m.

Therefore, G1 ⊓G2 is balanced.

Similarly, we have the following results.

Theorem 4.3.8. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two balanced m-polar

fuzzy graphs. Then

(i) G1 •G2 is balanced if and only if D(G1) = D(G2) = D(G1 •G2).

(ii) G1 ⊗G2 is balanced if and only if D(G1) = D(G2) = D(G1 ⊗G2).



77 CHAPTER 4. DENSITY OF M -POLAR FUZZY GRAPHS

We end this section by showing that isomorphism between m-polar fuzzy graphs

preserve balanced.

Theorem 4.3.9. Let G1 and G2 be two isomorphic m-polar fuzzy graphs. If G2 is

balanced, then G1 is balanced.

Proof. Since G1 and G2 are isomorphic therefore there exists a bijective mapping

ϕ : V1 → V2 such that pi ◦ A1(u) = pi ◦ A2(ϕ(u)) for all u ∈ V1 and pi ◦ B1(uv) =

pi ◦B2(ϕ(u)ϕ(v)) for all uv ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

Then,
∑
u∈V1

pi ◦ A1(u)

=
∑

ϕ(u)∈V2

pi ◦ A2(ϕ(u)) and∑
u,v∈V1

pi ◦B1(uv)

=
∑

ϕ(u),ϕ(v)∈V2

pi ◦B2(ϕ(u)ϕ(v)).

Let H1 and H2 be two nonempty subgraphs of G1 and G2 respectively.

Then, pi ◦ A1(u) = pi ◦ A2(ϕ(u)) and pi ◦ B1(uv) = pi ◦ B2(ϕ(u)ϕ(v)) for all u, v ∈

V1(H1), i = 1, 2, . . . ,m. Here, V1(H1) represents the vertices of H1.

Since G2 is balanced, therefore for i = 1, 2, . . . ,m

pi ◦D(H2) ≤ pi ◦D(G2),

i.e. 2
∑

u,v∈V2(H2)

pi◦B2(uv)
pi◦A2(u)∧pi◦A2(v)

≤ 2
∑

u,v∈V2

pi◦B2(uv)
pi◦A2(u)∧pi◦A2(v)

,

i.e. 2
∑

u,v∈V1(H1)

pi◦B1(uv)
pi◦A1(u)∧pi◦A1(v)

≤ 2
∑

u,v∈V1

pi◦B1(uv)
pi◦A1(u)∧pi◦A1(v)

,

i.e. pi ◦D(H1) ≤ pi ◦D(G1),

i.e. G1 is balanced.

4.4 Summary

The main purpose of this chapter is to define density of anm-polar fuzzy graph. This

chapter deals with the significant properties of balancedm-polar fuzzy graphs. Density

of some special m-polar fuzzy graphs are calculated using the formula. Necessary and

sufficient conditions are established for the products of two m-polar fuzzy balanced

graphs to be balanced. Finally, it has been shown that isomorphic m-polar fuzzy

graphs preserves the property of balanced.
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Chapter 5

m-polar fuzzy planar graphs and its

dual∗

5.1 Introduction

Graph model can be used to represent electrical circuits. Minimizing the non-

overlapping circuit is the main objective in such system. In a city planning, subway

tunnels, pipelines, metro lines, etc. are all essential. There are chances of accident

due to crossing. Routes without crossing is preferable, but due to the lack of space

crossing of such lines are allowed. Crossing between congested and non-congested

routes are more preferable than the crossing between two congested routes. The term

“congested” has no definite meaning. We generally use “congested”, “very congested”,

“highly congested” routes, etc. These terms are called linguistic terms and they have

some membership values. A congested route may be termed as strong route and

low congested route may be termed as weak route. Thus, crossing between strong and

weak route may be allowed in a city planning with certain amount of safety. The terms

“strong route” and “weak route” lead to strong edge and weak edge of anm-polar fuzzy

graph respectively and the permission of crossing between strong and weak edges leads

to the concept of m-polar fuzzy planar graphs. Abdul et. al [1] introduced the concept

of fuzzy planar graph. Samanta and Pal [114,116] defined fuzzy planar graph assuming

crossing of edges. In this chapter, m-polar fuzzy planar graphs, m-polar fuzzy dual

∗A part of the work presented in this chapter is published in Int. J. of Computing Science and

Mathematics, 7(3) 283-292 (2016) and Journal of Intelligent and Fuzzy Systems, 31(3) 2043-2049

(2016).
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graphs are defined and some important properties are established. Here, the “degree

of planarity” is used to measure the nature of planarity of an m-polar fuzzy planar

graph. Also, we introduced some terms like m-polar fuzzy multiset, m-polar fuzzy

multigraphs, m-polar fuzzy dual graph. Some theorems have been proved on degree

of planarity. Depending on the degree of planarity, the considerable edge has been

introduced.

5.2 m-polar fuzzy multiset andm-polar fuzzy multi-

graph
Yager [135] first discussed fuzzy multiset, although he used the term “fuzzy bag”.

Fuzzy multiset over a non-empty set V is a mapping C̃ : V × [0, 1] → N. m-polar fuzzy

multiset is another generalization of multiset which is defined below.

Definition 5.2.1. (m-polar fuzzy multiset) Let V be a nonempty set and Aj : V →

[0, 1]m, j = 1, 2, . . . , p be the mappings. The m-polar fuzzy multiset on V is denoted

by A and is defined as {(v, Aj(v)) : v ∈ V, j = 1, 2, . . . , p}.

Example 5.2.1. Let V = {a, b, c, d}. Then one of the 3-polar fuzzy multisets on V is

(a,< 0.3, 0.4, 0.5 >), (a,< 0.5, 0.7, 0.8 >), (a,< 0.4, 0.2, 0.3 >), (b, < 0.7, 0.8, 0.5 >),

(b, < 0.5, 0.3, 0.4 >), (c,< 0.4, 0.5, 0.7 >), (d,< 0.3, 0.9, 0.2 >), (d,< 0.6, 0.3, 0.2 >).

The concept of m-polar fuzzy multigraph is introduced using the notion of m-polar

fuzzy multiset.

Definition 5.2.2. Let V be a nonempty set and let A be an m-polar fuzzy set on V . Let

B = {((u, v), Bj(u, v)), j = 1, 2, . . . , p : (u, v) ∈ V × V } be an m-polar fuzzy multiset

of V ×V . Then G = (V,A,B) is said to be m-polar fuzzy multigraph if pi ◦Bj(u, v) ≤

min{pi ◦ A(u), pi ◦ A(v)} for all u, v ∈ V , j = 1, 2, . . . , p and i = 1, 2, . . . ,m .

Here, A(u) and B(u, v) represent the membership value of the vertex u and of the

edge (u, v) in G respectively. It may be noted that there may be more than one edge

between the vertices u and v. Bj(u, v) denotes membership value of the j-th edge

between the vertices u and v and p represents the number of edges between the vertices

u and v.

An example of 3-polar fuzzy multigraph is given in Fig. 5.1.

A special type of m-polar fuzzy multigraph is defined below.
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y yu v
< 0.4, 0.5, 0.7 > < 0.6, 0.4, 0.6 >

< 0.4, 0.4, 0.2 >

< 03, 0.2, 0.5 >

< 0.3, 0.4, 0.6 >

< 0.2, 0.3, 0.3 >

Figure 5.1: Example of 3-polar fuzzy multigraph.

5.3 m-polar fuzzy planar graphs

Let G = (V,A,B) be an m-polar fuzzy multigraph and for a certain geometrical

representation, the graph has only one crossing between the edges ((w, x), B(w, x))

and ((y, z), B(y, z)). If B(w, x) = 1 and B(y, z) = 0, then we say that the graph has

no crossing. Similarly, if B(w, x) has value near to 1 and B(y, z) has value near to

0, the crossing will not be important for the planarity. If B(w, x), B(y, z) have value

near to 1, then the crossing becomes very important for the planarity. So, if there is a

crossing at a point between two edges, a value is assigned corresponding to that point,

called the intersecting value.

5.3.1 Intersecting value in m-polar fuzzy multigraph

Let G = (V,A,B) be anm-polar fuzzy multigraph where B = {((u, v), Bj(u, v)), j =

1, 2, . . . , p : (u, v) ∈ V × V }. G is called m-polar fuzzy complete multigraph if pi ◦

Bj(u, v) = min{pi ◦A(u), pi ◦A(v)} for all u, v ∈ V , i = 1, 2, . . . ,m and j = 1, 2, . . . , p.

y ya c
< 0.5, 0.7, 0.3 > < 0.6, 0.5, 0.7 >

< 0.5, 0.5, 0.3 >

yb
< 0.5, 0.4, 0.3 >

< 0.5, 0.4, 0.3 > < 0.5, 0.4, 0.3 >

< 0.5, 0.4, 0.3 >

< 0.5, 0.4, 0.3 >

Figure 5.2: 3-polar fuzzy complete multigraph

Example 5.3.1. It is easy to see that G is a 3-polar fuzzy complete multigraph as

shown in Fig. 5.2.
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The strength of an edge ((u, v), Bj(u, v)) is defined by a value

I(u,v) = (I1(u,v), I
2
(u,v), . . . , I

m
(u,v))

where

I i(u,v) =
pi ◦Bj(u, v)

min{pi ◦ A(u), pi ◦ A(v)}
, i = 1, 2, . . . ,m.

Definition 5.3.1. Let G = (V,A,B) be an m-polar fuzzy multigraph. An edge (u, v) in

G is said to be m-polar fuzzy strong if I i(u,v) ≥ 0.5 for each i = 1, 2, . . . ,m. Otherwise,

it is called m-polar fuzzy weak edge.

Inm-polar fuzzy multigraph, when two edges intersect at a point, a value is assigned

to that point in the following way.

Let in an m-polar fuzzy multigraph G = (V,A,B), B contains two edges ((u1, v1),

Bj(u1, v1)) and ((u2, v2), B
k(u2, v2)) which intersect at a point P , where j and k are

fixed integers. The intersecting value at the point P is given by

IP = (I1
P , I2

P , . . . , Im
P )

where

I i
P =

I i(u1,v1)
+ I i(u2,v2)

2
, i = 1, 2, . . . ,m.

If the number of points of intersection in an m-polar fuzzy multigraph increases, the

‘planarity’ decreases. Using these concept, the notion of m-polar fuzzy planar graph

is introduced below.

Definition 5.3.2. (Planarity of m-polar fuzzy multigraph) Let G = (V,A,B) be

an m-polar fuzzy multigraph and for a certain geometrical representation P1, P2, . . . , Pk

be the points of intersections between the edges. Then G is said to be m-polar fuzzy

planar graph with m-polar fuzzy planarity value

P = (P1,P2, . . . ,Pm)

where

Pi =
1

1 + {I i
P1

+ I i
P2

+ . . .+ I i
Pk
}
, i = 1, 2, . . . ,m.

P is bounded, since 0 < Pi ≤ 1 for each i = 1, 2, . . . ,m.
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Example 5.3.2. Let us consider a 3-polar fuzzy multigraph with two point of intersec-

tions P1 and P2 (see Fig. 5.3). P1 is a point between the edges ((a, b), < 0.3, 0.6, 0.3 >)

and ((c, d), < 0.5, 0.6, 0.2 >), P2 is a point between the edges ((a, b), < 0.4, 0.5, 0.3 >)

and ((c, d), < 0.5, 0.6, 0.2 >).

Now, for the edge ((a, b), < 0.3, 0.6, 0.3 >), I(a,b) = (0.75, 0.85, 0.75),

for the edge ((a, b), < 0.4, 0.5, 0.3 >), I(a,b) = (1, 0.71, 0.75) and

for the edge ((c, d), < 0.5, 0.6, 0.2 >), I(c,d) = (1, 0.85, 0.66).

The intersecting values are IP1 = (0.875, 0.85, 0.705) and IP2 = (1, 0.78, 0.705).

So, planarity value for the 3-polar fuzzy multigraph is (0.35, 0.38, 0.41).

y y
c d

< 0.5, 0.7, 0.3 > < 0.5, 0.8, 0.7 >

< 0.6, 0.7, 0.4 >

y

ya

b

< 0.4, 0.7, 0.5 >

< 0.4, 0.5, 0.5 >

< 0.5, 0.6, 0.2 >

< 0.3, 0.6, 0.3 >

< 0.4, 0.5, 0.3 >< 0.4, 0.6, 0.3 >

P1 P2

q q

Figure 5.3: 3-polar fuzzy planar graph with 3-polar fuzzy planarity value

(0.35, 0.38, 0.41)

Now consider an m-polar fuzzy complete multigraph whose m-polar fuzzy planarity

value is given by the following theorem.

Theorem 5.3.1. Let G = (V,A,B) be an m-polar fuzzy complete multigraph. The m-

polar fuzzy planarity value P = (P1,P2, . . . ,Pm) is given by Pi =
1

1+nk
, i = 1, 2, . . . ,m

where nk is the number of points of intersection between the edges in G.

Proof. Since G is complete, we have,

pi ◦ Bj(u, v) = min{pi ◦ A(u), pi ◦ A(v)} for all u, v ∈ V , i = 1, 2, . . . ,m and

j = 1, 2, . . . , p.

Let P1, P2, . . . , Pk be the points of intersection between the edges in G.

For an edge (u, v) in G, I i(u,v) =
pi◦Bj(u,v)

min{pi◦A(u),pi◦A(v)} = 1, i = 1, 2, . . . ,m.

Therefore, for the point P1 which is the point of intersection between the edges (a, b)

and (c, d), the intersecting value is IP1 = (1, 1, . . . , 1).
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Hence, IPi
= (1, 1, . . . , 1) for i = 1, 2, . . . , k.

Now for i = 1, 2, . . . ,m,

Pi =
1

1+(Ii
P1

+Ii
P2

+...+Ii
Pk

)
= 1

1+(1+1+...+1)
= 1

1+nk
.

Therefore, the m-polar fuzzy planarity P is given by P = (P1,P2, . . . ,Pm) where

Pi =
1

1+nk
, i = 1, 2, . . . ,m.

Theorem 5.3.2. Let G = (V,A,B) be an m-polar fuzzy planar graph with m-polar

fuzzy planarity P = (P1,P2, . . . ,Pm) is such that Pi > 0.5 for i = 1, 2, . . . ,m. Then

the number of points of intersection between m-polar fuzzy strong edges in G is at most

one.

Proof. If possible, let G has at least two points of intersection P1 and P2 between two

m-polar fuzzy strong edges in G.

For any m-polar fuzzy strong edge ((u, v), Bj(u, v)), I i(u,v) ≥ 0.5, i = 1, 2, . . . ,m.

Thus, for any two intersecting strong edges ((u, v), Bj(u, v)) and ((w, x), Bk(w, x)),
Ii
(u,v)

+Ii
(w,x)

2
≥ 0.5 for i = 1, 2, . . . ,m,

i.e. I i
P1

≥ 0.5.

Similarly, I i
P2

≥ 0.5.

Then, 1 + I i
P1

+ I i
P2

≥ 2,

i.e. Pi =
1

1+Ii
P1

+Ii
P2

≤ 0.5.

This is a contradiction, since Pi > 0.5 for i = 1, 2, . . . ,m.

Hence, the number of points cannot be two.

Clearly, if the number of point of intersection between m-polar fuzzy strong edges

increases, then the planarity value decreases. Similarly, if the number of point of

intersection is one, then the planarity value P is such that Pi > 0.5, i = 1, 2, . . . ,m.

Anym-polar fuzzy planar graph without any crossing between edges hasm-polar fuzzy

planarity value P where Pi > 0.5. Hence, the proof.

Theorem 5.3.3. Let G = (V,A,B) be an m-polar fuzzy planar graph with m-polar

fuzzy planarity value P = (P1,P2, . . . ,Pm). If Pi ≥ 0.67, i = 1, 2, . . . ,m, then G does

not contain any point of intersection between two m-polar fuzzy strong edges.

Proof. If possible, let P be a point of intersection between two m-polar fuzzy strong

edges ((u, v), Bj(u, v)) and ((w, x), Bk(w, x)).
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For any m-polar fuzzy strong edge ((u, v), Bj(u, v)), we have I i(u,v) ≥ 0.5, i =

1, 2, . . . ,m.

For the minimum value of I i(u,v) and I
i
(w,x), I i

P = 0.5, i = 1, 2, . . . ,m.

Then, Pi =
1

1+0.5
< 0.67 for i = 1, 2, . . . ,m, a contradiction.

Hence, G does not contain any point of intersection between two m-polar fuzzy

strong edges.

Next the definition of strong m-polar fuzzy planar graph is given below.

Definition 5.3.3. An m-polar fuzzy planar graph G is said to be strong m-polar fuzzy

planar graph if the m-polar fuzzy planarity value P = (P1,P2, . . . ,Pm) of the graph is

such that Pi ≥ 0.67, i = 1, 2, . . . ,m.

Strength of an edge has an important role to model some kind of projects. Edges of

small strength may be ignored. So, the edges with sufficient strengths are very useful to

design such projects. These edges are called considerable edges which is defined below.

Definition 5.3.4. Let G = (V,A,B) be an m-polar fuzzy planar graph. Let 0 < c <

0.5 be a rational number. An edge ((u, v), B(u, v)) is said to be considerable edge if

pi◦B(u,v)
min{pi◦A(u),pi◦A(v)} ≥ c for i = 1, 2, . . . ,m. Otherwise, it is called non-considerable edge.

For an m-polar fuzzy multigraph G, a multi-edge ((u, v), Bj(u, v)) is said to be con-

siderable edge if pi◦Bj(u,v)
min{pi◦A(u),pi◦A(v)} ≥ c for i = 1, 2, . . . ,m and j = 1, 2, . . . , p.

Theorem 5.3.4. Let G be an m-polar fuzzy planar graph with m-polar fuzzy planarity

value P = (P1,P2, . . . ,Pm) be such that Pi > 0.5 for i = 1, 2, . . . ,m and considerable

number c. Then the number of point of intersection between considerable edges in G

is at most [1
c
] or 1

c
− 1 according as 1

c
is not an integer or an integer respectively.

Proof. Let G = (V,A,B) be an m-polar fuzzy planar graph where

B = {((u, v), Bj(u, v)), j = 1, 2, . . . , p : (u, v) ∈ V × V }.

Let 0 < c < 0.5 be the considerable number.

For any considerable edge ((u, v), Bj(u, v)), we have,

pi ◦Bj(u, v) ≥ c min{pi ◦ A(u), pi ◦ A(v)}, i = 1, 2, . . . ,m.

This implies that, I i(u,v) ≥ c for i = 1, 2, . . . ,m.

Let P1, P2, . . . , Pl be the l-points of intersection between the considerable edges.

Also let, P1 be the point of intersection between the considerable edges ((u1, v1),

Bj(u1, v1)) and ((u2, v2), B
k(u2, v2)).
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Then, I i
P1

=
Ii
(u1,v1)

+Ii
(u2,v2)

2
≥ c.

So,
l∑

n=1

I i
Pn

≥ lc.

Hence, Pi ≤ 1
1+lc

.

This imply that 0.5 ≤ Pi ≤ 1
1+lc

,

i.e. 0.5 < 1
1+lc

,

i.e. l < 1
c
.

Hence, the values of l are given by l =

 [1
c
] if 1

c
is not an integer

1
c
− 1 if 1

c
is an integer

This completes the proof.

Theorem 5.3.5. Any complete m-polar fuzzy graph of five vertices or complete bipar-

tite m-polar fuzzy graph of six vertices are not strong m-polar fuzzy planar graph.

Proof. Let G = (V,A,B) be a complete m-polar fuzzy graph of five vertices where

V = {u, v, w, x, y} and B = {((u, v), B(u, v) : (u, v) ∈ V × V }.

For all u, v ∈ V , we have,

pi ◦B(u, v) = min{pi ◦ A(u), pi ◦ A(v)}, i = 1, 2, . . . ,m.

By Theorem 5.3.1, the m-polar fuzzy planarity value of a complete m-polar fuzzy

graph is P = (P1,P2, . . . ,Pm), where Pi = 1
1+np

, np being the number of point of

intersection of the edges in G.

We know that the geometric representation of the underlying crisp graph of an m-

polar fuzzy complete graph of five vertices is non-planar and one point of intersection

cannot be avoided for any representation.

So, Pi = 0.5, i = 1, 2, . . . ,m.

Hence, G is not strong m-polar fuzzy planar graph.

Similarly, it can be proved that the complete bipartite m-polar fuzzy graph of six

vertices is not strong m-polar fuzzy planar graph.

5.4 Faces of m-polar fuzzy planar graph
Face of m-polar fuzzy planar graph is an important parameter. Face of an m-polar

fuzzy planar graph is a region bounded by m-polar fuzzy edges. Every m-polar fuzzy

face is characterized by m-polar fuzzy edges in its boundary. If all the edges in the

boundary of m-polar fuzzy face have membership values 1, it becomes crisp face. If

one such edges is removed, the m-polar fuzzy face does not exist. So, the existence
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of an m-polar fuzzy face depends on the minimum value of strength of m-polar fuzzy

edges in its boundary. m-polar fuzzy face and its membership values of an m-polar

fuzzy graph are defined below.

Definition 5.4.1. Let G = (V,A,B) be an m-polar fuzzy planar graph and B =

{((u, v), Bj(u, v)), j = 1, 2, . . . , p : (u, v) ∈ V × V }. An m-polar fuzzy face of G is a

region bounded by the set of m-polar fuzzy edges E ′ ⊆ V × V , of a geometric repre-

sentation of G. The strength of the face is (S1
F , S

2
F , . . . , S

m
F ), where Si

F = min{I i(u,v) :

(u, v) ∈ E ′}, i = 1, 2, . . . ,m.

Definition 5.4.2. An m-polar fuzzy face is called strong m-polar fuzzy face if Si
F > 0.5

for i = 1, 2, . . . ,m and weak m-polar fuzzy face otherwise. Every m-polar fuzzy planar

graph has an infinite region which is called outer m-polar fuzzy face. Other faces are

called inner m-polar fuzzy faces.

y y

y y

v1 v2

v3 v4

< 0.7, 0.3, 0.5 > < 0.5, 0.3, 0.2 >

< 0.7, 0.6, 0.5 >< 0.8, 0.6, 0.5 >

< 0.3, 0.3, 0.2 >

< 0.6, 0.3, 0.4 >

< 0.4, 0.3, 0.2 >

< 0.4, 0.2, 0.2 >

< 0.4, 0.3, 0.2 >

F1
F2

?

F3

Figure 5.4: 3-polar fuzzy planar graph with three 3-polar fuzzy faces

Example 5.4.1. Let us consider the 3-polar fuzzy planar graph as shown in the Fig.

5.4. Here, F1, F2, F3 are three 3-polar fuzzy faces. The 3-polar fuzzy face F1 is bounded

by the edges
(
(v1, v2), < 0.4, 0.3, 0.2 >

)
,
(
(v2, v4), < 0.4, 0.2, 0.2 >

)
and

(
(v4, v1),

< 0.6, 0.3, 0.4 >
)
with strength (0.8, 0.67, 0.8).

Similarly, F3 is a face bounded by the edges
(
(v1, v3), < 0.3, 0.3, 0.2 >

)
,
(
(v1, v2),

< 0.4, 0.3, 0.2 >
)
and

(
(v2, v3), < 0.4, 0.2, 0.2 >

)
with strength (0.42, 0.67, 0.4). F2

is the outer face with strength (0.42, 1, 0.4). So, F1 is strong 3-polar fuzzy face while

F2, F3 are weak 3-polar fuzzy faces.
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5.5 m-polar fuzzy dual graph

In this section, we introduce the concept of dual of an m-polar fuzzy planar graph.

In m-polar fuzzy dual graph, vertices are corresponding to the strong m-polar fuzzy

faces and each edge in dual graph between two vertices is corresponding to each edge

in the boundary between two m-polar fuzzy faces of m-polar fuzzy planar graph. The

definition is given below.

Definition 5.5.1. Let G = (V,A,B) be an m-polar fuzzy planar graph where B =

{((u, v), Bj(u, v)), j = 1, 2, . . . , p : (u, v) ∈ V × V }. Let F1, F2, . . . , Fk be the strong

m-polar fuzzy faces of G. The m-polar fuzzy dual graph of G is an m-polar fuzzy

planar graph G1 = (V1, A1, B1) where V1 = {xq, q = 1, 2, . . . , k}, the vertex xq of G1

is correspond to the face Fq of G. The membership value of vertices are given by the

mapping A1 : V1 → [0, 1]m such that pi ◦ A1(xq) = max{pi ◦ Bj(u, v), j = 1, 2, . . . , l :

(u, v) is an edge of the boundary of the m-polar fuzzy face Fq}.

There may exist more than one common edge between two m-polar fuzzy faces Fi

and Fj of G. Thus there may be more than one edge between two vertices xi and xj

in the m-polar fuzzy dual graph G1. Let B
l(xi, xj) denote the membership value of the

l-th edge between xi and xj. The membership value of the edges of the m-polar fuzzy

dual graph are given by B1
l(xi, xj) = Bl(u, v) where (u, v) is a common edge between

two m-polar fuzzy faces Fi and Fj and l = 1, 2, . . . , t; t being the number of common

edges in the boundary between Fi and Fj or the number the edges between xi and xj.

If there is any strong pendant edge in the m-polar fuzzy planar graph, then there will

be a self-loop in G1 corresponding to this pendant edge. The edge membership value of

the self-loop is equal to the membership value of the pendant edge. m-polar fuzzy dual

graph of m-polar fuzzy planar graph does not contain any point of intersection of edges

for a certain representation, so it is an m-polar fuzzy planar graph with m-polar fuzzy

planarity value (1, 1, . . . , 1).

Next, we give an example of an m-polar fuzzy dual graph of an m-polar fuzzy planar

graph which are shown in Fig. 5.5. We assume that the black filled circles and the

lines represent the vertices and edges of the m-polar fuzzy planar graph while the

empty circles and the dotted lines represent the vertices and edges of m-polar fuzzy

dual graph corresponding to the m-polar fuzzy planar graph.
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y y

y y

u1 u2

u3 u4

x2
x3

x4

cc

c

cx1

Figure 5.5: 3-polar fuzzy graph and it’s 3-polar fuzzy dual graph

Example 5.5.1. Let us now consider a 3-polar fuzzy planar graph G = (V,A,B) as

shown in Fig. 5.5, where V = {u1, u2, u3, u4}, A = {
(
u1, < 0.8, 0.7, 0.6 >

)
,(

u2, < 0.6, 0.5, 0.7 >
)
,
(
u3, < 0.8, 0.8, 0.9 >

)
,
(
u4, < 0.9, 0.7, 0.6 >

)
}, and

B = {
(
(u1, u2), < 0.5, 0.4, 0.5 >

)
,
(
(u2, u4), < 0.6, 0.4, 0.5 >

)
,
(
(u3, u4),

< 0.7, 0.7, 0.5 >
)
,
(
(u1, u3), < 0.7, 0.6, 0.6 >

)
,
(
(u1, u3), < 0.7, 0.5, 0.4 >

)
,
(
(u2, u3),

< 0.5, 0.5, 0.6 >
)
}.

The 3-polar fuzzy planar graph has the following faces:

(i) the 3-polar fuzzy face F1 is bounded by
(
(u2, u3), < 0.5, 0.5, 0.6 >

)
,
(
(u3, u4),

< 0.7, 0.7, 0.5 >
)
,
(
(u2, u4), < 0.6, 0.4, 0.5 >

)
,

(ii) the 3-polar fuzzy face F2 is bounded by
(
(u1, u2), < 0.5, 0.4, 0.5 >

)
,
(
(u1, u3),

< 0.7, 0.6, 0.6 >
)
,
(
(u2, u3), < 0.5, 0.5, 0.6 >

)
,

(iii) the 3-polar fuzzy face F3 is bounded by
(
(u1, u3), < 0.7, 0.6, 0.6 >

)
,
(
(u1, u3),

< 0.7, 0.5, 0.4 >
)
, and

(iv) the outer 3-polar fuzzy face F4 is surrounded by
(
(u1, u2), < 0.5, 0.4, 0.5 >

)
,(

(u2, u4), < 0.6, 0.4, 0.5 >
)
,
(
(u1, u3), < 0.7, 0.6, 0.6 >

)
,
(
(u3, u4), < 0.7, 0.7,

0.5 >
)
.

The strengths of the faces F1, F2, F3, F4 are (0.83, 0.8, 0.83), (0.62, 0.8, 0.83),

(0.87, 0.71, 0.66), (0.83, 0.71, 0.66) respectively. Since all the faces are strong 3-polar

fuzzy faces, for each strong 3-polar fuzzy faces, we consider a vertex for the 3-polar

fuzzy dual graph. Thus the vertex set V1 of the 3-polar fuzzy dual graph is V1 =

{x1, x2, x3, x4}, where the vertex xi corresponds to the strong 3-polar fuzzy face Fi,

i = 1, 2, 3, 4. Now, the membership value of the vertex set V1 is calculated below:



5.5. M -POLAR FUZZY DUAL GRAPH 90

A1(x1) =< 0.7, 0.7, 0.6 >, A1(x2) =< 0.7, 0.6, 0.6 >,

A1(x3) =< 0.7, 0.6, 0.6 >, A1(x4) =< 0.7, 0.7, 0.5 >.

There are two common edges (u2, u4) and (u3, u4) between the faces F1 and F4 in

G. Therefore, there exist two edges between x1 and x4 in the 3-polar fuzzy dual graph.

The membership values of these edges are given by

B1(x1, x4) = B(u3, u4) =< 0.7, 0.7, 0.5 >, B1(x1, x4) = B(u2, u4) =< 0.6, 0.4, 0.5 >.

The membership values of other edges of the 3-polar fuzzy dual graph are calculated

as B1(x1, x2) = B(u2, u3) =< 0.5, 0.5, 0.6 >, B1(x2, x3) = B(u1, u3) =< 0.7, 0.6, 0.6 >,

B1(x2, x4) = B(u1, u2) =< 0.5, 0.4, 0.5 >, B1(x3, x4) = B(u1, u3) =< 0.7, 0.5, 0.4 >.

Thus, the edge set of the 3-polar fuzzy dual graph is

B1 = {
(
(x1, x2), < 0.5, 0.5, 0.6 >

)
,
(
(x2, x3), < 0.7, 0.6, 0.6 >

)
,
(
(x2, x4),

< 0.5, 0.4, 0.5 >
)
,
(
(x3, x4), < 0.7, 0.5, 0.4 >

)
,
(
(x1, x4), < 0.7, 0.7, 0.5 >

)
,
(
(x1, x4),

< 0.6, 0.4, 0.5 >
)
}.

Now, we have the following observations.

Theorem 5.5.1. Let G = (V,A,B) be an m-polar fuzzy planar graph whose number

of vertices, number of edges and number of strong m-polar fuzzy faces denoted by n, e

and f respectively. Let G1 be the m-polar fuzzy dual graph of G. Then

(i) the number of vertices of G1 is equal to f ,

(ii) the number of edges of G1 is equal to e,

(iii) the number of m-polar fuzzy faces of G1 is equal to n.

Proof. Proof of (i), (ii) and (iii) follows from the definition of m-polar fuzzy dual

graph.

Theorem 5.5.2. Let G1 = (V1, A1, B1) be an m-polar fuzzy dual graph of the strong

m-polar fuzzy planar graph G = (V,A,B). Then the number of strong m-polar fuzzy

faces in G1 is less than or equal to the number of vertices of G.

Proof. Since all the faces of the m-polar fuzzy dual graph G1 may not be strong m-

polar fuzzy faces, therefore the result holds from the (iii)-rd part of the Theorem

5.5.1.

Theorem 5.5.3. Let G = (V,A,B) be a strong m-polar fuzzy planar graph having

no weak m-polar fuzzy edges and G1 be the m-polar fuzzy dual graph of G. Then the
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membership value of the m-polar fuzzy edges of G1 is equal to the membership value of

the m-polar fuzzy edges of G.

Proof. The dual graph G1 of G is a strong m-polar fuzzy planar graph as there is no

point of intersection between any edges. Let {F1, F2, . . . , Fk} be the set of strong faces

of G.

From the definition of m-polar fuzzy dual graph we know that B1
l(xi, xj) = Bl(u, v)

where (u, v) is a common edge between two strong m-polar fuzzy faces Fi and Fj and

l = 1, 2, . . . , t; t being the number of common edges in the boundary between Fi and

Fj. The number of m-polar fuzzy edges of the two graphs G and G1 are same as G

has no weak edges. Hence, for each m-polar fuzzy edge of G there is an m-polar fuzzy

edge in G1 with the same membership value.

5.6 Isomorphism on m-polar fuzzy planar graphs
In this section, we introduce the notion of isomorphism between m-polar fuzzy

graphs. The related definitions are given as follows.

Definition 5.6.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

planar graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. An iso-

morphism between G1 and G2 is a bijective mapping ϕ : V1 → V2 such that for each

i = 1, 2, . . . ,m

(i) pi ◦ A1(x1) = pi ◦ A2(ϕ(x1)) for all x1 ∈ V1,

(ii) pi ◦B1(x1, y1) = pi ◦B2(ϕ(x1), ϕ(y1)) for all (x1, y1) ∈ Ṽ 2
1 .

In this case, we write G1
∼= G2.

Definition 5.6.2. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

planar graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. A weak

isomorphism between G1 and G2 is a bijective mapping ϕ : V1 → V2 which satisfies the

following conditions:

(i) ϕ is a homomorphism,

(ii) pi ◦ A1(x1) = pi ◦ A2(ϕ(x1)) for all x1 ∈ V1 and i = 1, 2, . . . ,m.

Definition 5.6.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

planar graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. A co-weak



5.6. ISOMORPHISM ON M -POLAR FUZZY PLANAR GRAPHS 92

isomorphism between G1 and G2 is a bijective mapping ϕ : V1 → V2 which satisfies the

following:

(i) ϕ is a homomorphism,

(ii) pi ◦B1(x1, y1) = pi ◦B2(ϕ(x1y1)) for all (x1, y1) ∈ Ṽ 2
1 and i = 1, 2, . . . ,m.

Isomorphism between m-polar fuzzy graphs is an equivalence relation. But, if there

is an isomorphism between two m-polar fuzzy graphs and one is m-polar fuzzy planar

graph, then the other also be an m-polar fuzzy planar graph. This can be proved as

follows.

Theorem 5.6.1. Let G1 be an m-polar fuzzy planar graph. If there exists an isomor-

phism ϕ : G1 → G2 where G2 is an m-polar fuzzy graph, then G2 can be drawn as an

m-polar fuzzy planar graph with same planarity value as of G1.

Proof. Isomorphism preserves edge and vertex weights. Also, the order and size of

isomorphic m-polar fuzzy graphs are preserved [46]. So, the order and size of G2 will

be equal to G1. Then, G2 can be drawn similarly as G1. Hence, the number of points

of intersections between edges and planarity value of G2 will be same as G1. This

means that G2 can be drawn as m-polar fuzzy planar graph with same planarity value

as of G1.

Theorem 5.6.2. Let G2 be the m-polar fuzzy dual graph of m-polar fuzzy dual graph

of a strong m-polar fuzzy dual graph G without weak edges. Then there exists a co-weak

isomorphism between G and G2.

Proof. Let G1 be the m-polar fuzzy dual graph of G and G2 be the m-polar fuzzy

dual graph of G1. Now, the number of vertices of G2 is equal to the strong m-polar

fuzzy faces of G1 and the number of strong m-polar fuzzy faces in G1 is equal to the

number of vertices in G. Hence, the number of vertices of G2 and G are same. Also,

the number of edges of an m-polar fuzzy planar graph and its dual are same. By the

definition of m-polar fuzzy dual graph, the edge membership value of an edge in dual

graph is equal to the edge membership value of an edge in m-polar fuzzy graph. Thus,

we can construct a co-weak isomorphism between G and G2. Hence the result.

Theorem 5.6.3. Let G1 and G2 be two isomorphic m-polar fuzzy graphs with m-polar

fuzzy planarity values PG1 and PG2 respectively. Then, PG1 = PG2.
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Proof. Follows from Theorem 5.6.1.

Next, we state the following without proof.

Theorem 5.6.4. Let G1 and G2 be two weak isomorphic m-polar fuzzy graphs with

m-polar fuzzy planarity values PG1 and PG2 respectively. Then, PG1 = PG2 if the edge

membership values of corresponding intersecting edges are same.

Theorem 5.6.5. Let G1 and G2 be two co-weak isomorphic m-polar fuzzy graphs

with m-polar fuzzy planarity values PG1 and PG2 respectively. Then, PG1 = PG2 if

the minimum of end vertex membership values of corresponding intersecting edges are

same.

5.7 Summary

Crossing may be allowed in connecting the wire lines, gas lines, water lines, printed

circuit designs, etc. These graph theoretic problems may be uncertain in some aspects.

It is quiet natural to deal with the vagueness and uncertainty using the concepts

of m-polar fuzzy sets compared to fuzzy sets. Therefore, the concept of m-polar

fuzzy sets is applied to multigraph and planar graphs. m-polar fuzzy planar graph

is a very important subclass of m-polar fuzzy graph and m-polar fuzzy multigraph

is a generalization of m-polar fuzzy graph. In this chapter, we define both these

graphs and study several properties. The m-polar fuzzy planar graph is defined in a

very interesting way along with a parameter “ m-polar fuzzy planarity value”. This

parameter measures the planarity of anm-polar fuzzy graph. The other relevant terms

such as considerable edges, m-polar fuzzy faces, m-polar fuzzy strong faces are defined

here. A very close association of m-polar fuzzy planar graph is m-polar fuzzy dual

graph. This is also defined and several properties of it are studied. m-polar fuzzy

planar graph and m-polar fuzzy dual graph have many applications in different fields

including design of subway tunnel or routes, gas or oil pipelines, image segmentation,

etc.
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Chapter 6

Isomorphic properties of m-polar

fuzzy graphs∗

6.1 Introduction

In this chapter, weak self complement m-polar fuzzy graphs is defined and a neces-

sary condition is mentioned for an m-polar fuzzy graph to be weak self complement.

Some properties of self complement and weak self complement m-polar fuzzy graphs

are discussed. The order, size, busy vertices and free vertices of an m-polar fuzzy

graphs are also defined and proved that isomorphic m-polar fuzzy graphs have same

order, size and degree. Also, we have proved some results of busy vertices in isomor-

phic and weak isomorphic m-polar fuzzy graphs. A relative study of complement and

operations on m-polar fuzzy graphs have been made. Finally, we have modeled some

real life situations in terms of m-polar fuzzy graphs as an application.

6.2 Weak self complement m-polar fuzzy graphs

Self complement m-polar fuzzy graphs have many important role in the theory of

m-polar fuzzy graphs. If an m-polar fuzzy graph is not self complement, then also

we can say that it is self complement in some weaker sense. Simultaneously, we can

establish some results with this graph. This motivates to define weak self complement

m-polar fuzzy graphs.

∗A part of the work presented in this chapter is published in SpringerPlus, 5(1) 1-21 (2016).
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Definition 6.2.1. Let G = (V,A,B) be an m-polar fuzzy graph of the crisp graph

G∗ = (V,E). The complement of G is an m-polar fuzzy graph G = (V,A,B) of

G∗ = (V, Ṽ 2) such that A = A and B is defined by

pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)} − pi ◦B(xy) for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Example 6.2.1. Let G = (V,A,B) be a 3-polar fuzzy graph of the graph G∗ = (V,E)

where V = {u, v, w, x}, E = {uv, vw,wu, ux},

A = {<0.2,0.3,0.5>
u

, <0.5,0.6,0.3>
v

, <0.7,0.2,0.3>
w

, <0.2,0.5,0.7>
x

},

B = {<0.2,0.3,0.3>
uv

, <0.4,0.1,0.1>
vw

, <0.1,0.1,0.1>
wu

, <0.1,0.2,0.4>
xu

, <0,0,0>
xv

, <0,0,0>
wx

}.

Then by Definition 6.2.1, we have constructed the complement G of G which is

shown in Fig. 6.1.

< 0.4, 0.1, 0.1 >

< 0.7, 0.2, 0.3 >< 0.5, 0.6, 0.3 >

< 0.2, 0.3, 0.5 >

< 0.5, 0.6, 0.3 > < 0.7, 0.2, 0.3 >< 0.1, 0.1, 0.2 >
v

u u

wv

G

x

w

< 0.2, 0.5, 0.7 >

< 0.2, 0.3, 0.3 > < 0.1, 0.1, 0.1 >

x< 0.1, 0.2, 0.4 >

< 0.2, 0.5, 0.7 >

< 0.1, 0.1, 0.1 >

< 0.2, 0.3, 0.5 >

< 0.2, 0.5, 0.3 > < 0.1, 0.1, 0.2 >< 0.2, 0.2, 0.3 >

G

y y

y y

y

y y

y

Figure 6.1: G and it’s complement G

Remark 6.2.1. Let G = (V,A,B) be the complement of G where A = A = A and

pi ◦B(uv) = min{pi ◦ A(u), pi ◦ A(v)} − pi ◦B(uv)

= min{pi ◦ A(u), pi ◦ A(v)} − {min{pi ◦ A(u), pi ◦ A(v)} − pi ◦B(uv)}

= pi ◦B(uv) for uv ∈ Ṽ 2, i = 1, 2, . . . ,m.

Hence, G = G.

Definition 6.2.2. The m-polar fuzzy graph G = (V,A,B) is said to be weak self

complement if there is a weak isomorphism between G onto G. In other words, there

exist a bijective homomorphism ϕ : G→ G such that for i = 1, 2, . . . ,m

(i) pi ◦ A(u) = pi ◦ A(ϕ(u)) for all u ∈ V ,

(ii) pi ◦B(uv) ≤ pi ◦B(ϕ(u)ϕ(v)) for all uv ∈ Ṽ 2.

Example 6.2.2. Let G = (V,A,B) be a 3-polar fuzzy graph of the graph G∗ = (V,E)

where V = {u, v, w}, E = {uv, vw}, A = {<0.3,0.4,0.4>
u

, <0.2,0.5,0.7>
v

, <0.3,0.6,0.7>
w

},
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< 0.1, 0.1, 0.2 >

< 0.2, 0.5, 0.7 >< 0.3, 0.4, 0.4 >

< 0.3, 0.6, 0.7 >

< 0.3, 0.4, 0.4 > < 0.2, 0.5, 0.7 >

< 0.1, 0.3, 0.2 >
u

w w

vuv

< 0.1, 0.2, 0.2 > < 0.1, 0.3, 0.5 >< 0.3, 0.4, 0.4 >

< 0.3, 0.6, 0.7 >G G

y y

y

y y

y

Figure 6.2: Weak self complement 3-polar fuzzy graphs

B = {<0.1,0.1,0.2>
uv

, <0.1,0.2,0.2>
vw

, <0,0,0>
wu

}.

Then G = (V,A,B) is also a 3-polar fuzzy graph where A = A and

B = {<0.1,0.3,0.2>
uv

, <0.1,0.3,0.5>
vw

, <0.3,0.4,0.4>
wu

}. We can easily verify that, the identity

map is an weak isomorphism from G onto G (see Fig. 6.2). Hence, G is weak self

complement.

In [45], Ghorai and Pal proved that if G is a self complementary strong m-polar

fuzzy graph then for all xy ∈ Ṽ 2 and i = 1, 2, . . . ,m

∑
x ̸=y

pi ◦B(xy) =
1

2

∑
x ̸=y

min{pi ◦ A(x), pi ◦ A(y)}.

The converse of the above result does not hold always.

< 0.2, 0.3, 0.4 >

< 0.4, 0.5, 0.6 >< 0.2, 0.3, 0.4 >

< 0.5, 0.7, 0.8 >

< 0.2, 0.3, 0.4 > < 0.4, 0.5, 0.6 >

u

w w

vuv

< 0.1, 0.2, 0.2 > < 0.3, 0.3, 0.4 >< 0.2, 0.25, 0.3 >

< 0.5, 0.7, 0.8 >G G

< 0.1, 0.05, 0.1 >

y y

y

y y

y
Figure 6.3: Example of 3-polar fuzzy graph G which is not self complement

Example 6.2.3. For example, let us consider a 3-polar fuzzy graph G = (V,A,B) of

G∗ = (V,E) where V = {u, v, w}, E = {uv, vw,wu},

A = {<0.2,0.3,0.4>
u

, <0.4,0.5,0.6>
v

, <0.5,0.7,0.8>
w

},

B = {<0.2,0.3,0.4>
uv

, <0.1,0.2,0.2>
vw

, <0.1,0.05,0.1>
wu

}.

Then, we have the following:

p1 ◦B(uv) + p1 ◦B(vw) + p1 ◦B(wu) = 0.2 + 0.1 + 0.1 = 0.4 and
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1
2
[min{p1 ◦A(u), p1 ◦A(v)}+min{p1 ◦A(v), p1 ◦A(w)}+min{p1 ◦A(w), p1 ◦A(u)}]

= 1
2
[min{0.2, 0.4}+min{0.4, 0.5}+min{0.5, 0.2}] = 1

2
(0.2 + 0.4 + 0.2) = 0.4.

So, ∑
u̸=v

p1 ◦B(uv) = 0.4 =
1

2

∑
u̸=v

min{p1 ◦ A(u), pi ◦ A(v)}.

Similarly, ∑
u ̸=v

p2 ◦B(uv) = 0.55 =
1

2

∑
u ̸=v

min{p2 ◦ A(u), p2 ◦ A(v)}

and ∑
u ̸=v

p3 ◦B(uv) = 0.7 =
1

2

∑
u̸=v

min{p3 ◦ A(u), p3 ◦ A(v)}.

Hence, for i = 1, 2, 3 we have,∑
u ̸=v

pi ◦B(uv) =
1

2

∑
u̸=v

min{pi ◦ A(u), pi ◦ A(v)}.

But, G is not self complementary as there exists no isomorphism from G onto G

(see Fig. 6.3).

Now suppose an m-polar fuzzy graph G = (V,A,B) is a weak self complement.

Then the following inequality holds.

Theorem 6.2.1. Let G = (V,A,B) be a weak self complement m-polar fuzzy graph of

G∗. Then for i = 1, 2, . . . ,m∑
x ̸=y

pi ◦B(xy) ≤ 1

2

∑
x ̸=y

min{pi ◦ A(x), pi ◦ A(y)}.

Proof. Since G is weak self complement, therefore there exists a weak isomorphism

ϕ : V → V such that

pi ◦ A(x) = pi ◦ A(ϕ(x)) for all x ∈ V and

pi ◦B(xy) ≤ pi ◦B(ϕ(x)ϕ(y)) for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Using the above we have,

pi ◦B(xy) ≤ pi ◦B(ϕ(x)ϕ(y)) = min{pi ◦ A(x), pi ◦ A(y)} − pi ◦B(ϕ(x)ϕ(y)),

i.e. pi ◦B(xy) + pi ◦B(ϕ(x)ϕ(y)) ≤ min{pi ◦ A(ϕ(x)), pi ◦ A(ϕ(y))}.

Therefore, for all xy ∈ Ṽ 2, i = 1, 2, . . . ,m∑
x̸=y

pi ◦B(xy) +
∑
x ̸=y

pi ◦B(ϕ(x)ϕ(y)
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≤
∑
x ̸=y

min{pi ◦ A(ϕ(x)), pi ◦ A(ϕ(y))}

=
∑
x ̸=y

min{pi ◦ A(x), pi ◦ A(y)},

i.e.

2
∑
x̸=y

pi ◦B(xy) ≤
∑
x ̸=y

min{pi ◦ A(x), pi ◦ A(y)},

i.e. ∑
x ̸=y

pi ◦B(xy) ≤ 1

2

∑
x ̸=y

min{pi ◦ A(x), pi ◦ A(y)}.

Remark 6.2.2. The converse of the above theorem is not true in general. For example,

consider the 3-polar fuzzy graph of Fig. 6.3. We see that for the 3-polar fuzzy graph

G, the condition of Theorem 6.2.1 is satisfied. But, G is not weak self complementary

as there is no weak isomorphism from G onto G.

Theorem 6.2.2. If pi ◦ B(xy) ≤ 1
2
min{pi ◦ A(x), pi ◦ A(y)} for all xy ∈ Ṽ 2, i =

1, 2, . . . ,m, then G is a weak self complement m-polar fuzzy graph.

Proof. Let G = (V,A,B) be the complement of G where

A(x) = A(x) for all x ∈ V and

pi ◦B(xy) = min{pi ◦ A(x), pi ◦ A(y)} − pi ◦B(xy) for xy ∈ Ṽ 2, i = 1, 2, . . . ,m.

Let us now consider the identity map I : V → V .

Then A(x) = A(I(x)) = A(I(x)) for all x ∈ V and

pi ◦B(I(x)I(y)) = pi ◦B(xy)

= min{pi ◦ A(x), pi ◦ A(y)} − pi ◦B(xy)

≥ min{pi ◦ A(x), pi ◦ A(y)} − 1
2
min{pi ◦ A(x), pi ◦ A(y)}

= 1
2
min{pi ◦ A(x), pi ◦ A(y)} ≥ pi ◦B(xy).

So, pi ◦B(xy) ≤ pi ◦B(I(x)I(y)) for i = 1, 2, . . . ,m and xy ∈ Ṽ 2.

Hence, I : V → V is a weak isomorphism.

Example 6.2.4. Consider the 3-polar fuzzy graph G = (V,A,B) of G∗ = (V,E) where

V = {u, v, w}, E = {uv, vw,wu},

A = {<0.2,0.3,0.4>
u

, <0.4,0.5,0.6>
v

, <0.5,0.7,0.9>
w

}, B = {<0.1,0.1,0.2>
uv

, <0.2,0.2,0.3>
vw

, <0.1,0.1,0.2>
wu

}.

We see that for each i = 1, 2, 3 and xy ∈ Ṽ 2,



6.3. ORDER, SIZE AND BUSY VALUE OF VERTICES OF M -POLAR FUZZY GRAPHS 100

< 0.1, 0.1, 0.2 >

< 0.4, 0.5, 0.6 >< 0.2, 0.3, 0.4 >

< 0.5, 0.7, 0.9 >

< 0.2, 0.3, 0.4 > < 0.4, 0.5, 0.6 >

u

w w

vuv

< 0.2, 0.2, 0.3 >
< 0.2, 0.3, 0.3 >< 0.1, 0.2, 0.2 >

< 0.5, 0.7, 0.9 >G G

< 0.1, 0.1, 0.2 >

< 0.1, 0.2, 0.2 >
y y

y

y y

y
Figure 6.4: Example of 3-polar fuzzy graph G which is weak self complement

pi ◦B(xy) ≤ 1
2
min{pi ◦ A(x), pi ◦ A(y)} .

Also, consider the complement of G of Fig. 6.4.

Let us now consider the identity mapping I : G → G such that I(u) = u for all

u ∈ V . Then, I is the required weak isomorphism from G onto G. Hence, G is weak

self complementary.

6.3 Order, size and busy value of vertices of m-

polar fuzzy graphs

In this section, the order, size, busy value of vertices of an m-polar fuzzy graph is

defined.

Definition 6.3.1. The order of the m-polar fuzzy graph G = (V,A,B) is denoted by

|V | (or O(G)) where

O(G) = |V | =
∑
x∈V

1 +
m∑
i=1

pi ◦ A(x)

2
.

The size of G is denoted by |E| (or S(G)) where

S(G) = |E| =
∑
xy∈E

1 +
m∑
i=1

pi ◦B(xy)

2
.

Theorem 6.3.1. Two isomorphic m-polar fuzzy graphs G1 = (V1, A1, B1) and G2 =

(V2, A2, B2) of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) have same order and size.

Proof. Let ϕ be an isomorphism from G1 onto G2.

Then A1(x) = A2(ϕ(x)) for all x ∈ V1 and

pi ◦B1(xy) = pi ◦B2(ϕ(x)ϕ(y)) for all xy ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.
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Now,

O(G1) = |V1| =
∑
x∈V1

1 +
m∑
i=1

pi ◦ A1(x)

2

=
∑

ϕ(x)∈V2

1 +
m∑
i=1

pi ◦ A2(ϕ(x))

2
= O(G2)

and

S(G1) = |E1| =
∑
xy∈E1

1 +
m∑
i=1

pi ◦B1(xy)

2

=
∑

ϕ(x)ϕ(y)∈E2

1 +
m∑
i=1

pi ◦B2(ϕ(x)ϕ(y))

2
= S(G2).

Definition 6.3.2. The busy value of a vertex u of an m-polar fuzzy graph G is denoted

as D(u) = (p1◦D(u), p2◦D(u), . . . , pm◦D(u)), where pi◦D(u) =
∑
k

min{pi◦A(u), pi◦

A(uk)}; uk are the neighbors of u. The busy value of G is denoted as D(G) where

D(G) =
∑
k

D(uk), uk ∈ V .

< 0.6, 0.3, 0.5 > < 0.8, 0.4, 0.3 >

< 0.7, 0.5, 0.6 >

u v

x

< 0.5, 0.2, 0.2 >

< 0.7, 0.4, 0.2 >

< 0.6, 0.2, 0.4 >

w

< 0.5, 0.6, 0.4 >

< 0.1, 0.3, 0.2 >

< 0.3, 0.2, 0.3 >

y

y y

y

Figure 6.5: 3-polar fuzzy graph G and busy value of its vertices

Example 6.3.1. Consider the 3-polar fuzzy graph G = (V,A,B) of G∗ = (V,E) where

V = {u, v, w, x}, E = {uv, vw, ux, uw, vx},

A = {<0.6,0.3,0.5>
u

, <0.8,0.4,0.3>
v

, <0.5,0.6,0.4>
w

, <0.7,0.5,0.6>
x

} and

B = {<0.5,0.2,0.2>
uv

, <0.1,0.3,0.2>
vw

, <0.6,0.2,0.4>
ux

, <0.3,0.2,0.3>
uw

, <0.7,0.4,0.2>
vx

}.

Then we have from Fig. 6.5,

p1 ◦D(u) = 1.7, p2 ◦D(u) = 0.9, p3 ◦D(u) = 1.2,

p1 ◦D(v) = 1.8, p2 ◦D(v) = 1.1, p3 ◦D(v) = 0.9,
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p1 ◦D(w) = 1, p2 ◦D(w) = 0.7, p3 ◦D(w) = 0.7,

p1 ◦D(x) = 1.3, p2 ◦D(x) = 0.7, p3 ◦D(x) = 0.8.

So, D(u) = (1.7, 0.9, 1.2), D(v) = (1.8, 1.1, 0.9),

D(w) = (1, 0.7, 0.7), D(x) = (1.3, 0.7, 0.8).

Definition 6.3.3. If pi ◦ A(u) ≤ pi ◦ deg(u) for i = 1, 2, . . . ,m, then the vertex u of

G is called a busy vertex. Otherwise, it is a free vertex.

Definition 6.3.4. If pi ◦ B(u1v1) = min{pi ◦ A(u1), pi ◦ A(v1)}, i = 1, 2, . . . ,m for

u1v1 ∈ E, then it is called an effective edge of G.

Definition 6.3.5. Let u ∈ V be a vertex of the m-polar fuzzy graph G = (V,A,B).

(i) u is called a partial free vertex if it is a free vertex of G and G.

(ii) u is called a fully free vertex if it is a free vertex of G and it is a busy vertex of

G.

(iii) u is called a partial busy vertex if it is a busy vertex of G and G.

(iv) u is called a fully busy vertex if it is a busy vertex in G and it is a free vertex of

G.

Theorem 6.3.2. Let ϕ be an isomorphism from G1 = (V1, A1, B1) onto G2 = (V2, A2, B2).

Then, deg(u) = deg(ϕ(u)) for all u ∈ V1.

Proof. Since ϕ is an isomorphism between G1 and G2, we have

pi ◦ A1(u) = pi ◦ A2(ϕ(u)) for all u ∈ V1 and

pi ◦B1(x1y1) = pi ◦B2(ϕ(x1)ϕ(y1)) for all x1y1 ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

Therefore,

pi ◦ deg(u) =
∑
u̸=v

uv∈E1

pi ◦B1(uv) =
∑

ϕ(u)̸=ϕ(v)
ϕ(u)ϕ(v)∈E2

pi ◦B2(ϕ(u)ϕ(v)) = pi ◦ deg(ϕ(u))

for u ∈ V1, i = 1, 2, . . . ,m. Hence, deg(u) = deg(ϕ(u)) for all u ∈ V1.

Theorem 6.3.3. If ϕ is an isomorphism from G1 onto G2 and u is a busy vertex of

G1, then ϕ(u) is a busy vertex of G2.

Proof. Since ϕ is an isomorphism between G1 and G2 we have,

pi ◦ A1(u) = pi ◦ A2(ϕ(u)) for u ∈ V1 and
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pi ◦B1(x1y1) = pi ◦B2(ϕ(x1)ϕ(y1)) for x1y1 ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

If u is a busy vertex of G1, then pi ◦ A1(u) ≤ pi ◦ deg(u) for i = 1, 2, . . . ,m.

Then, by the above and Theorem 6.3.2,

pi ◦ A2(ϕ(u)) =pi ◦ A1(u) ≤ pi ◦ deg(u) =pi ◦ deg(ϕ(u)) for i = 1, 2, . . . ,m.

Hence, ϕ(u) is a busy vertex in G2.

Theorem 6.3.4. Let the two m-polar fuzzy graphs G1 and G2 be weak isomorphic. If

u ∈ V1 is a busy vertex of G1, then the image of u under the weak isomorphism is also

busy in G2.

Proof. Let ϕ : V1 → V2 be a weak isomorphism between G1 and G2.

Then, pi ◦ A1(x) = pi ◦ A2(ϕ(x)) for all x ∈ V1 and

pi ◦B1(x1y1) ≤ pi ◦B2(ϕ(x1)ϕ(y1)) for all x1y1 ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

Let u ∈ V1 be a busy vertex.

Then, pi ◦ A1(u) ≤ pi ◦ deg(u) for i = 1, 2, . . . ,m.

Now, by the above for i = 1, 2, . . . ,m

pi ◦ A2(ϕ(u)) =pi ◦ A1(u)

≤ pi ◦ deg(u) =
∑
u̸=v

uv∈E1

pi ◦B1(uv) ≤
∑

ϕ(u) ̸=ϕ(v)
ϕ(u)ϕ(v)∈E2

pi ◦B2(ϕ(u)ϕ(v))

=pi ◦ deg(ϕ(u)).

Hence, ϕ(u) is a busy vertex in G2.

6.4 Complement and isomorphism inm-polar fuzzy

graphs
In this section, some important properties of isomorphism, weak isomorphism, co

weak isomorphism related with complement are discussed.

Theorem 6.4.1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2). If G1

∼= G2, then G1
∼= G2.

Proof. Let G1
∼= G2.

Then there exists an isomorphism ϕ : V1 → V2 such that

A1(x) = A2(ϕ(x)) for all x ∈ V1 and

pi ◦B1(xy) = pi ◦B2(ϕ(x)ϕ(y)) for each i = 1, 2, . . . ,m and xy ∈ Ṽ 2
1 .

Now, A1(x) = A1(x) = A2(ϕ(x)) = A2(ϕ(x)) for all x ∈ V1.



6.4. COMPLEMENT AND ISOMORPHISM IN M -POLAR FUZZY GRAPHS 104

Also, for i = 1, 2, . . . ,m and xy ∈ Ṽ 2
1 we have,

pi ◦B1(xy)

= min{pi ◦ A1(x), pi ◦ A1(y)} − pi ◦B1(xy)

= min{pi ◦ A2(ϕ(x), pi ◦ A2(ϕ(y)} − pi ◦B2(ϕ(x)ϕ(y))

= pi ◦B2(ϕ(x)ϕ(y)).

Hence, ϕ is an isomorphism between G1 and G2, i.e. G1
∼= G2.

< 0.6, 0.8, 0.1 >

< 0.4, 0.3, 0.2 >

< 0.3, 0.2, 0.05 >

< 0.6, 0.8, 0.1 > < 0.4, 0.3, 0.2 >

< 0.5, 0.7, 0.2 >

u w

v

a

c

< 0.4, 0.3, 0.1 >

< 0.4, 0.3, 0.2 >< 0.3, 0.2, 0.1 >

b

G2
G1

< 0.4, 0.3, 0.1 >

< 0.5, 0.7, 0.2 >

< 0.4, 0.2, 0.1 >
y

y

y y y

y�
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�
�
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Figure 6.6: Weak isomorphic 3-polar fuzzy graphs G1 and G2

< 0.6, 0.8, 0.1 >

< 0.4, 0.3, 0.2 >

< 0.1, 0.1, 0.05 >

< 0.6, 0.8, 0.1 > < 0.4, 0.3, 0.2 >

< 0.5, 0.7, 0.2 >

u w

v

a

c

< 0.1, 0.1, 0.1 >

b

G2
G1

< 0.1, 0.4, 0 >

< 0.5, 0.7, 0.2 >

< 0.1, 0.5, 0 >
y

y

y y y

y�
�
�
�
�

�
�
��

Figure 6.7: Example of weak isomorphic graphs whose complement is not weak iso-

morphic

Remark 6.4.1. Suppose there is a weak isomorphism between twom-polar fuzzy graphs

G1 and G2. Then there may not be a weak isomorphism between G1 and G2.

For example, consider two 3-polar fuzzy graphs G1 and G2 of Fig. 6.6.

Let us now define a mapping ϕ : V1 → V2 such that ϕ(a) = u, ϕ(b) = v, ϕ(c) = w.

Then, ϕ is a weak isomorphism from G1 onto G2. But, there is no weak isomorphism

from G1 onto G2 (see Fig. 6.7) because

B2(uw = ϕ(a)ϕ(c)) = 0 = (0, 0, . . . , 0) < B1(ac) = (0.1, 0.1, 0.05) and

B2(vw = ϕ(b)ϕ(c)) = 0 = (0, 0, . . . , 0) < B1(bc) = (0.1, 0.1, 0.1).
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Remark 6.4.2. In a similar way, we can construct example to show that if there is

a co-weak isomorphism between two m-polar fuzzy graphs G1 and G2 then there may

not be a co-weak isomorphism between G1 and G2.

Theorem 6.4.2. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) such that V1 ∩ V2 = ∅. Then

G1 +G2
∼= G1 ∪G2.

Proof. To show that G1 +G2
∼= G1∪G2, we need to show that there exists an isomor-

phism between G1 +G2 and G1 ∪G2.

We will show that the identity map I : V1∪V2 → V1∪V2 is the required isomorphism

between them. For this, we will show the following:

(A1 + A2)(x) = (A1 ∪ A2)(x) for all x ∈ V1 ∪ V2 and

pi ◦ (B1 +B2)(xy) = pi ◦ (B1 ∪B2)(xy) for all xy ∈ Ṽ1 × V2
2

, i = 1, 2, . . . ,m.

Let x ∈ V1 ∪ V2.

Then (A1 + A2)(x)

= (A1 + A2)(x)

= (A1 ∪ A2)(x)

=

 A1(x) if x ∈ V1 − V2

A2(x) if x ∈ V2 − V1

=

 A1(x) if x ∈ V1 − V2

A2(x) if x ∈ V2 − V1

= (A1 ∪ A2)(x).

Now, for each i = 1, 2, . . . ,m and xy ∈ Ṽ1 × V2
2

we have,

pi ◦ (B1 +B2)(xy)

= min{pi ◦ (A1 + A2)(x), pi ◦ (A1 + A2)(y)} − pi ◦ (B1 +B2)(xy)

=


min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)} − pi ◦ (B1 ∪B2)(xy), if xy ∈ E1 ∪ E2

min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)} −min{pi ◦ (A1)(x), pi ◦ (A2)(y)},

if xy ∈ E ′

=


min{pi ◦ A1(x), pi ◦ A1(y)} − pi ◦B1(xy), if xy ∈ E1 − E2

min{pi ◦ A2(x), pi ◦ A2(y)} − pi ◦B2(xy), if xy ∈ E2 − E1

min{pi ◦ A1(x), pi ◦ A2(y)} −min{pi ◦ (A1)(x), pi ◦ (A2)(y)}, if xy ∈ E ′
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=


pi ◦B1(xy), if xy ∈ E1 − E2

pi ◦B2(xy), if xy ∈ E2 − E1

0, if xy ∈ E ′

=pi ◦ (B1 ∪B2)(xy).

Theorem 6.4.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) such that V1 ∩ V2 = ∅. Then

G1 ∪G2
∼= G1 +G2.

Proof. Consider the identity map I : V1 ∪ V2 → V1 ∪ V2. We will show that I is the

required isomorphism between G1 ∪G2 and G1 +G2.

For this, we will show the following:

(A1 ∪ A2)(x) = (A1 + A2)(x), for all x ∈ V1 ∪ V2 and

pi ◦ (B1 ∪B2)(xy) = pi ◦ (B1 +B2)(xy) for all xy ∈ Ṽ1 × V2
2

, i = 1, 2, . . . ,m.

Let x ∈ V1 ∪ V2.

Then A1 ∪ A2(x)

= (A1 ∪ A2)(x)

=

 A1(x), if x ∈ V1 − V2

A2(x), if x ∈ V2 − V1

=

 A1(x), if x ∈ V1 − V2

A2(x), if x ∈ V2 − V1

= (A1 ∪ A2)(x)

and

pi ◦ (B1 ∪B2)(xy)

= min{pi ◦ (A1 ∪ A2)(x), pi ◦ (A1 ∪ A2)(y)} − pi ◦ (B1 ∪B2)(xy)

=


min{pi ◦ A1(x), pi ◦ A1(y)} − pi ◦B1(xy), if xy ∈ E1 − E2

min{pi ◦ A2(x), pi ◦ A2(y)} − pi ◦B2(xy), if xy ∈ E2 − E1

min{pi ◦ A1(x), pi ◦ A2(y)} − 0, if x ∈ V1, y ∈ V2

=


pi ◦B1(xy), if xy ∈ E1 − E2

pi ◦B2(xy), if xy ∈ E2 − E1

min{pi ◦ A1(x), pi ◦ A2(y)} − 0, if x ∈ V1, y ∈ V2

=


pi ◦B1(xy), if xy ∈ E1 − E2

pi ◦B2(xy), if xy ∈ E2 − E1

min{pi ◦ A1(x), pi ◦ A2(y)} − 0, if xy ∈ E ′
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=pi ◦(B1+B2)(xy) for i = 1, 2, . . . ,m, xy ∈ Ṽ1 × V2
2

. This completes the proof.

Theorem 6.4.4. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two strong m-

polar fuzzy graphs of the graphs G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively. Then

G1 ◦G2
∼= G1 ◦G2.

Proof. Let G1 ◦ G2 = (V1 × V2, A1 ◦ A2, B1 ◦ B2) be an m-polar fuzzy graph of the

graph G∗ = (V,E) where V = V1 × V2 and

E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) : z ∈ V2, x1y1 ∈ E1} ∪

{(x1, x2)(y1, y2) : x1y1 ∈ E1, x2 ̸= y2}.

We show that the identity map I is the required isomorphism between the graphs

G1 ◦G2 and G1 ◦G2.

Let us consider the identity map I : V1 × V2 → V1 × V2.

In order to show that I is the required isomorphism, we show that

pi ◦ (B1 ◦B2)(xy) = pi ◦ (B1 ◦B2)(xy) for all xy ∈ Ṽ1 × V2
2

, i = 1, 2, . . . ,m.

Several cases may arise.

Case(i): Let e = (x, x2)(x, y2) where x ∈ V1, x2y2 ∈ E2. Then e ∈ E.

Since G1 ◦G2 is strong m-polar fuzzy graph, we have for each i = 1, 2, . . . ,m

pi ◦ (B1 ◦B2)(e) = 0 and

pi ◦ (B1 ◦B2)(e) = min{pi ◦ A1(x), pi ◦B2(x2y2)} = 0

(since G2 is strong and x2y2 ∈ E2, therefore pi ◦ B2(x2y2) = 0 for each i =

1, 2, . . . ,m).

Case(ii): Let e = (x, x2)(x, y2) where x2 ̸= y2, x2y2 /∈ E2.

Then e /∈ E.

So for each i = 1, 2, . . . ,m

pi ◦ (B1 ◦B2)(e) = 0 and

pi ◦ (B1 ◦B2)(e)

= min{pi ◦ (A1 ◦ A2)(x, x2), pi ◦ (A1 ◦ A2)(x, y2)}

= min{pi ◦ A1(x), pi ◦ A2(x2), pi ◦ A2(y2)}.

Again, since x2y2 ∈ E2, therefore

pi ◦ (B1 ◦B2)(e)

= min{pi ◦ A1(x), pi ◦B2(x2y2)}

= min{pi ◦ A1(x), pi ◦ A2(x2), pi ◦ A2(y2)} for each i = 1, 2, . . . ,m.
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Case(iii): Let e = (x1, z)(y1, z) where x1y1 ∈ E1, z ∈ V2.

Then e ∈ E.

So, pi ◦ (B1 ◦B2)(e) = 0 for each i = 1, 2, . . . ,m as in Case(i).

Also, since x1y1 /∈ E1, therefore pi ◦ (B1 ◦B2)(e) = 0 for each i = 1, 2, . . . ,m.

Case(iv): Let e = (x1, z)(y1, z) where x1y1 /∈ E1, z ∈ V2.

Then e /∈ E.

Hence, pi ◦ (B1 ◦B2)(e) = 0 for each i = 1, 2, . . . ,m.

pi ◦ (B1 ◦B2)(e)

= min{pi ◦ (A1 ◦ A2)(x1, z), pi ◦ (A1 ◦ A2)(y1, z)}

= min{pi ◦ A1(x1), pi ◦ A1(y1), pi ◦ A2(z)} and

pi ◦ (B1 ◦B2)(e)

= min{pi ◦ A2(z), pi ◦B1(x1y1)}

= min{pi ◦ A1(x1), pi ◦ A1(y1), pi ◦ A2(z)} (G1 being strong).
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Figure 6.8: G1, G2, G1 ◦G2 and G1 ◦G2

Case(v): Let e = (x1, x2)(y1, y2) where x1y1 ∈ E1, x2 ̸= y2.

Then e ∈ E.

So, we have pi ◦ (B1 ◦B2)(e) = 0 for each i = 1, 2, . . . ,m as in Case(i).
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Also, since x1y1 ∈ E1, we have pi ◦ (B1 ◦B2)(e) = 0 for each i = 1, 2, . . . ,m.
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< 0, 0.1, 0.1 >

y

y y

y y

y y

y

Figure 6.9: Example of 3-polar fuzzy graphs G1 and G2, where G1 ◦G2 � G1 ◦G2

Case(vi): Let e = (x1, x2)(y1, y2) where x1y1 /∈ E1, x2 ̸= y2.

Then e /∈ E and hence for each i = 1, 2, . . . ,m

pi ◦ (B1 ◦B2)(e) = 0,

pi ◦ (B1 ◦B2)(e)

= min{pi ◦ (A1 ◦ A2)(x1, x2), pi ◦ (A1 ◦ A2)(y1, y2)}

= min{pi ◦ A1(x1), pi ◦ A1(y1), pi ◦ A2(x2), pi ◦ A2(y2)} and since x1y1 ∈ E1,

pi ◦ (B1 ◦B2)(e)

= min{pi ◦ A2(x2), pi ◦ A2(y2), pi ◦B1(x1y1)}

= min{pi ◦ A1(x1), pi ◦ A1(y1), pi ◦ A2(x2), pi ◦ A2(y2)} (G1 being strong by [45]).

Case(vii): Finally, let e = (x1, x2)(y1, y2) where x1y1 /∈ E1, x2y2 /∈ E2.

Then e /∈ E and hence for each i = 1, 2, . . . ,m

pi ◦ (B1 ◦B2)(e) = 0,

pi ◦ (B1 ◦B2)(e) = min{pi ◦ (A1 ◦ A2)(x1, x2), pi ◦ (A1 ◦ A2)(y1, y2)}.

Now, x1y1 ∈ E1 and if x2 = y2 = z, then we have the Case(iv).

Again, if x1y1 ∈ E1 and if x2 ̸= y2, then we have Case(vi).

Thus combining all the cases we have,

pi ◦ (B1 ◦B2)(xy) = pi ◦ (B1 ◦B2)(xy) for all xy ∈ Ṽ1 × V2
2

, i = 1, 2, . . . ,m.

Remark 6.4.3. If G1 and G2 are not strong, then G1 ◦G2 � G1 ◦ G2 always. For

example, consider two 3-polar fuzzy graphs G1 and G2 which are not strong (see Fig.

6.8). From the Fig. 6.8 and Fig. 6.9, we see that, G1 ◦G2 � G1 ◦G2.
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6.5 Applications

Now a days, fuzzy graphs and bipolar fuzzy graphs are most familiar graphs to

us and they can also be thought of as 1-polar and 2-polar fuzzy graphs respectively.

These graphs have many important applications in social networks, medical diagnosis,

computer networks, database theory, expert system, neural networks, artificial intelli-

gence, signal processing, pattern recognition, engineering science, cluster analysis, etc.

The concepts of bipolar fuzzy graphs can be generalized to m-polar fuzzy graphs. For

example, consider the sorting of mangoes and guavas. Now the different characteristics

of a given fruit can change the decision in sorting process more towards the decision

mango or vice versa. There are two poles present in this case. One is 100% sure

mango and the other is 100% sure guava. This shows that the situation is bipolar.

This situation can be generalized further by adding a new fruit, for example sweet

lemon into the sorting process.

6.5.1 Graphical representation of tug of war

Consider the another example of tug of war where two people pull the rope in

opposite directions. Here, who uses the larger force, the center of the rope will move

in the respective direction of their pulling. The situation is symmetric in this case.

We present an example where m people pull a special rope in m different directions.

We use this example to represent it as an m-polar fuzzy graph. We assume that O is

the origin and there are m straight paths leading from O. We also assume that there

is a wall in between these paths. In this setting, we have the special rope with one

node at O and m endings going out from this nodes- one end corresponding to each

of the paths. Suppose on every path there is a man standing and pulling the rope in

the direction of the path on which he is standing. This situation can be represented

as an m-polar fuzzy graph by considering the nodes as m-polar fuzzy set and edges

between them as m-polar fuzzy relations, which is shown in Fig. 6.10. In this context,

one can ask the question what is the strength require in order to pull the node O from

the center into one of the paths (assuming no friction)? The answer to this is that if

the corresponding forces which are pulling the rope are Fk, k = 1, 2, . . . ,m, then the

node O will move to the jth path if Fj >
∑

k=1,2,...,m
k ̸=j

Fk.
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Figure 6.10: Graphical representation of tug of war

6.5.2 Evaluation graph corresponding to the teacher’s evalu-

ation by the students

In this section, we present the model of m-polar fuzzy graph which is used in eval-

uating the teachers by the students of 4th semester of a department in an university

during the session 2015-2016. Here the nodes represent the teachers of the correspond-

ing department and edges represent the relationship between two teachers. Suppose

the department has six teachers denoted as T = {t1, t2, t3, t4, t5, t6}. The membership

value of each node represents the corresponding teachers feedback response of the stu-

dents depending on the following: {regularity of classes, style of presentation, quality

of lectures, generation of interest and encouraging future reading among students, up-

dated information}. Since all the above characteristics of a teacher according to the

different students are uncertain in real life, therefore we consider 5-polar fuzzy subset

of the vertex set T .

y

y y

y

y

y
(0.6, 0.7, 0.8, 0.9, 0.9)

(0.7, 0.6, 0.7, 0.8, 0.8) t2 t3(0.8, 0.9, 0.7, 0.8, 0.9)

(0.8, 0.7, 0.8, 0.9, 0.8)

t6

(0.6, 0.6, 0.7, 0.8, 0.7)

(0.5, 0.7, 0.7, 0.6, 0.8)

(0.7, 0.5, 0.6, 0.7, 0.6)

(0.6, 0.7, 0.8, 0.7, 0.8)

(0.6, 0.6, 0.6, 0.7, 0.8)

(0.7, 0.5, 0.7, 0.7, 0.8)

(0.8, 0.7, 0.6, 0.6, 0.8)

(0.8, 0.7, 0.7, 0.8, 0.8)

(0.8, 0.7, 0.7, 0.7, 0.8)

(0.6, 0.7, 0.7, 0.7, 0.7)

(0.7, 0.8, 0.6, 0.6, 0.7)

t1 t4

(0.7, 0.8, 0.9, 0.7, 0.8)

t5(0.8, 0.9, 0.7, 0.7, 0.8)

Figure 6.11: 5-polar fuzzy evaluation graph corresponding to the teacher’s evaluation

by students
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In the Table 6.1, the membership values of the teacher’s are given which is according

to the evaluation of the students.

Edge membership values which represent the relationship between the teachers can

be calculated by using the relation pi◦B(uv) ≤ min{pi◦A(u), pi◦A(v)} for all u, v ∈ T ,

i = 1, 2, . . . , 5. These values are given in the Table 6.2.

Table 6.1: 5-polar fuzzy set A of T

t1 t2 t3 t4 t5 t6

p1 ◦ A 0.6 0.7 0.8 0.8 0.8 0.7

p2 ◦ A 0.7 0.6 0.9 0.7 0.9 0.8

p3 ◦ A 0.8 0.7 0.7 0.8 0.7 0.9

p4 ◦ A 0.9 0.8 0.8 0.9 0.7 0.7

p5 ◦ A 0.9 0.8 0.9 0.8 0.8 0.8

Table 6.2: 5-polar fuzzy relation B on A

t1t2 t1t5 t1t6 t2t3 t2t4 t2t5 t3t4 t3t5 t4t5 t4t6 t5t6

p1 ◦B 0.6 0.5 0.6 0.6 0.8 0.7 0.8 0.7 0.8 0.6 0.7

p2 ◦B 0.6 0.7 0.7 0.6 0.7 0.5 0.7 0.5 0.7 0.7 0.8

p3 ◦B 0.7 0.7 0.8 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.6

p4 ◦B 0.8 0.6 0.7 0.7 0.6 0.7 0.8 0.7 0.7 0.7 0.6

p5 ◦B 0.7 0.8 0.8 0.8 0.8 0.6 0.8 0.8 0.8 0.7 0.7

Table 6.3: Average response score of the teachers

Teachers t1 t2 t3 t4 t5 t6

Scores 0.78 0.72 0.82 0.8 0.78 0.78

We rank the teacher’s performance according the following:

Teacher’s average response score < 60%, teacher’s performance according to the stu-

dents is Average.

Teacher’s average response score ≥ 60% and < 70%, teacher’s performance according

to the students is Good.

Teacher’s average response score ≥ 70% and < 80%, teacher’s performance according

to the students is Very Good.
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Teacher’s average response score is ≥ 80%, teacher’s performance according to the

students is Excellent.

From the Table 6.3, we see that the performance of the teachers t1, t2, t5, t6 are very

good whereas the performance of the teachers t3 and t4 are excellent. Among these

teachers, teacher t3 is the best teacher according the response score of the students of

the department during the session 2015-2016.

6.6 Summary

The theory of fuzzy graphs play an important role in many fields including decision

makings, computer networking and management sciences. Anm-polar fuzzy graph can

be used to represent real world problems which involve multi-agent, multi-attribute,

multi-object, multi-index, multi-polar information with uncertainty. In this chapter,

we have introduced weak self complement m-polar fuzzy graph in some weaker sense

and studied the properties of self complement and weak self complementm-polar fuzzy

graphs. Then order, size, busy vertices and free vertices in m-polar fuzzy graphs are

defined. A relative study of complement and operations have been made. Some real

life situations like tug of war and evaluation of teachers by students have been modeled

in terms of m-polar fuzzy graphs as applications.
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Chapter 7

Edge regularity of m-polar fuzzy

graphs∗

7.1 Introduction
Regular graphs play a central role in combinatorics and theoretical computer science.

Strongly regular graph form an important class of graphs which is highly structured.

Strongly regular graph was first defined by Bose [35]. Nagoorgani et al. [85, 88] intro-

duced regular and irregular fuzzy graphs. Radha and Kumaravel [100] introduced the

concept of strongly regular fuzzy graph. In this chapter, the concept of edge regular,

strongly regular and biregular m-polar fuzzy graph are introduced. Some properties of

them are studied. Also, the concept of partially edge regular m-polar fuzzy graph and

fully edge regular m-polar fuzzy graph are introduced. Finally, we introduce the no-

tion of strongly edge irregular and strongly edge totally irregularm-polar fuzzy graphs.

Some properties of them are also studied to characterize strongly edge irregular and

strongly edge totally irregular m-polar fuzzy graphs.

7.2 Some preliminaries
Definition 7.2.1. [7] Let G = (V,A,B) be an m-polar fuzzy graph of G∗ = (V,E).

(i) The neighborhood degree of a vertex v is defined as

dN(v) = (d1N(v), d
2
N(v), . . . , d

m
N(v)) where d

i
N(v) =

∑
u∈N(v)

pi◦A(u), i = 1, 2, . . . ,m.

∗A part of the work presented in this chapter is published in International Journal of Applied and

Computational Mathematics, DOI:10.1007/s40819-016-0296-y, (2016).
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(ii) The degree of a vertex v in G is defined by dG(v) = (d1G(v), d
2
G(v), . . . , d

m
G (v)),

where diG(v) =
∑
u̸=v
uv∈E

pi ◦ B(uv), i = 1, 2, . . . ,m. If all the vertices of G have the

same degree, then G is called regular m-polar fuzzy graph.

(iii) The closed degree of a vertex v is defined by dG[v] = (d1G[v], d
2
G[v], . . . , d

m
G [v]),

where diG[v] = diG(v)+pi ◦A(v), i = 1, 2, . . . ,m. If each vertex of G has the same

closed degree, then G is called totally regular m-polar fuzzy graph.

(iv) The order of G is defined as O(G) = (O1(G), O2(G), . . . , Om(G)) where Oi(G) =∑
v∈V

pi ◦ A(v), i = 1, 2, . . . ,m.

The size of G is defined as S(G) = (S1(G), S2(G), . . . , Sm(G)) where Si(G) =∑
uv∈E

pi ◦B(uv), i = 1, 2, . . . ,m.

Definition 7.2.2. [102] Let G∗ = (V,E) be a crisp graph and let e = vivj be an

edge in G∗. Then the degree of the edge e = vivj ∈ E is defined as dG∗(vivj) =

dG∗(vi) + dG∗(vj)− 2.

7.3 Edge regularity in m-polar fuzzy graphs

In this section, edge regular, strongly regular and biregular m-polar fuzzy graphs

are defined and some properties of them are given. Then, the necessary and sufficient

condition for an m-polar fuzzy graph to be strongly regular is given. Also, partially

edge regular m-polar fuzzy graph and fully edge regular m-polar fuzzy graph are

defined.

Definition 7.3.1. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ = (V,E).

(i) The degree of an edge ejk = vjvk ∈ E is denoted as

dG(ejk) = (d1(ejk), d
2(ejk), . . . , d

m(ejk)) and is defined as

di(ejk) = diG(vj) + diG(vk)− 2pi ◦B(vjvk)

or, di(ejk) =
∑

vjvl∈E
l ̸=k

pi ◦B(vjvl) +
∑

vlvk∈E
l ̸=j

pi ◦B(vlvk) for i = 1, 2, . . . ,m.

(ii) The minimum edge degree of G is denoted as δE(G) = (δ1(G), δ2(G), . . . , δm(G)),

where δi(G) = ∧{di(ejk)|ejk ∈ E}, i = 1, 2, . . . ,m.

(iii) The maximum edge degree of G is denoted as ∆E(G) = (∆1(G),∆2(G), . . . ,∆m(G)),

where ∆i(G) = ∨{di(ejk)|ejk ∈ E}, i = 1, 2, . . . ,m.
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(iv) The total edge degree of an edge ejk ∈ E is denoted as

tdG(ejk) = (td1(ejk), td
2(ejk), . . . , td

m(ejk)) where

tdi(ejk) =
∑

vjvl∈E
l ̸=k

pi ◦B(vjvl) +
∑

vlvk∈E
l ̸=j

pi ◦B(vlvk) + pi ◦B(ejk) for i = 1, 2, . . . ,m.

Example 7.3.1. Let us consider the 4-polar fuzzy graph G = (V,A,B) (see Fig. 7.1)

of G∗ = (V,E) where V = {v1, v2, v3, v4} and E = {v1v2, v1v4, v1v3, v2v3, v3v4}. Then,

dG(e12) = (1.3, 1, 0.9, 1.2). Hence, tdG(e12) = (1.3 + 0.4, 1 + 0.5, 0.9 + 0.6, 1.2 + 0.3) =

(1.7, 1.5, 1.5, 1.5) (Here, eij = vivj).

y y

y y

v1(0.6, 0.5, 0.8, 0.7) v2(0.4, 0.7, 0.8, 0.5)

v3(0.5, 0.4, 0.3, 0.6)v4(0.7, 0.6, 0.4, 0.4)

(0.4, 0.5, 0.6, 0.3)

(0.4, 0.4, 0.2, 0.3)

(0.3, 0.2, 0.3, 0.4)(0.5, 0.4, 0.3, 0.3)

(0.5, 0.4, 0.3, 0.5)

Figure 7.1: 4-polar fuzzy graph G

Definition 7.3.2. Let G = (V,A,B) be an m-polar fuzzy graph.

(i) If all the edges in G has the same degree (l1, l2, . . . , lm), then G is said to be an

edge regular m-polar fuzzy graph.

(ii) If all the edges in G has the same total degree (t1, t2, . . . , tm), then G is said to

be a totally edge regular m-polar fuzzy graph.

y y

y y

v1(0.3, 0.5, 0.7) v2(0.5, 0.4, 0.6)

v4(0.5, 0.4, 0.6)v3(0.7, 0.6, 0.4)

(0.3, 0.4, 0.5)

(0.3, 0.5, 0.3)

(0.3, 0.4, 0.5)(0.3, 0.5, 0.3)

Figure 7.2: (0.6, 0.9, 0.8)-edge regular 3-polar fuzzy graph G

Example 7.3.2. Consider the 3-polar fuzzy graph G = (V,A,B) of the graph G∗ =

(V,E) (see Fig. 7.2) where V = {v1, v2, v3, v4} and E = {v1v2, v1v3, v3v4, v2v4}. Then,

dG(e12) = dG(e24) = dG(e13) = dG(e34) = (0.6, 0.9, 0.8). Hence, G is (0.6, 0.9, 0.8)-edge

regular 3-polar fuzzy graph.
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Theorem 7.3.1. Let G = (V,A,B) be an m-polar fuzzy graph of a cycle G∗ = (V,E).

Then
∑
vj∈V

dG(vj) =
∑

vjvk∈E
dG(vjvk), i.e.

∑
vj∈V

diG(vj) =
∑

vjvk∈E
di(vjvk), i = 1, 2, . . . ,m.

Proof. Let G = (V,A,B) be an m-polar fuzzy graph and G∗ be a cycle v1v2v3 . . . vnv1.

Then
n∑

j=1

dG(vjvj+1) =
( n∑
j=1

d1(vjvj+1),
n∑

j=1

d2(vjvj+1), . . . ,
n∑

j=1

dm(vjvj+1)
)
.

Now for i = 1, 2, . . . ,m
n∑

j=1

di(vjvj+1) = di(v1v2) + di(v2v3) + . . .+ di(vnv1) where vn+1 = v1

= diG(v1) + diG(v2)− 2pi ◦B(v1v2) + diG(v2) + diG(v3)

−2pi ◦B(v2v3) + . . .+ diG(vn) + diG(v1)− 2pi ◦B(vnv1)

= 2diG(v1) + 2diG(v2) + . . .+ 2diG(vn)

−2(pi ◦B(v1v2) + pi ◦B(v2v3) + . . .+ pi ◦B(vnv1))

= 2
∑
vj∈V

diG(vj)− 2
n∑

j=1

pi ◦B(vjvj+1)

=
∑
vj∈V

diG(vj) + 2
n∑

j=1

pi ◦B(vjvj+1)− 2
n∑

j=1

pi ◦B(vjvj+1)

=
∑
vj∈V

diG(vj).

Hence,
n∑

j=1

dG(vjvj+1) =
( ∑
vj∈V

d1G(vj),
∑
vj∈V

d2G(vj), . . . ,
∑
vj∈V

dmG (vj)
)

=
∑
vj∈V

dG(vj).

Remark 7.3.1. Let G = (V,A,B) be an m-polar fuzzy graph of the graph G∗. Then,∑
vjvk∈E

dG(vjvk) =
( ∑
vjvk∈E

dG∗(vjvk)p1 ◦B(vjvk),
∑

vjvk∈E
dG∗(vjvk)p2 ◦B(vjvk), . . . ,∑

vjvk∈E
dG∗(vjvk)pm◦B(vjvk)

)
, where dG∗(vjvk) = dG∗(vj)+dG∗(vk)−2 for all vjvk ∈ E.

Theorem 7.3.2. Let G = (V,A,B) be an m-polar fuzzy graph of the p-regular crisp

graph G∗. Then,∑
vjvk∈E

dG(vjvk) =
(
(p− 1)

∑
vj∈V

d1G(vj), (p− 1)
∑
vj∈V

d2G(vj), . . . , (p− 1)
∑
vj∈V

dmG (vj)
)
.

Proof. By Remark 7.3.1, we have∑
vjvk∈E

dG(vjvk)

=
( ∑
vjvk∈E

dG∗(vjvk)p1◦B(vjvk),
∑

vjvk∈E
dG∗(vjvk)p2◦B(vjvk), . . . ,

∑
vjvk∈E

dG∗(vjvk)pm◦

B(vjvk)
)

Now,
∑

vjvk∈E
dG∗(vjvk)pi ◦B(vjvk) =

∑
vjvk∈E

(
dG∗(vj) + dG∗(vk)− 2

)
pi ◦B(vjvk).

Since G∗ is a p-regular crisp graph, therefore dG∗(vj) = p, for all vj ∈ V .

So,
∑

vjvk∈E
dG∗(vjvk)pi ◦B(vjvk)
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=
∑

vjvk∈E
(p+ p− 2)pi ◦B(vjvk)

= 2(p− 1)
∑

vjvk∈E
pi ◦B(vjvk)

= (p− 1)
∑
vj∈V

diG(vj).

Hence,
∑

vjvk∈E
dG(vjvk) =

(
(p−1)

∑
vj∈V

d1G(vj), (p−1)
∑
vj∈V

d2G(vj), . . . , (p−1)
∑
vj∈V

dmG (vj)
)
.

Theorem 7.3.3. Let G = (V,A,B) be an m-polar fuzzy graph of the crisp graph G∗.

Then,
∑

vjvk∈E
tdG(vjvk) =

∑
vjvk∈E

dG∗(vjvk)B(vjvk) +
∑

vjvk∈E
B(vjvk).

Proof. From definition of total edge degree, we have for i = 1, 2, . . . ,m∑
vjvk∈E

tdi(vjvk) =
∑

vjvk∈E

(
di(vjvk)+pi◦B(vjvk)

)
=

∑
vjvk∈E

di(vjvk)+
∑

vjvk∈E
pi◦B(vjvk).

From Remark 7.3.1, we have∑
vjvk∈E

tdi(vjvk) =
∑

vjvk∈E
dG∗(vjvk)pi ◦B(vjvk)+

∑
vjvk∈E

pi ◦B(vjvk) for i = 1, 2, . . . ,m.

Hence the proof.

Theorem 7.3.4. Let G = (V,A,B) be an m-polar fuzzy graph. Then B is a constant

function if and only if the following are equivalent:

(i) G is edge regular m-polar fuzzy graph.

(ii) G is totally edge regular m-polar fuzzy graph.

Proof. Let us assume that B be a constant function.

Then B(vivj) = (c1, c2, . . . , cm) for all vivj ∈ E, where c1, c2, . . . , cm ∈ [0, 1] are

constants.

Let G be an (r1, r2, . . . , rm)-edge regular m-polar fuzzy graph.

Then, dG(vivj) = (r1, r2, . . . , rm) for all vivj ∈ E and

tdG(vivj) =
(
d1(vivj)+p1◦B(vivj), d

2(vivj)+p2◦B(vivj), . . . , d
m(vivj)+pm◦B(vivj)

)
= (r1 + c1, r2 + c2, . . . , rm + cm) for all vivj ∈ E.

Hence, G is a (r1+c1, r2+c2, . . . , rm+cm)-totally edge regular m-polar fuzzy graph.

Now, let G be a (t1, t2, . . . , tm)-totally edge regular m-polar fuzzy graph.

Then tdG(vivj) = (t1, t2, . . . , tm) for all vivj ∈ E,

i.e.
(
d1(vivj) + p1 ◦B(vivj), d

2(vivj) + p2 ◦B(vivj), . . . , d
m(vivj) + pm ◦B(vivj)

)
= (t1, t2, . . . , tm),

i.e.
(
d1(vivj) + c1, d

2(vivj) + c2, . . . , d
m(vivj) + cm

)
= (t1, t2, . . . , tm),

i.e. (d1(vivj), d
2(vivj), . . . , d

m(vivj)) = (t1 − c1, t2 − c2, . . . , tm − cm),
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i.e. G is (t1 − c1, t2 − c2, . . . , tm − cm)-edge regular m-polar fuzzy graph.

Conversely, we assume that the statements (i) and (ii) are equivalent.

We need to show that B is a constant function.

If possible, let B be a non constant function.

Then there exists vjvk, vlvr ∈ E such that B(vjvk) ̸= B(vlvr).

Let G be a (r1, r2, . . . , rm)-edge regular m-polar fuzzy graph.

Then for vjvk, vlvr ∈ E, we have

tdG(vjvk)

= (d1(vjvk) + p1 ◦B(vjvk), d
2(vjvk) + p2 ◦B(vjvk), . . . , d

m(vjvk) + pm ◦B(vjvk))

= (r1 + p1 ◦B(vjvk), r2 + p2 ◦B(vjvk), . . . , rm + pm ◦B(vjvk)) and

tdG(vlvr)

= (d1(vlvr) + p1 ◦B(vlvr), d
2(vlvr) + p2 ◦B(vlvr), . . . , d

m(vlvr) + pm ◦B(vlvr))

= (r1 + p1 ◦B(vlvr), r2 + p2 ◦B(vlvr), . . . , rm + pm ◦B(vlvr)).

Since B(vjvk) ̸= B(vlvr), therefore tdG(vjvk) ̸= tdG(vlvr).

Hence, G is not totally edge regular, which is a contradiction. So, B is constant.

Theorem 7.3.5. Let G = (V,A,B) be an m-polar fuzzy graph of a p-regular crisp

graph G∗. Then B is constant if and only if G is both regular and totally edge regular

m-polar fuzzy graph.

Proof. Let B be a constant function.

Let B(u, v) = (c1, c2, . . . , cm) for all uv ∈ E where ci’s are constants.

Then

dG(v) = (d1G(v), d
2
G(v), . . . , d

m
G (v))

=
( ∑

u̸=v
uv∈E

p1 ◦B(uv),
∑
u̸=v
uv∈E

p2 ◦B(uv), . . . ,
∑
u̸=v
uv∈E

pm ◦B(uv)
)

=
( ∑

u̸=v
uv∈E

c1,
∑
u̸=v
uv∈E

c2, . . . ,
∑
u̸=v
uv∈E

cm
)
= (pc1, pc2, . . . , pcm) for all v ∈ V .

Hence, G is (pc1, pc2, . . . , pcm)-regular m-polar fuzzy graph.

Again, tdG(vjvk) = (td1(vjvk), td
2(vjvk), . . . , td

m(vjvk)) where for i = 1, 2, . . . ,m

tdi(vjvk) =
∑

vjvl∈E
l ̸=k

pi ◦B(vjvl) +
∑

vlvk∈E
l ̸=j

pi ◦B(vlvk) + pi ◦B(vjvk)

=
∑

vjvl∈E
l ̸=k

ci +
∑

vlvk∈E
l ̸=j

ci + ci = ci(p− 1) + ci(p− 1) + ci = ci(2p− 1).

Hence, G is
(
(2p− 1)c1, (2p− 1)c2, . . . , (2p− 1)cm

)
-totally edge regular graph.
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Conversely, let G be (r1, r2, . . . , rm)-regular and (t1, t2, . . . , tm)-totally edge regular

m-polar fuzzy graph. We will prove that B is a constant function.

Now, dG(v) = (r1, r2, . . . , rm) for all v ∈ V and

tdG(vjvk) = (t1, t2, . . . , tm) for all vjvk ∈ E.

Again, tdG(vjvk) = (td1(vjvk), td
2(vjvk), . . . , td

m(vjvk)) where

tdi(vjvk) = diG(vj) + diG(vk)− pi ◦B(vjvk) for all vjvk ∈ E.

This implies for all vjvk ∈ E, i = 1, 2, . . . ,m

ci + ci − pi ◦B(vjvk) = ti,

i.e. pi ◦B(vjvk) = 2ci − ti.

Hence, B(vjvk) = (2c1 − t1, 2c2 − t2, . . . , 2cm − tm) for all vjvk ∈ E,

i.e. B is constant.

Definition 7.3.3. A finite m-polar fuzzy graph G = (V,A,B) is said to be strongly

regular if it satisfies the following conditions:

(i) G is r = (r1, r2, . . . , rm)-regular m-polar fuzzy graph,

(ii) The sum of the membership values of the common neighborhood vertices of any

pair of adjacent vertices and non adjacent vertices of G has the same weight and

is denoted by λ = (λ1, λ2, . . . , λm), δ = (δ1, δ2, . . . , δm), respectively.

A strong regular graph G is denoted by G = (n, r, λ, δ), where n is the number of

vertices in G.

y y

y y

v1(0.4, 0.5, 0.7) v2(0.5, 0.3, 0.6)

v4(0.4, 0.5, 0.7)v3(0.5, 0.3, 0.6)

(0.4, 0.3, 0.5)

(0.4, 0.3, 0.5)

(0.4, 0.3, 0.5)(0.4, 0.3, 0.5)

(0.4, 0.3, 0.5)

(0.4, 0.3, 0.5)

Figure 7.3: Strongly regular 3-polar fuzzy graph G

Example 7.3.3. Let us consider the 3-polar fuzzy graph G of Fig. 7.3. Here, n = 4,

r = (1.2, 0.9, 1.5), λ = (0.9, 0.8, 1.3), δ = (0, 0, 0). Hence, G is strongly regular 3-polar

fuzzy graph.

Theorem 7.3.6. Let G = (V,A,B) be a complete m-polar fuzzy graph where A and

B are constant functions. Then, G is strongly regular m-polar fuzzy graph.
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Proof. LetG = (V,A,B) be a completem-polar fuzzy graph where V = {v1, v2, . . . , vn}.

Let A(vi) = (a1, a2, . . . , am) for all vi ∈ V and B(vjvk) = (c1, c2, . . . , cm) for all

vjvk ∈ E where ai’s and ci’s are constants.

Since G is complete,

dG(vj) =
( ∑

vj ̸=vk
vjvk∈E

p1 ◦B(vjvk),
∑

vj ̸=vk
vjvk∈E

p2 ◦B(vjvk), . . . ,
∑

vj ̸=vk
vjvk∈E

pm ◦B(vjvk)
)

= ((n− 1)c1, (n− 1)c2, . . . , (n− 1)cm) for vj ∈ V .

Hence, G is ((n− 1)c1, (n− 1)c2, . . . , (n− 1)cm)-regularm-polar fuzzy graph. Again

since G is complete, therefore the sum of the membership values of common neighbor-

hood vertices of any pair of adjacent vertices has the same weight λ = ((n− 2)a1, (n−

2)a2, . . . , (n− 2)am) and the sum of the membership values of common neighborhood

vertices of any pair of non adjacent vertices has the same δ = 0. So, G is strongly

regular m-polar fuzzy graph.

Remark 7.3.2. If G is strongly regular and disconnected m-polar fuzzy graph then

δ = 0.

Definition 7.3.4. An m-polar fuzzy graph G = (V,A,B) is said to be a biregular

m-polar fuzzy graph if it satisfies the following:

(i) G is r = (r1, r2, . . . , rm)-regular m-polar fuzzy graph,

(ii) V = V1 ∪ V2 be the bipartition of V and every vertex in V1 has the same neigh-

borhood degree M = (M1,M2, . . . ,Mm) and every vertex in V2 has the same

neighborhood degree N = (N1, N2, . . . , Nm), where M and N are constants.

y y

y y

v1(0.5, 0.8, 0.3) v2(0.7, 0.5, 0.3)

v3(0.5, 0.8, 0.3)v4(0.7, 0.5, 0.3)

(0.4, 0.3, 0.2)

(0.4, 0.3, 0.2)

(0.5, 0.4, 0.3)(0.5, 0.4, 0.3)

y y
y y

(0.7, 0.5, 0.3) (0.5, 0.8, 0.3)
v5 v6

v7v8

(0.7, 0.5, 0.3)(0.5, 0.8, 0.3)

(0.5, 0.4, 0.3)

(0.5, 0.4, 0.3)

(0.4, 0.3, 0.2) (0.4, 0.3, 0.2)

(0.5, 0.3, 0.3)(0.5, 0.3, 0.3)

(0.5, 0.3, 0.3) (0.5, 0.3, 0.3)

Figure 7.4: Biregular 3-polar fuzzy graph
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Example 7.3.4. Let G be a 3-polar fuzzy graph of the graph G∗ = (V,E) where V =

{v1, v2, v3, v4, v5, v6, v7, v8} and E = {v1v2, v1v4, v1v5, v2v6, v2v3, v3v4, v3v7, v4v8, v5v6, v5v8,

v6v7, v7v8} (see Fig. 7.4). Here, n = 8, r = (1.4, 1, 0.8), V1 = {v1, v3, v6, v8},

V2 = {v2, v4, v5, v7}, M = (2.1, 1.5, 0.9) and N = (1.5, 2.4, 0.9). Hence, G is a biregular

3-polar fuzzy graph.

Theorem 7.3.7. If G = (V,A,B) is a strongly regular m-polar fuzzy graph which is

strong, then G is a (r1, r2, . . . , rm)-regular.

Proof. Since G is strongly regular, therefore G is (r1, r2, . . . , rm)-regular. Again, since

G is strong, therefore for i = 1, 2, . . . ,m

pi ◦B(vjvk) =

 0 if vjvk ∈ E

min{pi ◦ A(vj), pi ◦ A(vk)} if vjvk /∈ E.

Now, the degree of a vertex vj in G is dG(vj) =
(
d1
G
(vj), d

2
G
(vj), . . . , d

m
G
(vj)

)
, where

di
G
(vj) =

∑
vj ̸=vk
vjvk∈E

pi ◦ B(vjvk) =
∑

vj ̸=vk
vjvk∈E

pi ◦ A(vj) ∧ pi ◦ A(vk) = ri, for all vj ∈ V ,

i = 1, 2, . . . ,m. Hence, dG(vj) = (r1, r2, . . . , rm) for all vj ∈ V . So, G is (r1, r2, . . . , rm)

-regular m-polar fuzzy graph.

Theorem 7.3.8. Let G = (V,A,B) be a strong m-polar fuzzy graph. Then, G is

strongly regular if and only if G is strongly regular.

Proof. Let G be a strongly regular m-polar fuzzy graph. Then, G is (r1, r2, . . . , rm)-

regular and the adjacent vertices and non-adjacent vertices have the same common

neighborhood weight λ = (λ1, λ2, . . . , λm) and δ = (δ1, δ2, . . . , δm), respectively. Now,

since G is strongly regular and strong, therefore by Theorem 7.3.7, G is (r1, r2, . . . , rm)-

regular. Let S and T denote the set of all adjacent and non adjacent vertices of G; S

and T denote the set of all adjacent and non adjacent vertices of G.

So, S = {vj, vk|vjvk ∈ E}, where vj and vk have same common neighborhood

weight λ = (λ1, λ2, . . . , λm) and T = {vj, vk|vjvk /∈ E}, where vj and vk have same

common neighborhood weight δ = (δ1, δ2, . . . , δm). Then, S = {vj, vk|vjvk ∈ E},

where vj and vk have same common neighborhood weight δ = (δ1, δ2, . . . , δm) and

T = {vj, vk|vjvk /∈ E}, where vj and vk have same common neighborhood weight

λ = (λ1, λ2, . . . , λm). This shows that G is strongly regular. Similarly, we can show

the converse part.
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Theorem 7.3.9. A strongly regular m-polar fuzzy graph G is a biregular m-polar

fuzzy graph if the adjacent vertices have the same common neighborhood weight λ =

(λ1, λ2, . . . , λm) ̸= 0 and the non adjacent vertices have the same common neighborhood

weight δ = (δ1, δ2, . . . , δm) ̸= 0.

Proof. SinceG is strongly regularm-polar fuzzy graph, thereforeG is r = (r1, r2, . . . , rm)-

regular m-polar fuzzy graph. Let S be the set of all non adjacent vertices of G. Then

S is a non-empty subset of V since the non adjacent vertices have the same com-

mon neighborhood weight δ = (δ1, δ2, . . . , δm) ̸= 0. So, S = {vj, vk|vj is not adjacent

to vk, j ̸= k, vj, vk ∈ V }. Now the vertex partition of G is V1 = {vj|vj ∈ S} and

V2 = {vk|vk ∈ S}. Hence, G is biregular m-polar fuzzy graph.

Definition 7.3.5. (i) If the underlying graph G∗ is an edge regular graph, then G

is said to be a partially edge regular m-polar fuzzy graph.

(ii) If G is both edge regular and partially edge regular m-polar fuzzy graph, then G

is said to be a full edge regular m-polar fuzzy graph.

Theorem 7.3.10. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ such that B is

constant. If G is full regular, then G is full edge regular m-polar fuzzy graph.

Proof. Let B(vjvk) = (c1, c2, . . . , cm) for all vjvk ∈ E where ci’s are constant.

SinceG is full regular, thereforeG andG∗ is both regular, i.e. dG(vj) = (r1, r2, . . . , rm)

and dG∗(vj) = p for all vj ∈ V , where ri and p are constants.

Now, dG∗(vjvk) = dG∗(vj) + dG∗(vk)− 2 = 2p− 2 for all vjvk ∈ E.

This shows that, G∗ is an edge regular graph, i.e. G is partially edge regularm-polar

fuzzy graph.

Again, for all vjvk ∈ E, i = 1, 2, . . . ,m

diG(vjvk) = diG(vj) + diG(vk)− 2pi ◦B(vjvk) = ri + ri − 2ci = 2ri − 2ci.

Hence, G is (2r1 − c1, 2r2 − 2c2, . . . , 2rm − 2cm)-edge regular m-polar fuzzy graph.

Therefore, G is fully edge regular m-polar fuzzy graph.

Theorem 7.3.11. Let G = (V,A,B) be a t = (t1, t2, . . . , tm)-totally edge regular and

p-partially edge regular m-polar fuzzy graph. Then, S(G) = q
1+p

(t1, t2, . . . , tm) =
qt
1+p

where q = |E|.

Proof. The size of G is S(G) = (S1(G), S2(G), . . . , Sm(G)) where
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Si(G) =
∑

uv∈E
pi ◦B(uv), i = 1, 2, . . . ,m. Now, from Theorem 7.3.3, we have∑

vjvk∈E
tdG(vjvk)

=
( ∑
vjvk∈E

dG∗(vjvk)p1 ◦ B(vjvk) +
∑

vjvk∈E
p1 ◦ B(vjvk),

∑
vjvk∈E

dG∗(vjvk)p2 ◦ B(vjvk) +∑
vjvk∈E

p2 ◦B(vjvk), . . . ,
∑

vjvk∈E
dG∗(vjvk)pm ◦B(vjvk) +

∑
vjvk∈E

pm ◦B(vjvk)
)

=
( ∑
vjvk∈E

dG∗(vjvk)p1◦B(vjvk),
∑

vjvk∈E
dG∗(vjvk)p2◦B(vjvk), . . . ,

∑
vjvk∈E

dG∗(vjvk)pm◦

B(vjvk)
)
+ S(G),

i.e. q(t1, t2, . . . , tm) = pS(G) + S(G), since p = dG∗(vjvk) for all vjvk ∈ E,

i.e. qt = (1 + p)S(G),

i.e. S(G) = qt
1+p

.

7.4 Edge irregular m-polar fuzzy graphs

In this section, strongly edge irregularm-polar fuzzy graph and strongly edge totally

irregular m-polar fuzzy graph are defined with examples. Some properties of them are

studied.

Definition 7.4.1. Let G = (V,A,B) be an m-polar fuzzy graph. Then

(i) G is said to be strongly edge irregular m-polar fuzzy graph if every pair of edges

have distinct degrees, i.e. no two edges have the same degree.

(ii) G is said to be strongly edge totally irregular m-polar fuzzy graph if every pair of

edges have distinct total degrees, i.e. no two edges have the same total degree.
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u1(0.5, 0.7, 0.3)
(0.5,0.5,0.2)

u2(0.4, 0.6, 0.5)

u3(0.5, 0.7, 0.5)

u4(0.8, 0.3, 0.2)

u5(0.6, 0.6, 0.3)

(0.4, 0.5, 0.3)

(0.3, 0.6, 0.3) (0.4, 0.2, 0.1)

(0.5, 0.3, 0.2)

Figure 7.5: Example of 3-polar fuzzy graph which is both strongly edge irregular and

strongly edge totally irregular
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Example 7.4.1. Here we will give an example of a 3-polar fuzzy graph which is both

strongly edge irregular and strongly edge totally irregular. Let G = (V,A,B) be a

3-polar fuzzy graph of G∗ = (V,E) (see Fig. 7.5). We have from the Fig. 7.5,

dG(u1u2) = dG(u1) + dG(u2)− 2B(u1u2)

= (0.5 + 0.4 + 0.4 + 0.3− 0.8, 0.5 + 0.5 + 0.5 + 0.6− 1, 0.2 + 0.3 + 0.3 + 0.3− 0.6)

= (0.8, 1.1, 0.5),

dG(u2u3) = dG(u2) + dG(u3)− 2B(u2u3) = (0.9, 1.2, 0.8),

dG(u3u4) = dG(u3) + dG(u4)− 2B(u3u4) = (0.8, 0.9, 0.5),

dG(u4u5) = dG(u4) + dG(u5)− 2B(u4u5) = (0.9, 0.7, 0.3),

dG(u5u1) = dG(u5) + dG(u1)− 2B(u5u1) = (0.9, 0.8, 0.5).

Since every pair of edges have different degrees, therefore G is a strongly edge irreg-

ular 3-polar fuzzy graph. Again,

tdG(u1u2) = dG(u1u2) +B(u1u2) = (0.8, 1.1, 0.5) + (0.4, 0.5, 0.3) = (1.2, 1.6, 0.8),

tdG(u2u3) = dG(u2u3) +B(u2u3) = (0.9, 1.2, 0.8) + (0.3, 0.6, 0.3) = (1.2, 1.8, 1.1),

tdG(u3u4) = dG(u3u4) +B(u3u4) = (0.8, 0.9, 0.5) + (0.4, 0.2, 0.1) = (1.2, 1.1, 0.6),

tdG(u4u5) = dG(u4u5) +B(u4u5) = (0.9, 0.7, 0.3) + (0.5, 0.3, 0.2) = (1.4, 1, 0.5),

tdG(u5u1) = dG(u5u1) +B(u5u1) = (0.9, 0.8, 0.5) + (0.5, 0.5, 0.2) = (1.4, 1.3, 0.7).

The total degrees of every pair of edges is distinct. So, G is strongly edge totally

irregular 3-polar fuzzy graph. Hence, G is both strongly edge irregular and strongly

edge totally irregular 3-polar fuzzy graph.

Example 7.4.2. Here we show by example that strongly edge irregular m-polar fuzzy

graphs need not be strongly edge totally irregular m-polar fuzzy graphs. For example,

let us consider the 3-polar fuzzy graphs of Fig. 7.6. Then we have,

dG(u1u2) = (0.8, 0.8, 0.4), dG(u2u3) = (0.5, 0.8, 0.4), dG(u3u1) = (0.9, 0.8, 0.4),

tdG(u1u2) = (1.1, 1.2, 0.6), tdG(u2u3) = (1.1, 1.2, 0.6), tdG(u3u1) = (1.1, 1.2, 0.6).

This shows that G is strongly edge irregular 3-polar fuzzy graph and it is not strongly

edge totally irregular 3-polar fuzzy graph. So, strongly edge irregular 3-polar fuzzy

graphs may not be strongly edge totally irregular 3-polar fuzzy graphs.

Example 7.4.3. Again strongly edge totally irregular m-polar fuzzy graphs need not

be strongly edge irregular m-polar fuzzy graphs. For example, consider the 3-polar

fuzzy graph of Fig. 7.7. We have, dG(v1v2) = (1.1, 0.8, 1.1), dG(v2v3) = (0.9, 0.7, 0.9),
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y

y
yu1(0.3, 0.5, 0.7)

u2(0.6, 0.4, 0.2)

u3(0.8, 0.7, 0.3)

(0.6, 0.4, 0.2)

(0.3, 0.4, 0.2)

(0.2, 0.4, 0.2)

Figure 7.6: Example of 3-polar fuzzy graph which is strongly edge irregular but not

strongly edge totally irregular

dG(v3v4) = (1.1, 0.8, 1.1), dG(v4v1) = (1.3, 0.7, 1.1). Here, dG(v1v2) = dG(v3v4). So,

G is not strongly edge irregular 3-polar fuzzy graph. Also, tdG(v1v2) = (1.4, 1.1, 1.4),

tdG(v2v3) = (1.3, 1.2, 1.5), tdG(v3v4) = (1.7, 1.2, 1.7), tdG(v4v1) = (2, 1, 1.6). Since

tdG(v1v2) ̸= tdG(v2v3) ̸= tdG(v3v4) ̸= tdG(v4v1), therefore G is strongly edge totally

irregular 3-polar fuzzy graph.

y

y
yy

v1(0.7, 0.3, 0.5)

v2(0.5, 0.6, 0.7)

v3(0.6, 0.7, 0.8)

v4(0.8, 0.4, 0.6)

(0.3, 0.3, 0.3)

(0.4, 0.5, 0.6)(0.6, 0.4, 0.6)

(0.7, 0.3, 0.5)

Figure 7.7: Example of 3-polar fuzzy graph which is strongly edge totally irregular

but not strongly edge irregular

Theorem 7.4.1. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ = (V,E) where

B is constant. Then G is strongly edge irregular m-polar fuzzy graph if and only if G

is strongly edge totally irregular m-polar fuzzy graph.

Proof. Let B(uv) = (c1, c2, . . . , cm) for all uv ∈ E, where c1, c2, . . . , cm ∈ [0, 1].

Let G be strongly edge irregular m-polar fuzzy graph.

⇔ dG(u1u2) ̸= dG(v1v2) for all u1u2, v1v2 ∈ E

⇔ dG(u1u2) + (c1, c2, . . . , cm) ̸= dG(v1v2) + (c1, c2, . . . , cm) for all u1u2, v1v2 ∈ E

⇔ dG(u1u2) +B(u1u2) ̸= dG(v1v2) +B(v1v2) for all u1u2, v1v2 ∈ E

⇔ tdG(u1u2) ̸= tdG(v1v2) for all u1u2, v1v2 ∈ E

⇔ G is strongly edge totally irregular m-polar fuzzy graph.
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Remark 7.4.1. If G = (V,A,B) is both strongly edge irregular and strongly edge

totally irregular m-polar fuzzy graph, then B may not be a constant function.

For example, consider the 3-polar fuzzy graph of Fig. 7.5. Here B is not constant

although G is both strongly edge irregular and strongly edge totally irregular.

Theorem 7.4.2. If G is strongly edge irregular m-polar fuzzy graph, then G is neigh-

borly edge irregular m-polar fuzzy graph.

Proof. Since G is strongly edge irregular m-polar fuzzy graph, therefore every pair of

edges in G have distinct degrees. So every pair of adjacent edges have distinct degrees.

Hence, G is neighborly edge irregular m-polar fuzzy graph.

Theorem 7.4.3. If G is strongly edge totally irregular m-polar fuzzy graph, then G is

neighborly edge totally irregular m-polar fuzzy graph.

Proof. Let G = (V,A,B) be an m-polar fuzzy graph which is strongly edge totally

irregular. Then every pair of edges in G have distinct total degrees. So every pair

of adjacent edges have distinct total degrees. Hence, G is neighborly edge totally

irregular m-polar fuzzy graph.

yyyy
u1(0.3, 0.5, 0.4)

(0.3, 0.5, 0.4)

u2(0.4, 0.6, 0.5)

(0.3, 0.5, 0.4) (0.3, 0.5, 0.4)

u3(0.5, 0.7, 0.6) u4(0.6, 0.8, 0.7)

Figure 7.8: Example of 3-polar fuzzy graph which is both neighborly edge irregular and

neighborly edge totally irregular but not strongly edge irregular and totally strongly

edge irregular

Remark 7.4.2. The converse of the above Theorems 7.4.2 and 7.4.3 may not be true.

For example, see Fig. 7.8 of the 3-polar fuzzy graph G. Here,

dG(u1) = (0.3, 0.5, 0.4), dG(u2) = (0.6, 1, 0.8),

dG(u3) = (0.6, 1, 0.8), dG(u4) = (0.3, 0.5, 0.4),

dG(u1u2) = (0.3, 0.5, 0.4), dG(u2u3) = (0.6, 1, 0.8), dG(u3u4) = (0.3, 0.5, 0.4) and

tdG(u1u2) = (0.6, 1, 0.8), tdG(u2u3) = (0.9, 1.5, 1.2), tdG(u3u4) = (0.6, 1, 0.8).

Note that, dG(u1u2) ̸= dG(u2u3), dG(u2u3) ̸= dG(u3u4) and dG(u1u2) = dG(u3u4).

Hence, we conclude that G is neighborly edge irregular 3-polar fuzzy graph, but G is

not strongly edge irregular 3-polar fuzzy graph.
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Again, tdG(u1u2) ̸= tdG(u2u3), tdG(u2u3) ̸= tdG(u3u4) and tdG(u1u2) = tdG(u3u4).

Hence, G is neighborly edge totally irregular 3-polar fuzzy graph but G is not strongly

edge totally irregular 3-polar fuzzy graph.

Theorem 7.4.4. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ where B is

constant. If G is strongly edge irregular m-polar fuzzy graph, then G is an irregular

m-polar fuzzy graph.

Proof. Let B(uv) = (c1, c2, . . . , cm) for all uv ∈ E where c1, c2, . . . , cm ∈ [0, 1]. Since G

is strongly edge irregular therefore every pair of edges will have distinct degrees. Let

us consider the two adjacent edges u1v1 and v1w1 having distinct degrees.

This implies that dG(u1v1) ̸= dG(v1w1)

⇒ dG(u1) + dG(v1)− 2B(u1v1) ̸= dG(v1) + dG(w1)− 2B(v1w1)

⇒ dG(u1) + dG(v1)− 2(c1, c2, . . . , cm) ̸= dG(v1) + dG(w1)− 2(c1, c2, . . . , cm)

⇒ dG(u1) ̸= dG(w1)

This shows that the vertex v1 which is adjacent to the vertices u1 and w1 having

distinct degrees. Hence, G is irregular.

Theorem 7.4.5. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ and B is constant.

If G is strongly edge totally irregular m-polar fuzzy graph then G is an irregular m-polar

fuzzy graph.

Proof. Similar to the above.

yyyy
u1(0.3, 0.5, 0.4)

(0.3, 0.4, 0.2)

u2(0.4, 0.6, 0.5)

(0.3, 0.4, 0.2) (0.3, 0.4, 0.2)

u3(0.7, 0.4, 0.2) u4(0.6, 0.7, 0.3)

Figure 7.9: Example of 3-polar fuzzy graph which is irregular but neither strongly

edge irregular nor strongly edge totally irregular

Remark 7.4.3. Converse of the Theorems 7.4.4 and 7.4.5 need not be true. For

example, consider the 3-polar fuzzy graph of Fig. 7.9. Then we have

dG(u1) = (0.3, 0.4, 0.2), dG(u2) = (0.6, 0.8, 0.4),

dG(u3) = (0.6, 0.8, 0.4), dG(u4) = (0.3, 0.4, 0.2).

So, G is irregular 3-polar fuzzy graph.

Also, dG(u1u2) = (0.3, 0.4, 0.2), dG(u2u3) = (0.6, 0.8, 0.4),
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dG(u3u4) = (0.3, 0.4, 0.2), tdG(u1u2) = (0.6, 0.8, 0.4),

tdG(u2u3) = (0.9, 1.2, 0.6), tdG(u3u4) = (0.6, 0.8, 0.4).

Here, G is neither strongly edge irregular nor strongly edge totally irregular.

Theorem 7.4.6. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ and B is constant.

If G is strongly edge irregular m-polar fuzzy graph then G is highly irregular m-polar

fuzzy graph.

Proof. Let B(uv) = (c1, c2, . . . , cm) for all uv ∈ E where c1, c2, . . . , cm ∈ [0, 1]. Let u2

be any vertex adjacent with the vertices u1, u3 and u4. Then u1u2, u2u3 and u2u4 are

adjacent edges in G. Let us assume that G is strongly edge irregular m-polar fuzzy

graph. Then every pair of edges in G have distinct degrees. So, every pair of adjacent

edges in G have distinct degrees.

Hence, dG(u1u2) ̸= dG(u2u3) ̸= dG(u2u4)

⇒ dG(u1) + dG(u2)− 2B(u1u2) ̸= dG(u2) + dG(u3)− 2B(u2u3)

̸= dG(u2) + dG(u4)− 2B(u2u4)

⇒ dG(u1) + dG(u2)− 2(c1, c2, . . . , cm) ̸= dG(u2) + dG(u3)− 2(c1, c2, . . . , cm)

̸= dG(u2) + dG(u4)− 2(c1, c2, . . . , cm)

⇒ dG(u1) ̸= dG(u2) ̸= dG(u3).

So the vertex u2 is adjacent to the vertices u1, u3 and u4 with distinct degrees.

Hence, G is highly irregular.

Theorem 7.4.7. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ and B is constant.

If G is strongly edge totally irregular m-polar fuzzy graph, then G is highly irregular

m-polar fuzzy graph.

Proof. Similar to the above.

yyyy
u1(0.3, 0.5, 0.4)

(0.2, 0.4, 0.1)

u2(0.4, 0.6, 0.5)

(0.2, 0.4, 0.1) (0.2, 0.4, 0.1)

u3(0.7, 0.4, 0.2) u4(0.6, 0.7, 0.3)

Figure 7.10: G is highly irregular but neither strongly edge irregular nor strongly edge

totally irregular

Remark 7.4.4. Converse of the above Theorems 7.4.6 and 7.4.7 need not be true. For

example, consider the 3-polar fuzzy graph G of Fig. 7.10. We have,
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dG(u1) = (0.2, 0.4, 0.1), dG(u2) = (0.4, 0.8, 0.2),

dG(u3) = (0.4, 0.8, 0.2), dG(u4) = (0.2, 0.4, 0.1).

Hence, G is highly irregular.

Again, dG(u1u2) = (0.2, 0.4, 0.1), dG(u2u3) = (0.4, 0.8, 0.2), dG(u3u4) = (0.2, 0.4, 0.1).

So, G is not strongly edge irregular.

Also, tdG(u1u2) = (0.4, 0.8, 0.2), tdG(u2u3) = (0.6, 1.2, 0.3), tdG(u3u4) = (0.4, 0.8, 0.2).

So, G is not strongly edge totally irregular also.

Theorem 7.4.8. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ which is a

path of 2n (n > 1) vertices. If the membership value of the edges e1, e2, . . . , e2n−1

are (a11, a
1
2, . . . , a

1
m), (a

2
1, a

2
2, . . . , a

2
m), . . . , (a

2n−1
1 , a2n−1

2 , . . . , a2n−1
m ) respectively such that

(a11, a
1
2, . . . , a

1
m) < (a21, a

2
2, . . . , a

2
m) < . . . < (a2n−1

1 , a2n−1
2 , . . . , a2n−1

m ), then G is both

strongly edge irregular and strongly edge totally irregular.
(
Here, ei = vivi+1 for i =

1, 2, . . . , (2n− 1)
)

Proof. We have

dG(vi) = (ai−1
1 + ai1, a

i−1
2 + ai2, . . . , a

i−1
m + aim) for i = 2, 3, . . . , (2n− 1) and

dG(v1) = (a11, a
1
2, . . . , a

1
m),

dG(v2n) = (a2n−1
1 , a2n−1

2 , . . . , a2n−1
m ),

dG(ei) = (ai−1
1 + ai+1

1 , ai−1
2 + ai+1

2 , . . . , ai−1
m + ai+1

m ) for i = 2, 3, . . . , (2n− 2),

dG(e1) = (a21, a
2
2, . . . , a

2
m),

dG(e2n−1) = (a2n−2
1 , a2n−2

2 , . . . , a2n−2
m ).

Hence, G is strongly edge irregular m-polar fuzzy graph.

Again, since

tdG(ei) = (ai−1
1 + ai+1

1 + ai1, a
i−1
2 + ai+1

2 + ai2, . . . , a
i−1
m + ai+1

m + aim)

for i = 2, 3, . . . , (2n− 2),

tdG(e1) = (a21 + a11, a
2
2 + a12, . . . , a

2
m + a1m),

tdG(e2n−1) = (a2n−2
1 +a2n−1

1 , a2n−2
2 +a2n−1

2 , . . . , a2n−2
m +a2n−1

m ), therefore G is strongly

edge totally irregular m-polar fuzzy graph.

Theorem 7.4.9. Let G = (V,A,B) be an m-polar fuzzy graph of G∗ which is a

cycle of n (n ≥ 4) vertices. If the membership value of the edges e1, e2, . . . , en are

(a11, a
1
2, . . . , a

1
m), (a

2
1, a

2
2, . . . , a

2
m), . . . , (a

n
1 , a

n
2 , . . . , a

n
m) respectively such that

(a11, a
1
2, . . . , a

1
m) < (a21, a

2
2, . . . , a

2
m) < . . . < (an1 , a

n
2 , . . . , a

n
m), then G is both strongly

edge irregular and strongly edge totally irregular.
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Proof. Let e1, e2, . . . , en be the edges of the cycle G∗ in that order.

Then we have,

dG(vi) = (ai−1
1 + ai1, a

i−1
2 + ai2, . . . , a

i−1
m + aim) for i = 2, 3, . . . , n,

dG(v1) = (a11 + an1 , a
1
2 + an2 , . . . , a

1
m + anm),

dG(ei) = (ai−1
1 + ai+1

1 , ai−1
2 + ai+1

2 , . . . , ai−1
m + ai+1

m ) for i = 2, 3, . . . , (n− 1),

dG(e1) = (a21 + an1 , a
2
2 + an2 , . . . , a

2
m + anm),

dG(en) = (a11 + an−1
1 , a12 + an−1

2 , . . . , a1m + an−1
m ).

Hence, G is strongly edge irregular m-polar fuzzy graph.

Again, since

tdG(ei) = (ai−1
1 +ai+1

1 +ai1, a
i−1
2 +ai+1

2 +ai2, . . . , a
i−1
m +ai+1

m +aim) for i = 2, 3, . . . , (n−1),

tdG(e1) = (a21 + a11 + an1 , a
2
2 + a12 + an2 , . . . , a

2
m + a1m + anm),

tdG(e2n−1) = (a11 + an1 + an−1
1 , a12 + an2 + an−1

2 , . . . , a1m + anm + an−1
m ), therefore G is

strongly edge totally irregular m-polar fuzzy graph.

Theorem 7.4.10. Let G = (V,A,B) be an m-polar fuzzy graph of a graph G∗ = (V,E)

which is a star K1,n. If the membership values of no two edges are same, then G is

strongly edge irregular and totally edge regular m-polar fuzzy graph.

Proof. Let u1, u2, . . . , un be the vertices adjacent to the vertex u0. Let e1, e2, . . . , en

be the edges of the star G∗ in that order having membership values (a11, a
1
2, . . . , a

1
m),

(a21, a
2
2, . . . , a

2
m), . . . , (a

n
1 , a

n
2 , . . . , a

n
m) such that (a11, a

1
2, . . . , a

1
m) ̸= (a21, a

2
2, . . . , a

2
m) ̸=

. . . ̸= (an1 , a
n
2 , . . . , a

n
m). Then

dG(ei = u0ui)

= dG(u0) + dG(ui)− 2B(u0ui)

= (a11 + a21 + . . .+ an1 , a
1
2 + a22 + . . .+ an2 , a

1
m + a2m + . . .+ anm) + (ai1, a

i
2, . . . , a

i
m)

−2(ai1, a
i
2, . . . , a

i
m)

= (a11 + a21 + . . .+ an1 , a
1
2 + a22 + . . .+ an2 , a

1
m + a2m + . . .+ anm)− (ai1, a

i
2, . . . , a

i
m)

for i = 1, 2, . . . , n.

We see that all edges have distinct degrees. So, G is strongly edge irregular. Also,

tdG(ei = u0ui)

= (a11 + a21 + . . .+ an1 , a
1
2 + a22 + . . .+ an2 , a

1
m + a2m + . . .+ anm)− (ai1, a

i
2, . . . , a

i
m)

+(ai1, a
i
2, . . . , a

i
m)

= (a11 + a21 + . . .+ an1 , a
1
2 + a22 + . . .+ an2 , a

1
m + a2m + . . .+ anm) for i = 1, 2, . . . , n.

Since all edges have the same total degrees therefore G is totally edge regular.
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Theorem 7.4.11. Let G = (V,A,B) be an m-polar fuzzy graph of a graph G∗ = (V,E)

which is a Barbell graph Bn,p. If the membership values of no two edges are same, then

G is strongly edge irregular but not strongly edge totally irregular m-polar fuzzy graph.
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Figure 7.11: The m-polar fuzzy graph G of the Barbell graph Bn,p

Proof. Let v1, v2, . . . , vn be the vertices adjacent to the vertex x and e1, e2, . . . , en

be the edges incident with the vertex x in that order having membership values

(a11, a
1
2, . . . , a

1
m), (a

2
1, a

2
2, . . . , a

2
m), . . . , (a

n
1 , a

n
2 , . . . , a

n
m). Again let u1, u2, . . . , up be the

vertices adjacent to the vertex y and f1, f2, . . . , fp be the edges incident with the vertex

y in that order having membership values such that (a11, a
1
2, . . . , a

1
m) < (a21, a

2
2, . . . , a

2
m)

< . . . , (an1 , a
n
2 , . . . , a

n
m) < (b11, b

1
2, . . . , b

1
m) < (b21, b

2
2, . . . , b

2
m) < . . . , (bp1, b

p
2, . . . , b

p
m) <

(a1, a2, . . . , am) where (a1, a2, . . . , am) is the membership value of the edge xy (see Fig.

7.11). Then,

dG(xy) =
(
a11+a

2
1+ . . .+a

n
1 , a

1
2+a

2
2+ . . .+a

n
2 , a

1
m+a2m+ . . .+anm

)
+(a1, a2, . . . , am)+(

b11+b
2
1+. . .+b

p
1, b

1
2+b

2
2+. . .+b

p
2, b

1
m+b2m+. . .+bpm

)
+(a1, a2, . . . , am)−2(a1, a2, . . . , am)

=
(
a11 + a21 + . . .+ an1 , a

1
2 + a22 + . . .+ an2 , a

1
m + a2m + . . .+ anm

)
+
(
b11 + b21 + . . .+ bp1, b

1
2 +

b22 + . . .+ bp2, b
1
m + b2m + . . .+ bpm

)
,

tdG(xy) =
(
a11 + a21 + . . . + an1 , a

1
2 + a22 + . . . + an2 , a

1
m + a2m + . . . + anm

)
+
(
b11 + b21 +

. . .+ bp1, b
1
2 + b22 + . . .+ bp2, b

1
m + b2m + . . .+ bpm

)
+ (a1, a2, . . . , am),

dG(ei) =
(
a11+a

2
1+ . . .+a

n
1 , a

1
2+a

2
2+ . . .+a

n
2 , a

1
m+a2m+ . . .+anm

)
+(a1, a2, . . . , am)+

(ai1, a
i
2, . . . , a

i
m)− 2(ai1, a

i
2, . . . , a

i
m) =

(
a11 + a21 + . . .+ an1 , a

1
2 + a22 + . . .+ an2 , a

1
m + a2m +

. . .+ anm
)
+ (a1, a2, . . . , am)− (ai1, a

i
2, . . . , a

i
m) for i = 1, 2, . . . , n.

Similarly, dG(fi) =
(
b11 + b21 + . . . + bp1, b

1
2 + b22 + . . . + bp2, b

1
m + b2m + . . . + bpm

)
+

(a1, a2, . . . , am)− (bi1, b
i
2, . . . , b

i
m) for i = 1, 2, . . . , p.

We see that every pair of edges have distinct degrees. So, G is strongly edge irregular.
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Also, tdG(ei) =
(
a11+a

2
1+. . .+a

n
1 , a

1
2+a

2
2+. . .+a

n
2 , a

1
m+a

2
m+. . .+a

n
m

)
+(a1, a2, . . . , am)

for i = 1, 2, . . . , n and

tdG(fi) =
(
b11 + b21 + . . .+ bp1, b

1
2 + b22 + . . .+ bp2, b

1
m + b2m + . . .+ bpm

)
+ (a1, a2, . . . , am)

for i = 1, 2, . . . , p.

We see that each ei, i = 1, 2, . . . ,m have same total degrees and each fi, i =

1, 2, . . . , p have same total degrees. So, G is not strongly edge totally irregular.

7.5 Summary

In this chapter, the definition of edge regular, partial edge regular and fully edge

regular m-polar fuzzy graphs are given and some properties of them are studied. The

condition under which edge regular m-polar fuzzy graph and totally edge regular m-

polar fuzzy graphs are equivalent is mentioned. The notion of strongly edge irregular

and strongly edge totally irregular m-polar fuzzy graphs. Characterization of strongly

edge irregular and strongly edge totally irregular m-polar fuzzy graphs are given.

Several important properties of them have been investigated.



Chapter 8

Morphism of m-polar fuzzy graphs

8.1 Introduction
In order to achieve a good correspondence between two graphs, the most used con-

cept is the one of graph isomorphism and a lot of work is dedicated to the search

for the best isomorphism between two graphs or subgraphs. However in a number of

cases, the bijective condition is too strong and the problem is expressed rather as an

inexact graph matching problem. For instance, inexact graph matching appears as an

important area of research in the pattern recognition. Several researches use graphs

to represent the knowledge and the information extracted for instance from images,

where vertices represent the segments or entities of the image and edges show the

relationships between them. Examples of areas in which this type of representation

is used are cartography, robotics and autonomous agents, character recognition and

recognition of brain structures. Graph matching is used when the recognition is based

on comparison with a model for instance. One graph represents the model and another

one the image where recognition has to be performed. Because of the schematic aspect

of the model (atlas or map for instance) and of the difficulty to segment accurately the

image into meaningful entities, no isomorphism can be expected between both graphs.

Such problems call for inexact graph matching. Similar examples can be found in

other fields. In this chapter, we have introduced the notion of m-polar ψ-morphism

on m-polar fuzzy graphs. The action of m-polar ψ-morphism on m-polar fuzzy graphs

is studied and we established some results on weak and co-weak isomorphism. d2-

degree and total d2-degree of a vertex in m-polar fuzzy graphs are defined and studied

(2, k)-regularity and totally (2, k)-regularity. A real life situation of a company where

135
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a group of people decides which product design to manufacture has been modeled as

a 4-polar fuzzy graphs.

8.2 Regularity and isomorphism on m-polar fuzzy

graphs

Regular graphs are the most widely studied classes. For example, regular fuzzy

graphs play a key role in designing reliable communication networks. Here, the notion

of m-polar ψ-morphism is introduced in m-polar fuzzy graphs. Also, d2-degree, total

d2-degree, (2, k)-regularity and totally (2, k)-regularity are defined in m-polar fuzzy

graphs and studied some important properties of them.

Definition 8.2.1. Let G = (V,A,B) be an m-polar fuzzy graph. Then d2- degree of

a vertex u in G is d2(u) = (d12(u), d
2
2(u), . . . , d

m
2 (u)) where di2(u) =

∑
pi ◦B2(uv) is

such that pi ◦B2(uv) = sup{pi ◦B(uu1) ∧ pi ◦B(u1v)}.

The minimum d2-degree of G is denoted as δ2(G) = (δ12(G), δ
2
2(G), . . . , δ

m
2 (G)) where

δi2(G) = ∧{di2(u) : u ∈ V }. The maximum d2-degree of G is denoted as △2(G) =

(△1
2(G),△2

2(G), . . . ,△m
2 (G)) where △i

2(G) = ∨{di2(u) : u ∈ V }.
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Figure 8.1: 3-polar fuzzy graph G

Example 8.2.1. Let G be a 3-polar fuzzy graph where V = {u1, u2, u3, u4, u5} and

E = {u1u2, u2u3, u3u4, u4u5, u5u1} (see Fig. 8.1). By routine computations we have,

d12(u1) = {0.5 ∨ 0.6}+ {0.5 ∨ 0.6} = 1, d22(u1) = {0.6 ∨ 0.5}+ {0.6 ∨ 0.3} = 0.8,

d32(u1) = {0.3 ∨ 0.3}+ {0.5 ∨ 0.4} = 0.7, d12(u2) = {0.5 ∨ 0.5}+ {0.5 ∨ 0.6} = 1,

d22(u2) = {0.6 ∨ 0.6}+ {0.3 ∨ 0.5} = 0.9, d32(u2) = {0.5 ∨ 0.3}+ {0.2 ∨ 0.3} = 0.5,

d12(u3) = {0.5 ∨ 0.6}+ {0.6 ∨ 0.5} = 1, d22(u3) = {0.6 ∨ 0.5}+ {0.3 ∨ 0.3} = 0.8,
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d32(u3) = {0.3 ∨ 0.3}+ {0.4 ∨ 0.2} = 0.5.

Hence, d2(u1) = (1, 0.8, 0.7), d2(u2) = (1, 0.9, 0.5), d2(u3) = (1, 0.8, 0.5).

Definition 8.2.2. If d2(u) = k for all u ∈ V then g is said to be (2, k)- regular m-polar

fuzzy graph.

yyyy
u1(0.4, 0.5, 0.6)

(0.4, 0.4, 0.4)

u2(0.5, 0.6, 0.7)

(0.4, 0.4, 0.4) (0.4, 0.4, 0.4)

u3(0.7, 0.8, 0.9) u4(0.9, 0.9, 0.9)

Figure 8.2: (2, (0.4, 0.4, 0.4))-regular 3-polar fuzzy graph G

Example 8.2.2. Consider the 3-polar fuzzy graph as in Fig. 8.2. Here, d2(u1) =

d2(u2) = d2(u3) = d2(u4) = (0.4, 0.4, 0.4). So, G is (2, (0.4, 0.4, 0.4))-regular 3-polar

fuzzy graph.

Definition 8.2.3. The total d2- degree of a vertex u ∈ V is defined as td2(u) =

(td12(u), td
2
2(u), . . . , td

m
2 (u)), where td

i
2(u) =

∑
pi ◦B2(uv) + pi ◦A(u), i = 1, 2, . . . ,m.

Note 8.2.1. If each vertex of G has the same total d2-degree l, then G is said to be

totally (2, l)-regular m-polar fuzzy graph.
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u4(0.7, 0.7, 0.8)

u5(0.8, 0.7, 0.8)

u1(0.7, 0.6, 0.6)

u2(0.9, 0.7, 0.8)

u3(0.8, 0.6, 0.6)

(0.7, 0.1, 0.2)

(0.7, 0.1, 0.2) (0.5, 0.2, 0.4)

(0.5, 0.2, 0.4)

(0.6, 0.1, 0.2)

Figure 8.3: Totally (2, (1.9, 0.9, 1.2))-regular 3-polar fuzzy graph G

Example 8.2.3. Consider the 3-polar fuzzy graph G with the vertex set V = {u1, u2, u3, u4, u5}

and edge set E = {u1u2, u2u3, u3u4, u4u5, u5u1} (see Fig. 8.3). We see that

d2(u1) = (1.2, 0.3, 0.6), d2(u2) = (1, 0.2, 0.4), d2(u3) = (1.1, 0.3, 0.6),

d2(u4) = (1.2, 0.2, 0.4), d2(u5) = (1.1, 0.2, 0.4) and

td2(u1) = td2(u2) = td2(u3) = td2(u4) = td2(u5) = (1.9, 0.9, 1.2).

Since each vertex has the same total d2-degree, therefore G is totally (2, (1.9, 0.9, 1.2))-

regular 3-polar fuzzy graph. Although, G is not (2, k)-regular.
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Theorem 8.2.1. Let G = (V,A,B) be an m-polar fuzzy graph. Then A(u) = c =

(c1, c2, . . . , cm) for all u ∈ V if and only if the following are equivalent:

(i) G is a (2, k)-regular m-polar fuzzy graph,

(ii) G is a totally (2, k + c)-regular m-polar fuzzy graph.

Proof. Suppose that A(u) = c = (c1, c2, . . . , cm) for all u ∈ V . We will show that the

statements (i) and (ii) are equivalent.

(i) ⇒ (ii) : Let G be a (2, k)-regular m-polar fuzzy graph. Therefore, d2(u) = k for

all u ∈ V . Now, td2(u) = k + c for all u ∈ V . So, G is totally (2, k + c)- regular.

(ii) ⇒ (i) : Now, suppose that G is totally (2, k + c)-regular.

Then td2(u) = k + c for all u ∈ V ,

i.e. d2(u) + A(u) = k + c for all u ∈ V ,

i.e. d2(u) = k for all u ∈ V ,

i.e. G is k-regular.

Conversely, let (i) and (ii) are equivalent.

Let G be both totally (2, k + c)-regular and (2, k)-regular.

Then we have, td2(u) = k + c and d2(u) = k for all u ∈ V ,

i.e. d2(u) + A(u) = k + c and d2(u) = k for all u ∈ V .

So, A(u) = c for all u ∈ V . Hence the result.

Definition 8.2.4. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two m-polar fuzzy

graphs. Then a bijective function ψ : V1 → V2 is called an m-polar morphism or m-

polar ψ-morphism if there exist positive real numbers k1, k2 such that for i = 1, 2, . . . ,m

(i) pi ◦ A2(ψ(u)) = k1pi ◦ A1(u) for all u ∈ V1 and

(ii) pi ◦B2(ψ(u)ψ(v)) = k2pi ◦B1(uv) for all uv ∈ Ṽ 2
1 .

In this case, ψ is called (k1, k2) m-polar ψ-morphism from G1 onto G2. If k1 =

k2 = k, then we call ψ an m-polar k-morphism. When k = 1, we obtain usual

m-polar morphism.

Note 8.2.2. Let G1 = (V1, A1, B1), G2 = (V2, A2, B2) and G3 = (V3, A3, B3) be three

m-polar fuzzy graphs of the graphs G∗
1 = (V1, E1), G

∗
2 = (V2, E2) and G∗

3 = (V3, E3).

Let A1, A2 and A3 denote the membership functions of the vertices in G1, G2, G3

respectively; B1, B2, B3 denote the membership functions of the edges in G1, G2, G3

respectively.
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Theorem 8.2.2. The relation ψ-morphism is an equivalence relation in the collection

of m-polar fuzzy graphs.

Proof. Let G be the collection of all m-polar fuzzy graphs. Define a relation ’∼’ on

G × G as follows: for G1, G2 ∈ G, we say G1 ∼ G2 if and only if there exist a (k1, k2)

m-polar ψ-morphism from G1 onto G2 for some non-zero k1 and k2.

We show that ∼ is an equivalence relation. First, we see that ∼ is reflexive by

simply taking the identity mapping from G1 onto itself.

Let G1, G2 ∈ G and G1 ∼ G2. Then there exists a (k1, k2) ψ-morphism from G1

onto G2 for some non-zero k1 and k2.

Therefore pi ◦ A2(ψ(u)) = k1pi ◦ A1(u) for all u ∈ V1 and

pi ◦B2(ψ(u)ψ(v)) = k2pi ◦B1(uv) for all uv ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

Now consider the function ψ−1 : V2 → V1. Let x, y ∈ V2.

Since ψ is bijective, therefore there exist u, v ∈ V1 such that ψ(u) = x and ψ(v) = y.

Then, pi ◦ A1(ψ
−1(x)) = pi ◦ A1(u) =

1
k1
pi ◦ A2(ψ(u)) =

1
k1
pi ◦ A2(x) and

pi ◦ B1(ψ
−1(x)ψ−1(y)) = pi ◦ B1(uv) = 1

k2
pi ◦ B2(ψ(u)ψ(v)) = 1

k2
pi ◦ B2(xy) for

i = 1, 2, . . . ,m. Thus, ψ−1 is a ( 1
k1
, 1
k2
) m-polar morphism from G2 to G1.

Hence, G2 ∼ G1. So, ∼ is symmetric.

Again, let G1, G2, G3 ∈ G be such that G1 ∼ G2 and G2 ∼ G3.

Then there exist a (k1, k2) m-polar ψ1 morphism from G1 onto G2 and a (k3, k4)

m-polar ψ2 morphism from G2 onto G3 for some non-zero real numbers k1, k2, k3 and

k4. Then,

pi ◦ A2(ψ1(u)) = k1pi ◦ A1(u) for all u ∈ V1,

pi ◦B2(ψ1(u)ψ1(v)) = k2pi ◦B1(uv) for all uv ∈ Ṽ 2
1 ,

pi ◦ A3(ψ2(u)) = k3pi ◦ A2(u) for all u ∈ V2,

pi ◦B3(ψ2(u)ψ2(v)) = k4pi ◦B2(uv) for all uv ∈ Ṽ 2
2 , i = 1, 2, . . . ,m.

Let ψ3 = ψ2 ◦ ψ1 : V1 → V3 be a mapping.

Now, pi ◦ A3(ψ3(u))

= pi ◦ A3(ψ2 ◦ ψ1(u))

= pi ◦ A3(ψ2(ψ1(u)))

= k3pi ◦ A2(ψ1(u))

= k3k1pi ◦ A1(u) and

pi ◦B3(ψ3(u)ψ3(v))
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= pi ◦B3(ψ2 ◦ ψ1(u)ψ2 ◦ ψ1(v))

= pi ◦B3(ψ2(ψ1(u))ψ2(ψ1(v)))

= k4pi ◦B2(ψ1(u)ψ1(v))

= k4k2pi ◦B1(uv), i = 1, 2, . . . ,m.

Thus, ψ3 is a (k3k1, k4k2) m-polar morphism from G1 onto G3.

Therefore, G1 ∼ G3 and hence ∼ is transitive. So, the relation ∼ is an equivalence

relation in the collection of m-polar fuzzy graphs.

Theorem 8.2.3. Let G1 and G2 be two m-polar fuzzy graphs and ψ be a (k1, k2) m-

polar fuzzy morphism from G1 onto G2 for some non-zero k1 and k2. Then the image

of strong edges in G1 is also strong edge in G2 if and only if k1 = k2.

Proof. Let u1v1 be a strong edge in G1 and k1 = k2.

Since ψ is a (k1, k2) m-polar fuzzy morphism from G1 to G2, therefore we have,

pi ◦B2(ψ(u1)ψ(v1))

= k2pi ◦B1(u1v1)

= k2{pi ◦ A1(u1) ∧ pi ◦ A1(v1)}

= k2pi ◦ A1(u1) ∧ k2pi ◦ A1(v1)

= k1pi ◦ A1(u1) ∧ k1pi ◦ A1(v1)

= pi ◦ A2(u1) ∧ pi ◦ A2(v1) for i = 1, 2, . . . ,m.

So, the edge ψ(u1)ψ(v1) in G2 is strong.

Conversely, let u1v1 be a strong edge in G1 and its corresponding image ψ(u1)ψ(v1)

in G2 is also strong. Then we have,

k2pi ◦B1(u1v1)

= pi ◦B2(ψ(u1)ψ(v1))

= pi ◦ A2(ψ(u1)) ∧ pi ◦ A2(ψ(v1))

= k1pi ◦ A1(u1) ∧ k1pi ◦ A1(v1)

= k1pi ◦B1(u1v1) for each i = 1, 2, . . . ,m.

This implies that k1 = k2. This completes the proof.

Corollary 8.2.1. Let G1 and G2 be two m-polar fuzzy graphs and G1 be a (k1, k2) m-

polar fuzzy morphism to G2. If G1 is strong, then G2 is strong if and only if k1 = k2.

Theorem 8.2.4. If the m-polar fuzzy graph G1 is co-weak isomorphic to the m-polar

fuzzy graph G2 and G1 is regular, then G2 is regular also.
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Proof. Since G1 is co-weak isomorphic to G2, therefore there exists a co-weak isomor-

phism ϕ : V1 → V2 which is bijective such that

pi ◦ A1(u) ≤ pi ◦ A2(ϕ(u)) and

pi ◦B1(uv) = pi ◦B2(ϕ(u)ϕ(v)) for all u, v ∈ V1, i = 1, 2, . . . ,m.

Since G1 is regular, we have dG1(u) = (c1, c2, . . . , cm) for all u ∈ V1.

Now, diG2
(ϕ(u))

=
∑

ϕ(u)̸=ϕ(v)
ϕ(u)ϕ(v)∈E2

pi ◦B2(ϕ(u)ϕ(v))

=
∑
u̸=v

uv∈E1

pi ◦B1(uv) = ci for all u ∈ V1 and i = 1, 2, . . . ,m.

Hence, G2 is regular.

Remark 8.2.1. If the m-polar fuzzy graph G1 is co-weak isomorphic to G2 and G1 is

strong, then G2 need not be strong.

Theorem 8.2.5. Let G1 and G2 be two m-polar fuzzy graphs. If G1 is weak isomorphic

to G2 and G1 is strong, then G2 is also strong.

Proof. Since G1 is weak isomorphic to G2, therefore there exists a weak isomorphism

ϕ : V1 → V2 which is bijective such that

pi ◦ A1(u) = pi ◦ A2(ϕ(u)) for all u ∈ V1 and

pi ◦B1(uv) ≤ pi ◦B2(ϕ(u)ϕ(v)) for all uv ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

As G1 is strong, pi ◦ B1(uv) = min{pi ◦ A1(u), pi ◦ A1(v)} for all uv ∈ E1, i =

1, 2, . . . ,m. Now,

pi ◦B2(ϕ(u)ϕ(v))

≥ pi ◦B1(uv)

= min{pi ◦ A1(u), pi ◦ A1(v)}

= min{pi ◦ A2(ϕ(u)), pi ◦ A2(ϕ(v))} and

by definition, pi◦B2(ϕ(u)ϕ(v)) ≤ min{pi◦A2(ϕ(u)), pi◦A2(ϕ(v))} for ϕ(u)ϕ(v) ∈ E2,

i = 1, 2, . . . ,m. Hence, G2 is strong.

Corollary 8.2.2. Let G1 and G2 be twom-polar fuzzy graphs. If G1 is weak isomorphic

to G2 and G1 is regular, then G2 need not be regular.

Theorem 8.2.6. If the m-polar fuzzy graphs G1 is co-weak isomorphic with a strong

regular m-polar fuzzy graph G2, then G1 is strong regular m-polar fuzzy graph.
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Proof. Since G1 is co-weak isomorphic to G2 therefore there exists a co-weak isomor-

phism ϕ : V1 → V2 which is bijective such that

pi ◦ A1(u) ≤ pi ◦ A2(ϕ(u)) for all u ∈ V1 and

pi ◦B1(uv) = pi ◦B2(ϕ(u)ϕ(v)) for all uv ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

Now we have,

pi ◦B1(uv)

= pi ◦B2(ϕ(u)ϕ(v))

= min{pi ◦ A2(ϕ(u)), pi ◦ A2(ϕ(v))} (Since G2 is strong)

≥ min{pi ◦ A1(u), pi ◦ A1(v)}.

But, by definition of m-polar fuzzy graphs,

pi ◦B1(uv) ≤ min{pi ◦ A1(u), pi ◦ A1(v)} for all uv ∈ Ṽ 2
1 .

So, from the above we have, pi◦B1(uv) ≤ min{pi◦A1(u), pi◦A1(v)} for all uv ∈ E1,

i = 1, 2, . . . ,m. Hence, G1 is strong.

Also, for i = 1, 2, . . . ,m and u ∈ V1,∑
u ̸=v

uv∈E1

pi ◦B1(uv) =
∑

ϕ(u)̸=ϕ(v)
ϕ(u)ϕ(v)∈E2

pi ◦B2(ϕ(u)ϕ(v)) = constant (Since G2 is regular).

Hence, G1 is regular.

Theorem 8.2.7. Let G1 and G2 be two isomorphic m-polar fuzzy graphs. Then G1 is

strong regular if and only if G2 is strong regular.

Proof. As G1 is isomorphic to G2, therefore there exists an isomorphism ϕ : V1 → V2

which is bijective and satisfies pi ◦ A1(u) = pi ◦ A2(ϕ(u)) for all u ∈ V1 and

pi ◦B1(uv) = pi ◦B2(ϕ(u)ϕ(v)) for all uv ∈ Ṽ 2
1 , i = 1, 2, . . . ,m.

Now, G1 is strong

⇔ pi ◦B1(uv) = min{pi ◦ A1(u), pi ◦ A1(v)} for all uv ∈ E1, i = 1, 2, . . . ,m

⇔ pi ◦ B2(ϕ(u)ϕ(v)) = min{pi ◦ A2(ϕ(u)), pi ◦ A2(ϕ(v))} for all ϕ(u)ϕ(v) ∈ E2,

i = 1, 2, . . . ,m

⇔ G2 is strong.

Again, G1 is regular

⇔
∑
u̸=v

uv∈E1

pi ◦B1(uv) = constant for all u ∈ V1,

⇔
∑

ϕ(u)̸=ϕ(v)
ϕ(u)ϕ(v)∈E2

pi ◦B2(ϕ(u)ϕ(v)) = constant for all ϕ(u) ∈ V2

⇔ G2 is regular.
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Theorem 8.2.8. A strong m-polar fuzzy graph G is strong regular if and only if its

complement G is strong regular.

Proof. From Proposition 6.11 of [45], we have if G = (V,A,B) is a strong m-polar

fuzzy graph, then G = (V,A,B) is also a strong m-polar fuzzy graph where A = A

and B is defined by pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)}−pi ◦B(xy) for all xy ∈ Ṽ 2,

i = 1, 2, . . . ,m.

Now, G is strong regular if and only if pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)} if and

only if pi ◦B(xy) = min{pi ◦A(x), pi ◦A(y)}−pi ◦B(xy) = pi ◦B(xy)−pi ◦B(xy) = 0

if and only if
∑
pi ◦B(xy) = 0 if and only if G is strong regular.

8.3 Modeling of products design in a company as

a 4-polar fuzzy graph
Here, we model a real life situation of a company where a group of people decides

which product design to manufacture. This type of network is an ideal example of m-

polar fuzzy graphs. It is very important for a company to decide which product design

to manufacture so that they can make profit as much as possible. A very good product

design is gladly acceptable to the peoples if it is also cheap in price. The determination

of which product design to manufacture is called the decision making problem. By

taking the very good decision (very good product design), one company can spread

their product all over the world keeping in mind that the product design is very good,

demandable, cheap, easily accessible, etc. Before manufacturing a product design,

engineers and manufacturers test several important things in a product. Suppose a

company has to decide to manufacture a product design among five products, say

D1, D2, D3, D4 and D5. A product design is manufactured by a company keeping in

mind its market demand, price, time taken to manufacture and accessibility.

We consider the above as a set, say M = {demand, price, time, accessibility} and

the set of product designs as D = {D1, D2, D3, D4, D5}. Since all the above charac-

teristics of a product design according to the different company are uncertain in real

life, therefore we consider a 4-polar fuzzy subset A of the set D. This situation can

be represented as a 4-polar fuzzy graph by considering the different product design

as the nodes and edges between them represent the relationship between two product

designs (see Fig. 8.4). The membership value of each node represents the degree of
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(0.6, 0.5, 0.6, 0.7) D4

(0.6, 0.7, 0.6, 0.6) D5

D1(0.7, 0.5, 0.5, 0.8)
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(0.5, 0.4, 0.4, 0.5)

(0.4, 0.4, 0.5, 0.6) (0.6, 0.3, 0.4, 0.5)
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(0.3, 0.4, 0.5, 0.4)

(0.5, 0.2, 0.4, 0.4)

Figure 8.4: Modeling of products design in a company as a 4-polar fuzzy graph G

demand, price, time taken to manufacture and accessibility to people in global market.

Edge membership values which represent the relationship between the product design

can be calculated by using the relation pi ◦ B(uv) ≤ min{pi ◦ A(u), pi ◦ A(v)} for all

u, v ∈ D, i = 1, 2, . . . , 4. The edge between two product designs represents the degree

of using common power equipments, raw materials, engineer employs and agencies

involved for both products.

From the Fig. 8.4, we see that G = (D,A,B) is a 4-polar fuzzy graph and the prod-

uct design D3 has maximum demand, minimum price, minimum time to manufacture

and has maximum accessibility compared to all others product designs.

8.4 Summary

In this chapter, the notion of m-polar ψ-morphism is introduced on m-polar fuzzy

graphs. The action of m-polar ψ-morphism on m-polar fuzzy graphs is studied and

we established some results on weak and co-weak isomorphism. d2-degree and total

d2-degree of a vertex in m-polar fuzzy graphs are defined and studied (2, k)-regularity

and totally (2, k)-regularity. Finally, we have modeled a real life situation in terms of

4-polar fuzzy graph as an application.



Chapter 9

Generalized regular bipolar fuzzy

graphs and product bipolar fuzzy

line graphs∗

9.1 Introduction

In 2011, Akram [3, 6] introduced bipolar fuzzy graphs with many properties. In

2012, Akram and Dudek [5] introduced regular bipolar fuzzy graphs. The aim of this

chapter is to point out some errors in [5] by counterexamples in Definitions 3.3, 3.5,

Propositions 3.9, 3.10 and Theorem 3.17. Finally, we introduced generalized regular

bipolar fuzzy graphs. The notion of product bipolar fuzzy line graph is introduced and

investigated some of its properties. A necessary and sufficient condition is given for

a product bipolar fuzzy graph to be isomorphic to its corresponding product bipolar

fuzzy line graph. It is also examined when an isomorphism between two product

bipolar fuzzy graphs follows from an isomorphism of their corresponding fuzzy line

graphs.

9.2 Counterexamples

Here, we assume that G∗ = (V,E) represents a crisp graph and G = (V,A,B)

represents a bipolar fuzzy graph of it.

∗A part of the work presented in this chapter is published in Neural Computing and Applica-

tions, DOI:10.1007/s00521-016-2771-0, (2016) and International Journal of Applied and Computa-

tional Mathematics, DOI:10.1007/s40819-015-0112-0, (2015).
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First, we recall some definitions given in [5]. Also, we recall the Propositions 3.9,

3.10 and Theorem 3.17 of [5].

Definition 9.2.1. (Definition 3.3 of [5]) Let G = (V,A,B) be a bipolar fuzzy graph

on G∗. If all the vertices have the same open neighborhood degree n, then G is called

an n-regular bipolar fuzzy graph. The open neighborhood degree of a vertex x in G is

defined by deg(x) = (degP (x), degN(x)), where degP (x) =
∑
x∈V

µP
A(x) and degN(x) =∑

x∈V
µN
A (x).

Definition 9.2.2. (Definition 3.4 of [5]) Let G = (V,A,B) be a regular bipolar fuzzy

graph. The order of a regular bipolar fuzzy graph G is O(G) = (
∑
x∈V

µP
A(x),

∑
x∈V

µN
A (x)).

The size of a regular bipolar fuzzy graph G is S(G) = (
∑

xy∈V
µP
A(xy),

∑
xy∈E

µN
A (xy)).

Definition 9.2.3. (Definition 3.5 of [5]) Let G = (V,A,B) be a bipolar fuzzy graph.

If each vertex of G has the same closed neighborhood degree m, then G is called a

totally regular bipolar fuzzy graph. The closed neighborhood degree of a vertex x in G

is defined by deg[x] = (degP [x], degN [x]), where degP [x] = degP (x)+µP
A(x), deg

N [x] =

degN(x) + µN
A (x).

Proposition 9.2.1. (Proposition 3.9 of [5]) The size of a n-regular bipolar fuzzy graph

G is nk
2
, where |V | = k.

Proposition 9.2.2. (Proposition 3.10 of [5]) If G is a m-totally regular bipolar fuzzy

graph, then 2S(G) +O(G) = mk, where |V | = k.

Theorem 9.2.1. (Theorem 3.17 of [5]) Let G = (V,A,B) be a bipolar fuzzy graph

where crisp graph G∗ is an odd cycle. Then G is regular bipolar fuzzy graph if and

only if B is a constant function.

To find out out the flaws of Definition 9.2.1 and Definition 9.2.3, we give counterex-

amples to Propositions 9.2.1, 9.2.2 and Theorem 9.2.1.

First of all, we point out that the Definition 9.2.1 is itself meaningless. The adjacency

between vertices is missing in the definition. So, according to [5], the open neighbor-

hood degree of a vertex x is deg(x) = (degP (x), degN(x)), where degP (x) =
∑
y∈V
xy∈E

µP
A(y)

and degN(x) =
∑
y∈V
xy∈E

µN
A (y).
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y y

y y

(0.5,−0.3) (0.5,−0.3)

(0.5,−0.3) (0.5,−0.3)

a b

cd

(0.4,−0.1) (0.4,−0.1)

(0.2,−0.1)

(0.2,−0.1)

Figure 9.1: Bipolar fuzzy graph G

If we use the above definition, still the Propositions 9.2.1, 9.2.2 and Theorem 9.2.1

do not hold good at all.

Example 9.2.1. Consider the graph G∗ = (V,E) where V = {a, b, c, d} and E =

{ab, bc, cd, ad}. Now, let G = (V,A,B) be a bipolar fuzzy graph of G∗ (see Fig. 9.1).

Then, deg(a) = deg(b) = deg(c) = deg(d) = (1,−0.6).

Hence, G is (1,−0.6)-regular. Also, S(G) = (1.2,−0.4).

Here, n = (1,−0.6) and k = 4.

So, by Proposition 9.2.1, S(G) = nk
2
= (2,−1.2).

But, S(G) = (1.2,−0.4).

Remark 9.2.1. This example shows that Proposition 9.2.1 is not true.

Example 9.2.2. Let G be same as of Example 9.2.1. Then, deg[a] = deg[b] = deg[c] =

deg[d] = (1.5,−0.9). So, the graph G of Fig. 9.1 is (1.5,−0.9)-totally regular.

Also, O(G) = (2,−1.2). Here, m = (1.5,−0.9) and k = 4.

So, 2S(G) +O(G) = 2(1.2,−0.4) + (2,−1.2) = (4.4,−2) and mk = (6,−3.6).

We see that, 2S(G) +O(G) = (4.4,−2) ̸= (6,−3.6) = mk.

Remark 9.2.2. This example shows that Proposition 9.2.2 is not true.

Example 9.2.3. Let G∗ = (V,E) be an odd cycle where e1 = v0v1, e2 = v1v2, e3 =

v2v3 = v2v0 be the edges of G∗ such that v0 = v3. Let G = (V,A,B) be a bipolar

fuzzy graph of G∗ where A(v0 = v3) = A(v1) = A(v2) = (0.5,−0.3) and B(e1) =

(0.2,−0.1), B(e2) = (0.4,−0.1), B(e3) = (0.2,−0.1). Then, deg(v0) = deg(v1) =

deg(v2) = (1,−0.6), i.e. G is (1,−0.6)-regular but B is not a constant.

Again, consider another bipolar fuzzy graph G = (V,A,B) of G∗ where A(v0 = v3) =

(0.5,−0.3), A(v1) = (0.3,−0.2), A(v2) = (0.4,−0.3) and B(e1) = B(e2) = B(e3) =

(0.2,−0.1). In this case, deg(v0) = (0.7,−0.5), deg(v1) = (0.9,−0.6),

deg(v2) = (0.8,−0.5). So, G is not regular although B is constant.
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Remark 9.2.3. This example shows that Theorem 9.2.1 is not true.

Remark 9.2.4. We also point out that in Definition 9.2.2 there is a typing mistake

which is corrected in the next section.

9.3 Main results
In this section, we mainly provide the modified version of Definitions 9.2.1, 9.2.2,

9.2.3 and a proof of Propositions 9.2.1, 9.2.2 and Theorem 9.2.1.

Definition 9.3.1. (The correction of Definition 9.2.1) The open neighborhood degree

of x ∈ V in G is defined by deg(x) = (degP (x), degN(x)), where degP (x) =
∑
x̸=y
xy∈E

µP
B(xy)

and degN(v) =
∑
x̸=y
xy∈E

µN
B (xy). If all the vertices of G have same open neighborhood

degree (d1, d2), then G is said to be (d1, d2)-regular. In this case, we also call G as a

generalized regular bipolar fuzzy graph.

y y

y y

(0.7,−0.2) (0.7,−0.2)

(0.7,−0.2) (0.7,−0.2)

u v

wx

(0.3,−0.1) (0.3,−0.1)

(0.5,−0.2)

(0.5,−0.2)

Figure 9.2: (0.8,−0.3)-regular and (1.5,−0.5)-totally regular bipolar fuzzy graph G

Example 9.3.1. From Fig. 9.2 we have, deg(u) = deg(v) = deg(w) = deg(x) =

(0.8,−0.3). Hence, G is (0.8,−0.3)-regular.

Definition 9.3.2. (The correction of Definition 9.2.2) The order of G is denoted as

O(G) = (OP (G), ON(G)) where OP (G) =
∑
v∈V

µP
A(v) and ON(G) =

∑
v∈V

µN
A (v). The

size of G is denoted as S(G) = (SP (G), SN(G)) where SP (G) =
∑

uv∈E
µP
B(uv) and

SN(G) =
∑

uv∈E
µN
B (uv).

Example 9.3.2. From Fig. 9.2, we have O(G) = (2.8,−0.8) and S(G) = (1.6,−0.6).

Definition 9.3.3. (The correction of Definition 9.2.3) The closed neighborhood de-

gree of x ∈ V in G is denoted as deg[x] = (degP [x], degN [x]), where degP [x] =

degP (x) + µP
A(x) and degN [x] = degN(x) + µN

A (x). If each vertex of G has equal
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closed neighborhood degree (f1, f2), then G is said to be (f1, f2)-totally regular. In this

case, we call G as a generalized totally regular bipolar fuzzy graph.

Example 9.3.3. The bipolar fuzzy graph G in Fig. 9.2 is (1.5,−0.5)-totally regular,

since deg[u] = deg[v] = deg[w] = deg[x] = (1.5,−0.5).

Proposition 9.3.1. Let G = (V,A,B) be a (d1, d2)-regular bipolar fuzzy graph. Then

size of G is given by S(G) = n
2
(d1, d2) where |V | = n.

Proof. Immediate from the definition.

Proposition 9.3.2. Let G = (V,A,B) be a (f1, f2)-totally regular bipolar fuzzy graph.

Then 2S(G) +O(G) = n(f1, f2) where |V | = n.

Proof. Follows from the definition.

Theorem 9.3.1. Let G = (V,A,B) be a bipolar fuzzy graph of an odd cycle G∗ =

(V,E). Then G is regular if and only if B = (µP
B, µ

N
B ) is constant.

Proof. Suppose G is a (d1, d2)-regular.

Let e1, e2, . . . , e2n+1 be the edges of G∗ such that ei = vi−1vi ∈ E, v0, vi ∈ V ,

i = 1, 2, . . . , 2n+ 1 and v0 = v2n+1.

Let µP
B(e1) = k1 and µN

B (e1) = k2 where k1 ∈ [0, 1] and k2 ∈ [−1, 0].

G is (d1, d2)-regular implies that degP (v1) = d1 and degN(v1) = d2.

This means, degP (v1) = µP
B(e1) + µP

B(e2) = d1 and

degN(v1) = µN
B (e1) + µN

B (e2) = d2,

i.e. k1 + µP
B(e2) = d1 and k2 + µN

B (e2) = d2,

i.e. µP
B(e2) = d1 − k1 and µN

B (e2) = d2 − k2.

Again, degP (v2) = µP
B(e2) + µP

B(e3) = d1 and

degN(v2) = µN
B (e2) + µN

B (e3) = d2.

This implies, µP
B(e3) = d1 − (d1 − k1) = k1 and

µN
B (e3) = d2 − (d2 − k2) = k2 and so on.

Therefore, µP
B(ei) =

 k1 if i is odd

(d1 − k1) if i is even

and µN
B (ei) =

 k2 if i is odd

(d2 − k2) if i is even

Therefore, µP
B(e1) = µP

B(e2n+1) = k1 and µN
B (e1) = µN

B (e2n+1) = k2.
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Since e1 and e2n+1 are incident on the vertex v0 and deg(v0) = (d1, d2) therefore,

µP
B(e1) + µP

B(e2n+1) = d1 and µN
B (e1) + µN

B (e2n+1) = d2,

i.e. 2k1 = d1 and 2k2 = d2,

i.e. k1 =
d1
2
and k2 =

d2
2
.

Therefore, µP
B(ei) =

d1
2
and µN

B (ei) =
d2
2
for i = 1, 2, . . . , 2n+ 1.

Therefore, B is constant.

Conversely, let us assume thatB be a constant. So, letB(u1v1) = (µP
B(u1v1), µ

N
B (u1v1))

= (k1, k2) for all u1v1 ∈ E where k1 ∈ [0, 1] and k2 ∈ [−1, 0].

Then deg(v) = (degP (v), degN(v)) =
( ∑

u̸=v
uv∈E

µP
B(uv),

∑
u̸=v
uv∈E

µP
B(uv)

)
= (2k1, 2k2) for all

v ∈ V . Consequently, G is (2k1, 2k2)-regular bipolar fuzzy graph.

9.4 Product bipolar fuzzy graphs
In this section, we define a new subclasses of bipolar fuzzy graphs, called product

bipolar fuzzy graphs.

Definition 9.4.1. A product bipolar fuzzy graph of a graph G∗ = (V,E) is a pair G =

(V,A,B) where A = (µP
A, µ

N
A ) is an bipolar fuzzy set in V and B = (µP

B, µ
N
B ) is a bipolar

fuzzy relation on Ṽ 2 such that µP
B(xy) ≤ µP

A(x)× µP
A(y), µ

N
B (xy) ≥ −(µN

A (x)× µN
A (y))

for all xy ∈ Ṽ 2 and µP
B(xy) = µN

B (xy) = 0 for all xy ∈ (Ṽ 2 − E).

y y

y y

(0.2,−0.4) (0.3,−0.7)

(0.3,−0.6) (0.4,−0.5)

v1 v2

v4v3

(0.08,−0.4) (0.07,−0.18)

Figure 9.3: Product bipolar fuzzy graph G

Example 9.4.1. Let us consider the graph G∗ = (V,E) where V = {v1, v2, v3, v4} and

E = {v1v4, v2v3}. A product bipolar fuzzy graph G of G∗ is shown in Fig. 9.3.

Definition 9.4.2. A product bipolar fuzzy graph G = (V,A,B) of G∗ = (V,E) is said

to be strong if µP
B(xy) = µP

A(x)×µP
A(y) and µ

N
B (xy) = −µN

A (x)×µN
A (y) for all xy ∈ E.

The product bipolar fuzzy graph G in Fig. 9.3 is not strong.

Here after, we assume that G is a product bipolar fuzzy graph of the crisp graph

G∗.
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9.5 Product bipolar fuzzy line graphs

In this section, first we define a product bipolar fuzzy intersection graph of a product

bipolar fuzzy graph. Then we define the product bipolar fuzzy line graphs.

Definition 9.5.1. Let P (S) = (S, T ) be an intersection graph of a simple graph G∗ =

(V,E). Let G = (V,A,B) be a product bipolar fuzzy graph of G∗. We define a product

bipolar fuzzy intersection graph P (G) = (A1, B1) of P (S) as follows:

(i) A1 and B1 are bipolar fuzzy subsets of S and T respectively,

(ii) µP
A1
(Si) = µP

A(vi), µ
N
A1
(Si) = µN

A (vi),

(iii) µP
B1
(SiSj) = µP

B(vivj), µ
N
B1
(SiSj) = µN

B (vivj) for all Si, Sj ∈ S, SiSj ∈ T .

In other words, any product bipolar fuzzy graph of P (S) is called a product bipolar

fuzzy intersection graph.

The following proposition is immediate.

Proposition 9.5.1. Let G = (V,A,B) be a product bipolar fuzzy graph of G∗ =

(V,E) and P (G) = (A1, B1) be a product bipolar intersection graph of P (S). Then the

following holds:

(a) P (G) is a product bipolar fuzzy graph of P (S),

(b) G ∼= P (G).

Proof. (a) Since G is a product bipolar fuzzy graph, we have by Definition 9.5.1,

µP
B1
(SiSj) = µP

B(vivj) ≤ µP
A(vi)× µP

A(vj) = µP
A1
(Si)× µP

A1
(Sj) and

µN
B1
(SiSj) = µN

B (vivj) ≥ −(µN
A (vi)× µN

A (vj)) = −(µN
A1
(Si)× µN

A1
(Sj)).

Hence, P (G) is a product bipolar fuzzy graph.

(b) Let us define a mapping ϕ : V → S by ϕ(vi) = Si for i = 1, 2, . . . , n.

Then clearly ϕ is one to one mapping of V onto S.

Now vivj ∈ E if and only if SiSj ∈ T and T = {ϕ(vi)ϕ(vj) : vivj ∈ E}.

Also, µP
A(vi) = µP

A1
(Si) = µP

A1
(ϕ(vi)) and

µN
A (vi) = µN

A1
(Si) = µN

A1
(ϕ(vi)) for all vi ∈ V ,

µP
B(vivj) = µP

B1
(SiSj) = µP

B(ϕ(vi)ϕ(vj)) and

µN
B (vivj) = µN

B1
(SiSj) = µN

B (ϕ(vi)ϕ(vj)) for all vivj ∈ E.

Hence, ϕ is an isomorphism of G onto P (G), i.e. G ∼= P (G).
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This proposition shows that any product bipolar fuzzy graph is isomorphic to a

product bipolar fuzzy intersection graph.

Next, we define the product bipolar fuzzy line graph of a product bipolar fuzzy

graph.

Definition 9.5.2. Let L(G∗) = (Z,W ) be a line graph of a simple graph G∗ = (V,E).

Let G = (A,B) be a product bipolar fuzzy graph of G∗. Then a product bipolar fuzzy

line graph L(G) = (A1, B1) of G is defined as follows:

(i) A1 and B1 are bipolar fuzzy subsets of Z and W respectively,

(ii) µP
A1
(Sx) = µP

B(x) = µP
B(uxvx),

(iii) µN
A1
(Sx) = µN

B (x) = µN
B (uxvx),

(iv) µP
B1
(SxSy) = µP

B(x)× µP
B(y) = µP

B(uxvx)× µP
B(uyvy),

(v) µN
B1
(SxSy) = −(µN

B (x) × µN
B (y)) = −(µN

B (uxvx) × µN
B (uyvy)) for all Sx, Sy ∈ Z

and SxSy ∈ W .

y y

y y

(0.3,−0.4) (0.5,−0.2)

(0.7,−0.5) (0.4,−0.3)

v1 v2

v3v4

(0.2,−0.18) (0.18,−0.05)

(0.14,−0.07)

(0.2,−0.14)

G

Figure 9.4: G is a product bipolar fuzzy graph

Example 9.5.1. Let us consider a graph G∗ = (V,E) where V = {v1, v2, v3, v4} and

E = {x1 = v1v2, x2 = v2v3, x3 = v3v4, x4 = v4v1}. Let G = (V,A,B) be a product

bipolar fuzzy graph of G∗ (see Fig. 9.4).

Now, consider a line graph L(G∗) = (Z,W ) such that Z = {Sx1 , Sx2 , Sx3 , Sx4} and

W = {Sx1Sx2 , Sx2Sx3 , Sx3Sx4 , Sx4Sx1}. Let A1 and B1 be bipolar fuzzy subsets of Z

and W respectively. Then by definition of product bipolar fuzzy line graph we have the

following:

µP
A1
(Sx1) = µP

B(x1) = 0.14, µP
A1
(Sx2) = µP

B(x2) = 0.18,

µP
A1
(Sx3) = µP

B(x3) = 0.2, µP
A1
(Sx4) = µP

B(x4) = 0.2,

µN
A1
(Sx1) = µN

B (x1) = −0.07, µN
A1
(Sx2) = µN

B (x2) = −0.05,

µN
A1
(Sx3) = µN

B (x3) = −0.14, µN
A1
(Sx4) = µN

B (x4) = −0.18,
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µP
B1
(Sx1Sx2) = µP

B(x1)× µP
B(x2) = 0.14× 0.18 = 0.0252,

µP
B1
(Sx2Sx3) = µP

B(x2)× µP
B(x3) = 0.18× 0.2 = 0.036,

µP
B1
(Sx3Sx4) = µP

B(x3)× µP
B(x4) = 0.2× 0.2 = 0.04,

µP
B1
(Sx4Sx1) = µP

B(x4)× µP
B(x1) = 0.2× 0.14 = 0.028,

µN
B1
(Sx1Sx2) = −(µN

B (x1)× µN
B (x2)) = −(−0.07×−0.05) = −0.0035,

µN
B1
(Sx2Sx3) = −(µN

B (x2)× µN
B (x3)) = −(−0.05×−0.14) = −0.007,

µN
B1
(Sx3Sx4) = −(µN

B (x3)× µN
B (x4)) = −(−0.14×−0.18) = −0.0252,

µN
B1
(Sx4Sx1) = −(µN

B (x4)× µN
B (x1)) = −(−0.18×−0.07) = −0.0126.

Hence, L(G) = (A1, B1) is the product bipolar fuzzy line graph of G. It may be noted

that, L(G) is neither regular nor totally regular product bipolar fuzzy line graph.

y y

y y

(0.14,−0.07) (0.18,−0.05)

(0.2,−0.18) (0.2,−0.14)

Sx1 Sx2

Sx3
Sx4

(0.028,−0.0126) (0.03618,−0.007)

(0.0252,−0.0035)

(0.04,−0.0252)

L(G)

Figure 9.5: The line graph L(G) of G

Proposition 9.5.2. A product bipolar fuzzy line graph is a strong product bipolar fuzzy

graph.

Proof. Follows from the definition of product bipolar fuzzy line graph.

Proposition 9.5.3. If L(G) is a product bipolar fuzzy line graph of the product bipolar

fuzzy graph G, then L(G∗) is the line graph of G∗.

Proof. Since G = (V,A,B) is a product bipolar fuzzy graph and L(G) = (A1, B1) is a

product bipolar fuzzy line graph, therefore µP
A1
(Sx) = µP

B(x) and µ
N
A1
(Sx) = µN

B (x) for

all x ∈ E and so Sx ∈ Z ⇔ x ∈ E.

Also, µP
B1
(SxSy) = µP

B(x)×µP
B(y) and µ

N
B1
(SxSy) = −(µN

B (x)×µN
B (y)) for all Sx, Sy ∈ Z,

and so W = {SxSy : Sx ∩ Sy ̸= ∅, x, y ∈ E, x ̸= y}. This completes the proof.

Proposition 9.5.4. L(G) = (A1, B1) is a product bipolar fuzzy line graph of some

product bipolar fuzzy graph G = (V,A,B) if and only if µP
B1
(SxSy) = µP

A1
(Sx)×µP

A1
(Sy))

and µN
B1
(SxSy) = −(µN

A1
(Sx)× µN

A1
(Sy)) for all SxSy ∈ W .
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Proof. Suppose that µP
B1
(SxSy) = µP

A1
(Sx)× µP

A1
(Sy)) and

µN
B1
(SxSy) = −(µN

A1
(Sx)× µN

A1
(Sy)) for all SxSy ∈ W .

Let us now define µP
A(x) = µP

A1
(Sx) and µ

N
A (x) = µN

A1
(Sx) for all x ∈ E.

Then, µP
B1
(SxSy) = µP

A1
(Sx)× µP

A1
(Sy)) = µP

A(x)× µP
A(y)) and

µN
B1
(SxSy) = −(µN

A1
(Sx)× µN

A1
(Sy)) = −(µN

A (x)× µN
A (y)).

A bipolar fuzzy set A = (µP
A, µ

N
A ) that yields that the property µP

B(xy) ≤ µP
A(x) ×

µP
A(y) and µ

N
B (xy) ≥ −(µN

A (x)× µN
A (y)) will suffice.

The converse part follows from the Definition 9.5.2.

Another characterization of product bipolar fuzzy line graphs of product bipolar

fuzzy graph is given in the following proposition.

Proposition 9.5.5. L(G) = (A1, B1) is a product bipolar fuzzy line graph of some

product bipolar fuzzy graph if and only if L(G∗) = (Z,W ) is a line graph satisfying

µP
B1
(uv) = µP

A1
(u)× µP

A1
(v) and µN

B1
(uv) = −(µN

A1
(u)× µN

A1
(v)) for all uv ∈ W .

Proof. Follows from the Propositions 9.5.3 and 9.5.4.

Definition 9.5.3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two product bipolar

fuzzy graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively. A homomor-

phism between G1 and G2 is a mapping ϕ : V1 → V2 such that

(i) µP
A1
(x) ≤ µP

A2
(ϕ(x)) and µN

A1
(x) ≥ µN

A2
(ϕ(x)) for all x ∈ V1,

(ii) µP
B1
(xy) ≤ µP

B2
(ϕ(x)ϕ(y)) and µN

B1
(xy) ≥ µN

B2
(ϕ(x)ϕ(y)) for all xy ∈ Ṽ 2

1 .

A bijective homomorphism with the property that µP
A1
(x) = µP

A2
(ϕ(x)) and µN

A1
(x) =

µN
A2
(ϕ(x)) for all x ∈ V1 is called a (weak) vertex-isomorphism.

A bijective homomorphism with the property that µP
B1
(xy) ≤ µP

B2
(ϕ(x)ϕ(y)) and

µN
B1
(xy) ≥ µN

B2
(ϕ(x)ϕ(y)) for all xy ∈ Ṽ 2

1 , is called a (weak) line-isomorphism.

If ϕ is both (weak) vertex isomorphism and (weak) line-isomorphism, then ϕ is called

a (weak) isomorphism of G1 onto G2. If G1 is isomorphic to G2, then we write G1
∼=

G2.

Proposition 9.5.6. G1 = (V1, A1, B1) and G2 = (V2, A2, B2) be two product bipolar

fuzzy graphs of the graphs G∗
1 = (V1, E1) and G

∗
2 = (V2, E2) respectively. If ϕ is a weak

isomorphism G1 onto G2, then ϕ is an isomorphism of G∗
1 onto G∗

2.
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Proof. Obvious.

Proposition 9.5.7. Let L(G) = (A1, B1) be the product bipolar fuzzy line graph cor-

responding to the product bipolar fuzzy graph G = (V,A,B) of G∗ = (V,E). Suppose

that G∗ is connected. Then the following hold:

(i) There exists a weak isomorphism of G onto L(G) if and only if G∗ is a cycle

and for all v ∈ V , x ∈ E, µP
A(v) = µP

B(x), µ
N
A (v) = µN

B (x), i.e. A = (µP
A, µ

N
A )

and B = (µP
B, µ

N
B ) are constant functions on V and E, respectively, taking on the

same value.

(ii) If ϕ is a weak isomorphism of G onto L(G), then ϕ is an isomorphism.

Proof. Suppose that ϕ is a weak isomorphism of G onto L(G). By Proposition 9.5.6,

ϕ is an isomorphism of G∗ onto L(G∗). By Proposition 9.5.3, G∗ is a cycle ( [55],

Theorem 8.2).

Let V = {v1, v2, . . . , vn} and E = {x1 = v1v2, x2 = v2v3, . . . , xn = vnv1}, where

v1v2 . . . vnv1 is a cycle.

Let us define the bipolar fuzzy sets µP
A(vi) = si, µ

N
A (vi) = śi and

µP
B(vivi+1) = ti, µ

P
B(vivi+1) = t́i for i = 1, 2, . . . , n where vn+1 = v1, si, ti ∈ [0, 1],

śi, t́i ∈ [−1, 0].

Then for sn+1 = s1, śn+1 = ś1,

(a)

 ti ≤ si × si+1

t́i ≥ −śi × śi+1, i = 1, 2, . . . , n.

Now, Z = {Sx1 , Sx2 . . . , Sxn} and W = {Sx1Sx2 Sx2Sx3 , . . . , SxnSx1}.

Also for tn+1 = t1 and t́n+1 = t́1,

µP
A1
(Sxi

) = µP
B(xi) = µP

B(vivi+1) = ti,

µN
A1
(Sxi

) = µN
B (xi) = µN

B (vivi+1) = t́i and

µP
B1
(Sxi

Sxi+1
) = µP

B(xi)× µP
B(xi+1) = ti × ti+1,

µN
A1
(Sxi

Sxi+1
) = −µN

B (xi) × µN
B (xi+1) = −t́i × t́i+1, i = 1, 2 . . . , n, where vn+1 =

v1, vn+2 = v2.

Since ϕ is an isomorphism of G∗ onto L(G∗), ϕ maps V one-to-one onto Z. Also

ϕ preserves adjacency. Hence, ϕ induces a permutation π of {1, 2, . . . , n} such that

ϕ(vi) = Sxπ(i)
= Svπ(i)vπ(i+1)

and xi = vivi+1 → ϕ(vi)ϕ(vi+1) = Svπ(i)vπ(i+1)
Svπ(i+1)vπ(i+2)

for i = 1, 2, . . . , (n− 1).
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Now, si = µP
A(vi) ≤ µP

A1
(ϕ(vi)) = µP

A1
(Svπ(i)vπ(i+1)

) = tπ(i),

śi = µN
A (vi) ≥ µN

A1
(ϕ(vi)) = µN

A1
(Svπ(i)vπ(i+1)

) = t́π(i),

ti = µP
B(vivi+1) ≤ µP

B1
(ϕ(vi)ϕ(vi+1))

= µP
B1
(Svπ(i)vπ(i+1)

Svπ(i+1)vπ(i+2)
)

= µP
B1
(Svπ(i)vπ(i+1)

)× µP
B1
(Svπ(i+1)vπ(i+2)

)

= tπ(i) × tπ(i+1),

t́i = µN
B (vivi+1) ≤ µN

B1
(ϕ(vi)ϕ(vi+1))

= µN
B1
(Svπ(i)vπ(i+1)

Svπ(i+1)vπ(i+2)
)

= −µN
B1
(Svπ(i)vπ(i+1)

)× µN
B1
(Svπ(i+1)vπ(i+2)

)

= −t́π(i) × t́π(i+1) for i = 1, 2, . . . , n.

That is, si ≤ tπ(i), śi ≥ t́π(i) and

(b)

 ti ≤ tπ(i) × tπ(i+1)

t́i ≥ −t́π(i) × t́π(i+1), i = 1, 2, . . . , n.

By (b), we have ti ≤ tπ(i), t́i ≥ t́π(i) for i = 1, 2, . . . , n and so tπ(i) ≤ tπ(π(i)),

t́π(i) ≥ t́π(π(i)) for i = 1, 2, . . . , n. Continuing, we have

ti ≤ tπ(i) ≤ . . . ≤ tπj(i) ≤ ti,

t́i ≥ t́π(i) ≥ . . . ≥ t́πj(i) ≥ t́i and so ti = tπ(i), t́i = t́π(i), i = 1, 2, . . . , n, where πj+1 is

the identity map. Again by (b), we have

ti ≤ tπ(i) = ti+1,

t́i ≥ t́π(i+1) = t́(i+1), i = 1, 2, . . . , n where tn+1 = tn, t́n+1 = t́n.

Hence by (a) and (b), we have t1 = . . . = tn = s1 = . . . sn,

t́1 = . . . = t́n = ś1 = . . . = śn.

Thus we have not only proved the conclusion about A and B being constant func-

tions, but also we have shown that (ii) holds.

Conversely, suppose that G∗ is a cycle and for all v ∈ V , x ∈ E, µP
A(v) = µP

B(x),

µN
A (v) = µN

B (x). By Proposition 9.5.3, L(G∗) is the line graph of G∗. Since G∗ is a

cycle, G∗ ∼= L(G∗) by ( [55], Theorem 8.2). This isomorphism induces an isomorphism

of G onto L(G) since µP
A(v) = µP

B(x), µ
N
A (v) = µN

B (x) for all v ∈ V , x ∈ E and so

A = B = A1 = B1 on their respective domains.

Proposition 9.5.8. Let G1 and G2 be two product bipolar fuzzy graphs of the graphs

G∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively, such that G∗
1 and G∗

2 is connected. Let

L(G1) and L(G2) be the product bipolar fuzzy line graphs corresponding to G1 and G2
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respectively. Suppose that it is not the case that one of G∗
1 and G∗

2 is complete graph

K3 and other is bipartite complete graph K1,3. If L(G1) ∼= L(G2), then G1 and G2 are

line isomorphic.

Proof. Since L(G1) ∼= L(G2), therefore by Proposition ??, L(G∗
1)

∼= L(G∗
2). Since

L(G∗
1) and L(G

∗
2) are the line graphs of G

∗
1 and G

∗
2, respectively, by Proposition 9.5.3,

we have that G∗
1
∼= G∗

2 by ( [55], Theorem 8.3).

Let ψ be the isomorphism of L(G1) onto L(G2) and ϕ be the isomorphism of G∗
1 onto

G∗
2. Then µP

A3
(Sx) = µP

A4
(ψ(Sx)) = µP

A4
(Sϕ(x)), µ

N
A3
(Sx) = µN

A4
(ψ(Sx)) = µN

A4
(Sϕ(x)),

where the latter equalities holds by the proof of ( [55], Theorem 8.3) and so µP
B1
(x) =

µP
B2
(ϕ(x)), µN

B1
(x) = µN

B2
(ϕ(x)). Hence G1 and G2 are line isomorphic.

9.6 Summary

In this chapter, we redefined open neighborhood degree and closed neighborhood

degree of a vertex in bipolar fuzzy graphs. Finally, we introduced generalized regular

bipolar fuzzy graphs and proved some results of it. We introduced a new subclasses

of bipolar fuzzy graphs namely product bipolar fuzzy graphs. Then, product bipolar

fuzzy line graphs are defined and studied several important results of it.
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Chapter 10

Conclusion

Nowadays, uncertainty and impreciseness present in almost all systems. An m-polar

fuzzy graph can be used to represent the real world problems which involve multi-case

of information and uncertainty. An m-polar fuzzy graph is a generalized structure of

a bipolar fuzzy graph which gives more precision, flexibility and compatibility to a

system when more than one agreements are to be dealt with. Thus, m-polar fuzzy

graphs are the most important research area for the researchers. Application ofm-polar

fuzzy graphs can be found in image capturing, image segmentation, image shrinking,

data mining, communication, planning, scheduling, etc.

The first chapter is the introductory chapter of the thesis.

In Chapter 2, generalized m-polar fuzzy graphs is introduced. Several operations

have been defined on m-polar fuzzy graphs. Some useful properties of strong m-polar

fuzzy graphs, self-complementarym-polar fuzzy graphs and self-complementary strong

m-polar fuzzy graphs are discussed. We are now working to find many more useful

results of m-polar fuzzy graphs as an extension of this study.

In Chapter 3, three new operations, viz. direct product, semi-strong product and

strong product are defined on m-polar fuzzy graphs. A subclass of m-polar fuzzy

graphs called product m-polar fuzzy graph is defined and many properties of them are

discussed here. The degree of a vertex in m-polar fuzzy graphs are introduced from

two given m-polar fuzzy graphs G1 and G2 using the operations of Cartesian product,

composition, direct product, semi-strong product and strong product. At the end, an

application of 3-polar fuzzy influence graph is given. An algorithm can be designed to

find the degree of vertices of an m-polar fuzzy graph.
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In Chapter 4, the notions of density of an m-polar fuzzy graphs and balanced m-

polar fuzzy graphs are defined. Some results of balanced m-polar fuzzy graphs are

discussed here. Here also, an algorithm can be designed to find the density of an

m-polar fuzzy graph and to check whether the m-polar fuzzy graph is balanced or not.

In Chapter 5, our study describes the m-polar fuzzy multigraphs, m-polar fuzzy

planar graphs, and a very important consequence of m-polar fuzzy planar graphs

known as m-polar fuzzy dual graphs. The new parameter “degree of planarity” used

in this chapter characterizes an m-polar fuzzy graph in many ways. Several properties

can be investigated on regular m-polar fuzzy planar graphs, irregular m-polar fuzzy

planar graphs. The graphs such as m-polar fuzzy multigraph, m-polar fuzzy planar

graph, and m-polar fuzzy dual graph are also defined. In crisp planar graph, no edge

intersects each other. But, the edges of any m-polar fuzzy graph may be m-polar

fuzzy weak or m-polar fuzzy strong. Using the concept of m-polar fuzzy weak edge,

we define m-polar fuzzy planar graph in such a way that an edge may intersect other

edges. But, this facility violates the definition of planarity of graph. Since the role

of m-polar fuzzy weak edge is insignificant, the intersection between an m-polar fuzzy

fuzzy weak edge with any edge is less important. Motivating from this idea, we allow

the intersection of edges in m-polar fuzzy planar graph. It is well known that if the

membership values of all edges become one, the graph becomes crisp graph. Keeping

this idea in mind, we define a new term called degree of planarity of an m-polar fuzzy

graph. If the degree of planarity of an m-polar fuzzy graph is 1 = (1, 1, . . . , 1), then

no edge crosses other. This leads to the crisp planar graph. Thus, the planarity value

measures the degree of planarity of an m-polar fuzzy graph. This is a very interesting

concept of m-polar fuzzy graph theory. Strong m-polar fuzzy planar graph has been

exemplified. Another important term of planar graph is ‘face’ which is redefined in

m-polar fuzzy planar graph. In this chapter, new theories have been investigated for

m-polar fuzzy planar graph. The m-polar fuzzy dual graph is defined for the m-polar

fuzzy planar graph whose degree of planarity is 1 = (1, 1, . . . , 1). These theories will

be helpful to improve algorithms in different fields including computer vision, image

segmentation, etc. This idea can be extended to the other types of fuzzy graphs such

as m-polar fuzzy soft planar graphs, m-polar fuzzy rough planar graphs, etc.

In Chapter 6, the notion of weak self complement m-polar fuzzy graphs, order, size,
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busy vertices and free vertices of anm-polar fuzzy graphs are defined. Self complement

m-polar fuzzy graphs have many important role in the theory of m-polar fuzzy graphs.

If an m-polar fuzzy graph is not self complement, then also we can say that it is self

complement in some weaker sense. We can establish some useful results with this

graph. This motivates to define weak self complement m-polar fuzzy graphs in this

chapter. A necessary condition is mentioned for anm-polar fuzzy graph to be weak self

complement. Several properties of them are discussed. A relative study of complement

and operations on m-polar fuzzy graphs have been made. Some real life problems have

been modeled using the concepts of m-polar fuzzy graphs. Many more weak notions

can be introduced on m-polar fuzzy graphs to achieve important results.

Chapter 7 deals with the concept of edge regular, strongly regular, biregular, par-

tially edge regular and fully edge regular m-polar fuzzy graphs. Some properties of

them are studied. Finally, we introduced the notion of strongly edge irregular and

strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are

also studied to characterize strongly edge irregular and strongly edge totally irregular

m-polar fuzzy graphs.

In Chapter 8, we mainly generalized the usual concept of isomorphism in m-polar

fuzzy graphs which we call asm-polar ψ-morphism. The action ofm-polar ψ-morphism

on m-polar fuzzy graphs are discussed. Then, d2 degree, total d2 degree of a vertex,

(2, k)-regularity and totally (2, l)-regularity are defined in m-polar fuzzy graphs. A

real life situation of a company has been modeled in terms of 4-polar fuzzy graphs as

an application.

In Chapter 9, generalized regular bipolar fuzzy graphs are introduced. A subclass

of bipolar fuzzy graphs namely product bipolar fuzzy graph is defined. Then the

notion of product bipolar fuzzy line graph is introduced and investigated some of its

properties. A necessary and sufficient condition is given for a product bipolar fuzzy

graph to be isomorphic to its corresponding product bipolar fuzzy line graph. It is

also examined when an isomorphism between two product bipolar fuzzy graphs follows

from an isomorphism of their corresponding fuzzy line graphs.

The natural extension of these work are

(i) m-polar fuzzy soft graphs,

(ii) m-polar fuzzy soft planar graphs,
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(iii) m-polar fuzzy soft hypergraphs,

(iv) m-polar fuzzy soft competition graphs,

(v) m-polar fuzzy rough graphs,

(vi) Applications of m-polar fuzzy soft graphs on decision making problems, etc.
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