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Chapter 1

Introduction

1.1 Definition and History of Operations Research

Operations Research (OR) is a brunch of applied mathematics which encompasses a wide
range of problem-solving techniques and methods applied in the pursuit of improved
decision-making and efficiency, such as simulation, mathematical optimization, queuing
theory, different stochastic-process models, econometric methods, data envelopment
analysis, neural networks, expert systems, decision analysis, analytic hierarchy process etc.
In 1957 Churchman et al. [69] defined OR as the application of scientific methods,
techniques and tools to decision making problems (DMP) involving the operations of
systems so as to provide these in the control of the operations with optimum solutions to the
problem.

The requirement of the methods of OR was firstly felt during the Second World-War
(1939− 45). A team of investigators and scientist were employed by the Allies (principally
Britain, the Soviet Union, and the US) to use the limited resources (foods, weapons,
medicines etc.) properly and to send these resources to different battle fields safely within a
limited budget and man power from different service centers. i.e. the objective of the team
was to formulate specific proposals and plans for aiding the military commanders to arrive
at the decisions on optimal utilization of limited military logistical and armament supports
and also to implement the decisions effectively.

In the decades after the second world war, the techniques were more widely applied to
problems in business, industry and society. Since that time, operational research has
expanded into a field and widely used in industries ranging from petrochemicals to airlines,
finance, logistics, and government, moving to a focus on the development of mathematical
models that can be used to analyze and optimize complex systems, and has become an area
of active academic and industrial research. In India, operations research came into existence
with the opening of an OR unit in 1949 at the Regional Research Laboratory at Hyderabad.
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An OR unit under Professor P. C. Mahalonobis was established in 1953 in the Indian
Statistical Institute, Calcutta to apply OR methods in national planning and survey. He
made the first important application of OR in India in preparing the draft of the Second Five
Year Plan. The draft plan frame is still considered to be the most scientifically formulated
plan of massive economic development of India.

1.1.1 Different Fields of Application of OR
The techniques of OR has been used successfully in various field of operation. Some of our
interested fields are given by the following.

• Inventory Control: Inventory control involves all the approaches and techniques to
control the inventory situation for different management systems. Some basic functions of
inventory control are:

1. Deciding inventory replenishment decisions. There are some important replenishment
decisions.

(a) When is it necessary to place an order (or produce) to replenish inventory?

(b) How much is to be ordered (or produced) in each replenishment?

2. To take a proper decision about maximum retail price (MRP).

3. Making right decision about the preservation of stock.

• Supply Chain Management: Supply chain is a sequence of processes involved in the
production and distribution of a commodity. Supply chain management is a set of
approaches utilized to efficiently coordinate and integrate suppliers, manufacturers,
warehouses and stores, so that merchandise is produced and distributed at the right
quantities, to the right locations and at the right time, in order to minimize system-wide
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costs while satisfying service level requirements.

• Scheduling: Scheduling is the method by which work specified by some means is
assigned to resources that complete the work. Some of the scheduling process which can be
handled by OR are scheduling of aircrews and the fleet for airlines, vehicles scheduling in
supply chains, scheduling of orders in a factory and scheduling of operating theaters in a
hospital.

• Facility planning: Facility planning primarily involves managing the planning,
programming, designing, construction move-in, operation and maintenance of facilities to
enable an organization to achieve its goals. Computer simulations of airports for the rapid
and safe processing of travelers, improving appointment systems for medical practitioners
etc. are some field where facility planning have a great importance.

• Planning and forecasting: Planning is a basic management function involving
formulation of one or more detailed plans to achieve optimum balance of needs or demands
with the available resources. The planning process

1. identifies the goals or objectives to be achieved,

2. formulates strategies to achieve them,

3. arranges or creates the means required,

4. implements, directs, and monitors all steps in their proper sequence.

Forecasting is a common statistical task in business, where it helps to inform decisions
about the scheduling of production, transportation and personnel, and provides a guide to
long-term strategic planning. Thus planning and forecasting helps in identifying possible
future developments in telecommunications, deciding how much capacity is needed in a
holiday business.

• Yield management: Yield management is a variable pricing strategy, based on
understanding, anticipating and influencing consumer behavior in order to maximize
revenue or profits from a fixed, time-limited resource (such as airline seats or hotel room
reservations or advertising inventory).

• Credit scoring: A credit scoring is a process of deciding which customers offer the
best prospects for credit companies.

• Marketing: Marketing is the action or business of promoting and selling products or
services, including market research and advertising. It involves evaluation of the value of
sale promotions, developing customer profiles and computing the life-time value of a
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customer.

• Simulation: Simulation is the imitation of the operation of a real-world process or
system over time. Simulation is used in many contexts, such as simulation of technology for
performance optimization, safety engineering, testing, training, education, and video games.

• Queueing theory: Queueing theory is the mathematical study of waiting lines, or
queues. In queueing theory, a model is constructed so that queue lengths and waiting time
can be predicted. Queueing theory is generally considered a branch of operations research
because the results are often used when making business decisions about the resources
needed to provide a service. The ideas have since seen applications including
telecommunication, traffic engineering, computing and the design of factories, shops,
offices and hospitals.

•Defence and peace keeping: It is a process of finding ways to deploy troops rapidly. OR
techniques are deployed in defence operations ( viz. administration, intelligence, training
etc.) of the air force, army and navy in order to arrive at an optimum strategy to achieve
consistent goals.

1.2 Basic Concepts and Terminologies
The definitions and concepts about some familiar terms used to represent the parameters in
study of inventory control are given by the following. [Reader may refer to follow Hadley
and Whitin [101], Naddor [191] for brief discussion about the parameters].

1.2.1 Definitions and Terminologies
Manufacturer : One who makes products through a process involving raw materials, com-
ponents, or assemblies, usually on a large scale with different operations divided among dif-
ferent workers. Manufacturer is also known as producer.

Wholesaler : Wholesaler is a person or firm that buys large quantity of goods from
manufacturers/ producer/ supplier. Thus a wholesaler takes the inventory in bulk and
delivers a bundle of related product to retailers. Wholesaler is also known as distributor. A
distributor is typically an organization that takes ownership of significant inventories of
products. A wholesaler is a middleman between a manufacturer and retailers of the product.
The wholesaler makes money by buying the product(s) from the manufacturer at a lower
price- usually through discounts based on volume buying.

Demand: Demand refers to the quantity of a commodity required at a given time. It usually
depends upon the decisions of people outside the organization which has the inventory
problem. The size, rate and pattern can classify the demand into following categories. In
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Table 1.1: Different type of demand

Deterministic demand Random demand Imprecise demand
• fixed or constant • known distribution • Fuzzy demand
• dependent on stock • unknown distribution • Fuzzy-random
• dependent on price • etc. demand
• dependent on trade credit • etc.
• dependent on time
• etc.

some cases, demand may be represented by vague, imprecise and uncertain data. This type
of demand is termed as fuzzy demand. Demand also can be treated as fuzzy-stochastic in
nature.

Retailer : One who sells goods or commodities directly to consumers is known as retailer.
A retailer purchased items from the manufacturer or wholesaler and sold to the end user at
a marked up price. Retailers stock inventory and sell in smaller quantities to the general
public.

Supply chain : A supply chain is a system of organizations, people, activities, information,
and resources involved in moving a product or service from supplier to customer. Supply
chain activities transform natural resources, raw materials, and components into a finished
product that is delivered to the end customer. In sophisticated supply chain systems, used
products may re-enter the supply chain at any point where residual value is recyclable.

Replenishment/Supply: Replenishment can be categorized according to size, pattern and
lead time. Replenishment size refers to the quantity or size of the order to be received into
inventory. The size may be constant or variable, depending on the type of inventory system.
Replenishment patterns refer to how much amount of inventory is added to the inventory
stock. The replenishment patterns are usually instantaneous or uniform. Normally,
replenishment are made either in once or batch-wise.

Business/Time Horizon: The time period over which the inventory level will be controlled
is called the time horizon. It may be finite or infinite depending upon the nature of the
inventory system of the commodity.

Constraints: Constraints in inventory system deal with various properties that some way
place limitations imposed on the inventory system. Constraints may be imposed on the
amount of investment, available space, resources and finance, the amount of inventory held,
average inventory expenditure, number of orders, etc. These constraints can also be fuzzy,
random and fuzzy-random in nature.
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Fully Back-logged/Partially Back-logged Shortages: During stock-out period, the sales
and/or goodwill may be lost either by a delay or complete refusal in meeting the demand of
the customers. In the case where the unfulfilled demand for the goods can be satisfied
completely at a later date, then it is a case of fully back-logged shortages, i.e., it is assumed
that no customer walk away during this period and the demand of all these waiting
customers is met at the beginning of the next period. Again, it is normally observed that
during the stock-out period, some of the customers wait for the product and others walk
away. Such a phenomenon is called partially backlogged shortages.

Production Cost: The costs relevant to produce a finished good are called production cost.
Unit production cost is also production dependent. For example, if one worker is needed to
tend the machine, then as more units are produced per unit time, the wages of the worker
spread over more units. More elaborately it can be split into the following costs.
• Purchasing Cost • Labor Cost
• Wear and tear Cost • Environment protection Cost

Purchase Cost: It is the purchase price of raw materials for manufacturer (or, of finished
goods for wholesaler/retailer) to obtain the item from an external source. For manufacturer
It may also depend upon the demand when production is done in large quantities as it
results in reduction of production cost per unit. Also, when quantity discounts are allowed
for bulk orders, purchasing price is reduced and depends on the quantity purchased or
ordered.

Wear and tear Cost: In calculating the cost of production one should have to include the
wear and tears of the instrument as well as that of the labors.

Labor Cost: The cost to employ the labors the root level of production.

Environment protection cost: To reduce the effect of global worming production firms
have to follow different environment protocols. For this purpose a manufacturer must have
to spend some extra money, which is called the environment protection cost.

Other Inventory Cost: There are some other costs relevant to inventory decision making,
namely
• Ordering or Setup Cost • Holding or Carrying Cost
• Shortage or Penalty Cost • Transportation Cost

Ordering or Set-up Cost: It is the cost associated with the expense of issuing a purchase
order to an out-side supplier or setting up machines before internal production. These costs
also include clerical and administrative costs, telephone charges, telegram, transportation
costs, loading and unloading costs, watch and ward costs, etc. Generally, this cost is
assumed to be independent of the quantity ordered for or produced. In the costs like
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transportation cost, etc., some part of it may be quantity dependent.

Holding or Carrying Cost: It is the cost associated with the storage of the inventory until
its use or sale. It is directly proportional to the quantity in inventory and the time for which
the stocks are held. This cost generally includes the costs such as rent for storage space,
interest on the money locked-up, insurance, taxes, handling, etc.

Shortage or Stock-out Cost or Penalty Cost: It is the penalty incurred when the stock
proves inadequate to meet the demand of the customers. This cost parameter does not
depend upon the source of replenishment of stock but upon the amount of inventory not
supplied to the customer.

Transportation Cost: The expenditure for transporting products to different destination or
for availing items from different sources is called transportation cost.

Advertisement :The non-personal communication of information which is usually paid for
and usually persuasive in nature about products, services or ideas by identified sponsors
through the various media, is regarded as Advertising.

Defective Product : A product is in a defective condition, unreasonably dangerous to the
user, when it has a propensity or tendency for causing physical harm beyond that which
would be contemplated by the ordinary user, having ordinary knowledge of the product’s
characteristics commonly known to the foreseeable class of persons who would normally
use the product.

Recycling : Recycling is a process by which materials (waste) are change into new
products to prevent waste of potentially useful materials, reduce the consumption of fresh
raw materials, reduce energy usage, reduce air pollution (from incineration) and water
pollution (from land filling) by reducing the need for “conventional” waste disposal, and
lower greenhouse gas emissions. Recycling is a key component of modern waste reduction.
Recyclable materials include many kinds of glass, paper, metal, plastic, textiles, and
electronics. Materials to be recycled are either brought to a collection center or picked up
from the curb side, then sorted, cleaned, and reprocessed into new materials.

Trade Credit : In recent competitive market, manufacturer /wholesaler /retailer frequently
offers delay period for settling the account on purchasing amount of units (greater than or
equal to a certain amount fixed by the wholesaler/manufacturer). This is termed as trade
credit period. Depending upon the credit period, demand of an item increases or decreases.
If credit period is offered to the retailers only by the supplier, it is called one level trade
credit. On the other hand if both the supplier and the retailer offer credit period to his/her
retailer and customers respectively, it is called two level trade credit. Again, if credit period
is offered depending upon some conditions (like amount of purchase should exceed some
label, frequency of order etc.), it is called conditionally delay in payment or conditional
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credit period.

Inflation and time value of money: Inflation is a present increase in the level of consumer
price or a persistent decline in the purchasing power of money, caused by an increase in
available currency and credit beyond the proportion of available goods and service. It is the
rate at which the general prices for goods and services are rising and subsequently,
purchasing power is falling. With the increase of inflation rate, more amount of money is to
be paid for the same quantity of commodity. As for example, if the inflation rate is 1%, a $
5 of pen will cost $ 5.05 in a year. Mathematically, Buzacott [27] assumed that cost at time
t, φ(t), becomes φ(t+ δt) = φ(t) + i φ(t)δt at time (t+ δt) (where δt is sufficiently small)
when a constant inflation rate i ($/unit) exists in the market, i.e.,

φ(t+ δt) = φ(t) + i φ(t) δt as δt→ 0

⇒ φ(t+ δt)− φ(t)

δt
→ i φ(t) as δt→ 0

⇒ dφ(t)

dt
= i φ(t) ⇒ dφ(t)

φ(t)
= i dt

which yields a solution as φ(t) = φ(0)ei t, where φ(0) is the cost at time t = 0.

On the other hand, time value of money is one of the basic concept of finance. We know
that if we deposit money in a bank we will receive interest. For example, $ 1 today invested
for one year at 7% return would be worth $1.07 in a year. Because of this, we prefer to
receive money today rather than the same amount in the future. Money we receive today is
more valuable to us than money received in the future by the amount of interest we can earn
with the money. It is the changes in purchasing power of money over time.

So, if i% and r% are the annual inflation and interest rate respectively, resultant effect of
inflation and time value of money (i.e., increased rate of cost) on purchasing a unit of item
in future is (i − r)%. So if φ(0) is the cost of an item at time t = 0, its cost at time t,
φ(t) = φ(0)e−R t, where R = (r − i) is called discount rate of cash flow.

Selling Price : Selling price is the price at which something is offered for sale. Generally, it
is not fixed for long time for a particular item. Moreover it can vary with different parameters
such as purchase cost, purchase amount, product quality, product availability etc.
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Product Quality : Product quality means to incorporate features that have a capacity to meet
consumer needs (wants) and gives customer satisfaction by improving products (goods) and
making them free from any deficiencies or defects.

1.2.2 Different Environments
The inventory parameters, such as time horizon, demand, production cost, different
inventory costs (viz., purchasing cost, set-up cost, holding cost, shortage cost,
transportation cost etc.), advertisement cost, lead time, quantity, available resources, goals,
etc., involved in the inventory system may be deterministic (crisp/precise) or some of them
may be non-deterministic (i.e., imprecise like fuzzy, random, fuzzy-random, random-fuzzy
etc.). Thus the environments in which inventory models are developed can be classified as
follows:

Deterministic Environment : In deterministic environment all the system parameters
including time horizon are crisp or deterministic in nature and all the logical expressions are
of truth value 0 or 1.

Random Environment : In this environment some of the parameters like business plane,
lead time, demand, resources, different inventory costs, etc., are random in nature and
specified by some known or unknown probability distributions. Probability distribution of
some of the random parameters may be obtained from previous experience.
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Fuzzy Environment : It is an environment in which all or some inventory parameters,
resources and/or goal(s) of objective(s), etc., are imprecise and vague (i.e., inexact due to
human perception process). It is uncertain in non-stochastic sense and called fuzzy. The
fuzzy parameters or quantities are characterized by membership functions. In this case any
real number between 0 and 1 may be the truth value of logical expressions with fuzzy
parameters.

Fuzzy-Random/Random-Fuzzy Environment : It is an combination of both Random and
fuzzy environments. Here, some of the model parameters are fuzzy and some others are
random or, some of the model parameters are of fuzzy-random /random-fuzzy type. For
example, in an inventory control problem, holding cost may be imprecise and demand as
random. Again in the statement ‘the probability of having large demand of football world
cup ticket’ contains both impreciseness and randomness together. Here large is fuzzy and
‘probability’ represents randomness.

1.3 Historical Review on Inventory Control System
The study of inventory control begins from earlier twentieth century by the research of Ford
Harris [105] of Westinghouse Corporation, USA in 1915 and he derived the classical lot
size formula. Later in 1934, R. H. Wilson [260] deduce the same formula independently.
After that, the formula is named as Harris-Wilson formula or Wilson’s formula. From that
time till now various researchers investigated different type inventory models in different
environment. Also there are some full length books about inventory control system written
by several authors [5, 101, 191, 206, 235, 258]. Some of the existing literature for different
context are represented by the following according to our investigation.

1.3.1 Models with credit period
Trade credit or, delay in payment becomes one of the most useful tool in last two decades to
attract customers and used by different supply chain members (supplier, manufacturer,
retailer) at different level. The concept of trade credit was first introduced by Haley and
Higgins [103] in 1973 and the concept was first applied to an EOQ model by Goyal [92].
Goyal’s EOQ model was formulated with a constant demand rate under the condition of
permissible delay in payments. Chand and Ward [40] analyzed Goyal’s problem under the
assumptions of the classical economic EOQ model and presented some results different
result. Shah [230] included delay in payment in a exponentially decaying inventory model
in 1993. Next, in 1995 Aggarwal and Jaggi [2] generalized the EOQ model from
non-deteriorating items to deteriorating items. In 1996 Hwang and Shinn [112] worked on
delay in payment in a lot-sizing model for exponentially deteriorating items. On the same
year Khouja [132] deduced an optimal inventory policy under different supplier credits. On
next year Jamal et al. [120] generalized EOQ model for deteriorating items to allow for
shortages and Shinn [232] lighted on Khouja’s model from a different angle determine
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optimal retail price and lot size. Some notable researches are also done by Chu et al. [59] in
1998 and by K. J. Chung [61], Jamal et al. [121], Sarker et al. [223] in 2000. Thereafter, in
2002, Teng [241] amended an inventory model by using selling price to calculate the
revenue instead of unit cost, and obtained an easy analytically closed-form solution. In
2003, Chang et al. [44] dealt with the problem of determining the EOQ for exponentially
deteriorating items under permissible delay in payment depending on the ordering quantity.
Chang [45] extended this issue to include inflation and finite time horizon in 2004.
Afterwards, in 2007, Huang [115, 116] proposed two levels of trade credit policy where the
supplier would offer the retailer a delay period for payment and the retailer also adopts the
trade credit policy to stimulate his/her customer demand. Furthermore, he also assumed that
the retailer’s trade credit period offered by supplier, M is not shorter than the customer’s
trade credit period offered by the retailer, N (M≥N). Then in 2008 Liao [148] further
generalized Huang’s model to an EPQ model for deteriorating items. Subsequently,
Teng [242] established optimal ordering policies for a retailer to deal with bad credit
customers as well as good credit customers in 2009. Lately, in 2013 Ouyang et al. [196]
considered two-level trade credit link to order quantity. In the same year, Seifert et al. [229]
organized a review of trade credit literature and provided a detailed agenda for future
research. Recently (in 2014), Chen et al. [54] discussed the retailer’s optimal EOQ / EPQ
when the up-stream trade credit is linked to order quantity or when the down-stream trade
credit is only a fraction of the purchase amount. In the same time, Chung et al. [67]
established a new EPQ inventory model for deteriorating items under two levels of trade
credit, in which the supplier offers to the retailer a permissible delay period and
simultaneously the retailer in turn provides a maximal trade credit period to its customers in
a supply chain system comprised of three stages. In the next year, Chung et al. [68] adopted
the rigorous methods of mathematical analysis in order to develop the complete solution
procedures to locate the optimal solution removing shortcomings in the earlier investigation
by Ouyang et al. [195]. Recently, Ouyang et al. [197] proposed an integrated inventory
model with capacity constraint and a permissible delay payment period that is order-size
dependent.

1.3.2 Models with different types of demand
In study of different and realistic inventory models, different type of demand functions [c.f.
Table-1.1] are considered by several researchers from the beginning of the study of
inventory control. The literature review, that we have made are represented according to
different types of demand and presented as follows.

Stock dependent demand: In reality, we often see that decoratively displayed stock of
items in shops named “psychic stock” attract customers and stimulate more sales of some
retail item(s). So in the context of present competitive market, a business man always tries
to attract the customers by advertising about “psychic stock” through different media. In
1968, Wolfe [261] conducted an empirical analysis of the retail sales of woman’s dress and
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sports wear and found that the unit sales of each style are proportional to the displayed
inventory level. Baker and Urban [9] formulated a EOQ model with stock dependent
demand where the dependency is of simple form. Next, Bar-Lev et al. [12] produced a EOQ
model with inventory level dependent demand rate and random yield. Mandal and
Phaujder [174] studied on an inventory model with stock dependent demand where demand
is linear function of existing stock. In 1999 Mandal and Maiti [175] considered the demand
function as D = dqβ in their research and Maiti and Maiti [170] proceeds under the same
consideration. There are also some recent researches [39, 124, 247, 267] in the existing
literature under the same assumption about demand.

Time dependent demand: There are many decision making problem in business
management where demand varies with time. For example, demand of worm cloth
increases as winter comes and take its pick at the middle of winter session. Also the
demand decreases as the weather temperature goes down. Silver and Meal [234] published
a lot size model taking time varying demand. Dave and Patel [76] developed an inventory
model with (T, Si) Policy for deteriorating items with time proportional demand. In 1995
Benkherouf [18] studied the effect of time varying demand rate on a inventory model.
Hariga [104] discussed an optimal EOQ model for deteriorating items with time varyinng
demand. Yang et al. [265] published a note on Hariga’s study discussed two important
aspects concerning the uniqueness of the critical points for the inventory model with
complete backlogging in a finite planning horizon with some affirmative suggestions. Also
Several researchers [22, 91, 151, 189, 190] have been investigated the effect of time varying
demand on different inventory models. Recently, Chung [65] considered time-varying
demand in a deteriorating inventory model with two-phase pricing and cost under trade
credit financing for a finite horizon and optimized using particle swarm optimization.

There are also some researches in the existing literature with different type of demand.
Such as Mondal et al. [182, 183] produces some inventory models of ameliorating items
with price sensitive demand rate. Roy et al. [209] studied a multiple period inventory model
with fuzzy cost and fuzzy demand. Donaldson [81] and Silver [233] investigated the effect of
linear trend demand on inventory models. Maiti [171] solved an inventory model with credit-
linked promotional demand for an imprecise planning horizon. Lian et al. [146] considered
a perishable inventory model with Markovian renewal demands on the same year Bag et
al. [8] studied a production inventory model with fuzzy random demand and with flexibility
and reliability considerations.

1.3.3 Models on imperfect production process
Practically, production of imperfect goods is very common to every production house.
Recently several researchers focused their study on such problems. In the early season of
this study Rosenblatt and Lee [208] studied the effects of an imperfect production process
on the optimal production run time by assuming that time to out-of-control state is
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exponentially distributed. Salameh and Jaber [215] and Lin [150] studied the EOQ/EPQ
model for the items with imperfect quality and proposed discount sales for them. Hayek
and Salameh [106] derived an optimal operating policy for the finite production model
under the effect of reworking of imperfect quality items. They assumed that all defective
units are repairable and allowed back-orders. Chiu [56] extended the work of Hayek and
Salameh [106] and examined an EPQ model with defective items reworking the repairable
units immediately. Sana [218] presented an EPL model with random imperfect production
process and defective units were repaired immediately when they were produced. Barzoki
et al. [13] investigated the effects of imperfect production on the works in process inventory
and evaluated the optimum lot size for the minimum total cost. Here, some imperfect
products were reworked and others were sold at a reduced price. Krishnamoorthi and
Panayappan [139] have studied an EPQ model that incorporated imperfect production
quality, not screening out proportion of defects and thereby passing them on to customers
and resulting in sales returns. Not all of the defective units are repairable, a portion of them
are scrap and discarded beforehand. Chen et al. [48] developed an alternative optimization
solution process to determine the optimal replenishment lot size considering imperfect
rework and multiple shipments. Recently Chen [53] investigated a problem with production
preventive maintenance, inspection and inventory for an imperfect production process. Pal
et al. [199] formulated an EPQ model with imperfect production process and stochastic
demand. Cárdenas-Barrón et al. [35] presented an easy method for the results of Chen et
al. [48] and Chiu et al. [57] deriving the optimal number of replenishment and shipments
jointly. Krishnamoorthi and Panayappan [140] evaluated optimal lot size minimizing the
total cost for an EPQ model without and with shortages allowing imperfect production
system and immediate rework of the imperfect units. Rad et al. [204] developed a model of
an integrated vendor-buyer supply chain with imperfect production and shortages. In very
Recent, an extended research was done by Taleizadeh and Wee [240] for a multi-product
single machine manufacturing system with manufacturing capacity limitation and
immediate reworking of imperfect products allowing partial back-ordering.

1.3.4 Models on multi-item problems
There are may factors which influences business owners to make business with muli-item
from year to years. There are some business where multiple items can be produced from a
single raw material with some minimum cost such as petrochemical industries. Also in some
business multiple items are used to push the sell. Multinational companies ( for example, Big
Bazar) are example of such business. Padmanabhan and Vrat [198] developed multi-item
multi-objective inventory model of deteriorating items with stock-dependent demand. Ben-
Daya and Raouf [17] discussed a multi-item inventory model with stochastic demand subject
to the restrictions on available space and budget. Kar et al. [129] proposed a model that there
are fresh and deteriorating items sold from the primary and the secondary shop respectively.
Bhattacharya [20] developed a two-item model for deteriorating items, the demand of one
item depended on others stock level. The demand of fresh items depends on selling price and
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stock level. However, in real life, many companies, enterprises or retailers deal with several
items and stock them in their showroom/warehouse for sale. There is a restriction either
on maximum capital investment in stock at any time, or the maximum warehouse space
available for storage. Saha et al. [231] developed a multi-item inventory model with the
break-ability rate and the demand rate both stock-dependent. Tsao [246] considered multi-
echelon multi-item channels subject to supplier’s credit period and retailer’s promotional
effort.

Models with deteriorating item

Deterioration of items is also a very common problem in inventory management. The
earliest EOQ model studied by Ghare and Schrader [87] under the assumption of
exponential decay. Thereafter, different inventory models [1, 2, 70, 120] are formulated and
solved with different type of deterioration. Shah et al. [230] have studied a lot-size model
for exponentially decaying inventory when delay in payments is permissible. Huang et
al. [114] developed an integrated vendor-buyer model with defective items which are
treated as a single batch and returned to the vendor after a 100% screening process. Again,
Santosh and Pakkal [220], Chang et al. [44, 45] and Jaggi et al. [117] considered
deteriorating items in their inventory models. Wee et al. [251] formulated a multi-objective
joint replenishment inventory model of deteriorated items in a fuzzy environment. Mishra
and Mishra [180] worked on fuzzified deterioration under cobweb phenomenon and
permissible delay in payments. A delayed deteriorating item is considered in the inventory
model by Musa and San [188]. After that Taleizadeh et al. [238] enriched their inventory
model for a deteriorating item with back-ordering and temporary price
discount.Subsequently, Wu et al. [262] deduces the optimal credit period and lot size for a
model with deteriorating items and expiration dates under two-level trade-credit financing.
Maihami and Kamalabadi [163] investigated an optimum pricing policy and replenishment
policy for non-instantaneous deteriorating items with stochastic demand and promotional
efforts.

1.3.5 Models with inflation and time value of money

Inflation and time value of money plays an important roll in the present stock market
dependent business world. Considering this effect on inventory costs, Buzacott [27] is the
first one, who investigated the effect of inflation on EOQ models. Among others, Beirman
and Thomas [24], Datta and Pal [74], Ray and Chaudhuri [205] studied some EOQ models
with linear time-varying demand taking inflation and time value of money into account.
Moon and Lee [184] presented an EOQ model with inflation and time value of money. Wee
and Law [250] addressed an inventory problem with finite replacement rate of deteriorating
items incorporating the effect of inflation and time value of money. In the same year,
Chang [45] proposed an inventory model for deteriorating items with trade credit under
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inflation. In recent years, Jaggi et al. [117], Maiti [166, 167], Sana [217, 218] and Sarkar et
al. [225, 226] and others presented inventory models in this direction.

1.3.6 Models with Uncertainty (Randomness and Impreciseness)
From the ancient time different researches have been made by several researchers to find
the logic and proof (theoretical or, practical) about the unknown matters, topics, events etc.
This behavioral tendency and requirements in practical life motivate different fellows to
enter into the world of uncertainty. In inventory control uncertainty take places mainly in
two from- Randomness (or, stochastic) and Impreciseness.

There are several full length books [85, 186, 257] available in the literature to get brief
idea about randomness. One can follow some earlier researches [26, 102, 202], for the
history of development of inventory models with randomness. Among others, Kalpakam
and Sapan [126], Kodama [136], Hill et al. [108], etc. have developed their models with
probabilistic lead time or probabilistic time scheduling or uncertain quantity receiving or
random supplying. Bookbinder and Cakanyildirim [25] developed a continuous review
inventory model under random lead-time. Cakanyildirim et al. [29] extended the model to a
continuous review inventory model under lot-size dependent random lead-time. Das et
al. [71] considered a stochastic inventory problem with fuzzy storage cost. The life time of
seasonal products (such as fruits, jam and jelly, crops etc.) cannot be guessed previously
due to the environmental effect. Moon and Yun [185] first lighted on EOQ models in which
the time horizon is Random nature. After that large number of research papers have been
published incorporating this assumption [184, 211, 213].

In 1965, a newer branch of uncertainty named impreciseness is opened by Prof. L. Zadeh
and in this regard he published his valuable research [274] with the definitions and
properties of fuzzy set theory. After that extensive research works have been done in this
area [41, 82, 153, 200]. But applications of fuzzy sets in inventory control problems are
around 25-30 years. Among these works one can refer the works of Park [200], Roy and
Maiti [210], Mandal and Maiti [176], Alonso-Ayuso et al. [3], Wee et al. [251], etc. Lee
and Yao [144] developed an EPQ model considering fuzzy demand and fuzzy production
quantity. After one year, Yao and Lee [268] presented an inventory model with and without
back order in fuzzy situations considering the fuzzy numbers. Katagiri and Ishii [130]
developed their inventory model under fuzzy shortage cost. Ouyang and Chang [193]
developed an inventory model with fuzzy lost sales. Dey and Maiti [79] presented an EOQ
model with fuzzy lead-time under inflation and time-value of money. Generally, fuzzy
inventory models are developed considering some of the inventory parameters as fuzzy in
nature [19, 41, 144, 170, 214, 251]. To reduce the objective function, they defuzzified the
fuzzy parameters to a crisp one by either defuzzification methods or following
possibility/necessity measure of fuzzy events. Finally they solved the reduced crisp model
to determine decision for the Decision Maker (DM). In the existing literature, little attention
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has been paid on fuzzy demand and fuzzy production rate. Wee et al. [251] developed a
multi-objective joint replenishment inventory model of deteriorating items, where demand
is stock dependent and fuzzy in nature. They solved the corresponding crisp model and
fuzzified the total profit and return on inventory investment for optimal decisions. Recently,
Sarkar and Chakraborti [227] developed an EPQ model, where demand is considered as
time dependent fuzzy number and followed FDE approach to formulate the model. They
found the α-cut of total variable cost and formulate the problem as multi-objective
minimization problem by considering the two components of α-cut of total variable cost as
two objectives.

1.3.7 Models with fuzzy logic (or, fuzzy inference)
Due to the vagueness and impreciseness of human language, it very difficult to handle any
logical expression involving human language (such as low, high, huge, much, medium etc.).
But in reality, to attract customers, a business man always have to judge human
requirements on basis of their speech. Fuzzy logic (or, fuzzy inference) is the tool by which
one can measure the truth value of the relations linguistic variable commonly used by
human being. The logical relations are commonly expressed as-

”If premise (antecedent) Then conclusion (consequent)”.

To measure the truth value of these type of linguistic relations, commonly two type of
fuzzy inference techniques (Mamdani type and Sugeno type) are used. Mamdani’s method
is based on the idea of Bellman and Zadeh’s paper [15] about making decision in fuzzy
environment. It was proposed in 1975 by Ebrahim Mamdani [173] as an attempt to control
a steam engine and boiler combination by synthesizing a set of linguistic control rules
obtained from experienced human operators. Sugeno or Takagi-Sugeno-Kang method was
introduced in 1985 [236]. It is similar to the Mamdani method in many respects. The first
two parts of the fuzzy inference process, fuzzifying the inputs and applying the fuzzy
operator, are exactly the same. The main difference between Mamdani and Sugeno is that
the mamdani output is a fuzzy set with different type of membership functions whereas the
Sugeno output membership functions are either linear or constant.

The technique of fuzzy inference is used by several researchers [16, 221, 222, 248] mainly
for control system. There are very few researches of inventory control with fuzzy logic in
the existing literature. Axsater [6] gave some concepts about control theory in production
and inventory control. Towill [244] drew some common foundations between control
engineering and manufacturing and management. GrubbstroK et al. [94] developed some
inventory control policies in terms of control theory. An application of fuzzy logic to
inventory control models was made by Gen et al. [86]. A Fuzzy pre-compensated PID
controllers is represented by Kim et al. [134]. Lee [143] presented some methods to
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improve the performance of PI-type fuzzy logic controller. Samanta and Al-Araimi [216]
developed an inventory control model using fuzzy logic. Recently, Sylvanus et al. [237]
formulate an intelligent inventory model using the concept of fuzzy logic.

1.4 Motivation and Objective of the Thesis

1.4.1 Motivation of the Thesis
Study of inventory control began during the early twentieth century and was continuously
supported by several researchers according to the growing necessity in reality and this
process is still going on.

Uncertainty is observed in the real life inventory / production-inventory problems and this
type of uncertainty may occur in the form of random [25, 29, 45, 56],
fuzzy [80, 97, 144, 209], fuzzy-random [8, 39, 52], etc. In the literature, there are several
models on credit period formulated with one level trade credit only i.e. suppliers offers
credit period to its retailers. But in practice, retailer too might offer a credit period to his /
her customers to stimulate the market demand. Beside this, at the present volatile economic
conditions through out the world, one cannot ignore the effect of inflation and time value of
money specially in developing countries like India, Bangladesh etc. [24, 27, 226].

In-spite of several studies on the above mentioned inventory control systems, there are
some gaps which inspired us to develop and solve some inventory / production-inventory
models in different environments.

In chapter-3 an inventory model is considered under some real life assumptions
which were not considered all together included in previous studies.

i) The market demand (D) is depends on the customer’s retail price which is of the
form D(s) = as−b where, a > 0, b > 1 and s is the customer’s retail price.

ii) The items are deteriorating with a date of expiration and the rate of deterioration
is a increasing function of time. Thus the rate of deterioration gets its maximum
value (1) at the time of expiration, i.e. when the product is spoiled / becomes
obsolete.

iii) Retailer shares a part of his /her credit length to the customers to attract more
customer.

Though this problem was initially investigated by Mahata [161], but there were several
mistakes in the formulation and evaluation. This promoted us to make an investigation of
such a real-life problem correctly (chapter-3).

In manufacturing systems, production of defective / imperfect units is almost a natural
phenomenon. This imperfect units are produced after the passage of some time from the
commencement of production. Now-a-days, due to competitive market, offer of trade credit
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is very common amongst the traders. Normally, both supplier and retailer offer the trade
credits to their respective customers and the amount of credit period depends on their
respective stocks. These real life practices promoted us to investigate a problem of a
two layer supply chain for imperfect items with rework and two-level trade credits
(Chapter-4). Chapter-4 is formulated on basis of the following considerations.

i) The production system undergo an out-of-control (starting point of imperfect pro-
duction) state from an in-control state. A mixture of perfect and imperfect quality
items are produced by the manufacturer.

ii) The rework process is one of common criterion to control the amount of imperfect
units. In this study, rework process is applied and some non-repairable items are
sold at a reduced price where the demand of the customer is considered as stock
dependent.

iii) Two level credit sharing is considered in this supply chain, where full payment of
the customers indicates the end of a replenishment cycle.

The business period of seasonal products is limited, varies from year to year. This time
period can be fitted to a probability distribution i.e. may be considered as random. Demand
of these items normally increases with time. For example, at the beginning of winter
seasons, demand of warm garments is less and increases with time as the cold increases.
Thus the production houses of seasonal products also varies with time and it is adjusted
against the trended demand. This physical phenomenon prompted us to take up the
problem of a production house having two production plants for the production of a
above mentioned seasonal product in Chapter-5. This study is different from the
existing literature in the following aspects.

i) In this EPQ model, two production houses under a single management are consid-
ered to control the stock out situation under a random environment.

ii) The randomness of the different parameters of the model are removed using
chance constraint method and taking expected value.

iii) The production rates are unknown function of time and the demand rates are
known functions of time.

iv) None has investigated a two plant production-inventory models with dynamic
production rate, trended demand, random shortage (occurs only at one
production house) under a random planning horizon.

A production problem with shortages for a seasonal product is also considered in
Chapter-6. In addition to random business period, sometimes both production and demand
of a seasonal product depend on the current stock level of the product in the go-down.
Normally, at initial stages, the set-up cost is sometimes more and decreases at later stages as
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the production cycle increases. Learning effects in different cycles may be introduced in
set-up cost. Again, with the passage of times, laborers are trained and the unit production
cost also decreases with the increase of cycles. These natural phenomena in production
systems prompted us to take a production problem with shortages with above
mentioned features. Chapter-6 includes the following assumptions which are not
considered in the previous studies.

i) The present production-inventory model involves stock dependent production rate
and stock dependent demand rate over a random planning horizon.

ii) The present model is developed with and without shortages and the unit production
rate is also considered as crisp, random, fuzzy and fuzzy-random in nature.

iii) Learning effect with the increase of cycles is introduced in set-up cost and unit
production cost.

In supply chain business of seasonal products, supplier makes stocks of a product for
wholesaler who purchases the item in a lot. A supplier decides the amount of stock
depending upon the demand and selling price fixed by himself. All these relations are
normally defined by fuzzy words such as low, medium, high, very high and very low.
Similarly, from supplier sides, his / her purchasing price varies with his / her purchased
amount. This relation is also expressed by verbal words- low, high and medium which are
imprecise in nature. Such a normal supplier-wholesaler business phenomenon
prompted us to take a supply chain model with two level and single level fuzzy logic,
i.e. fuzzy inference in Chapter-7. As the computation of these problems becomes
cumbersome, here an appropriate Genetic Algorithm has been developed for solution.
As usual, random planning horizon with normal distribution for seasonal products is
incorporated in this model (Chapter-7).

It is usually seen in reality that a single business man, say wholesaler, he/she makes the
stocks of different items at a go-down and sells the items at different showrooms. These
items may be seasonal products which deteriorates also. It is obvious that demand of an
item depends on its price. It is very difficult to express this relation in a functional form.
Rather, very often, it is expressed in linguistic terms using ’low’, ’high’, ’medium’. Again,
selling price is subjected to discounts depending upon the purchased amount in the forms of
AUD, IQD and combination of AUD and IQD (IQD in AUD). For multi-items, some
constraints such as space and budget constraints are imposed and these may be imprecise
(fuzzy) in nature. These physical considerations forced us to investigate a model of
deteriorating multi-item with linguistically price dependent demand allowing different
price discounts under imprecise resource constraints. Thus Chapter-8 contains an
inventory model which is unique in the following considerations.

i) There are very few supply-chain models for deteriorating items with fuzzy
inference expressed verbally using ’words’.
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ii) Till now, none has used three types of price discount (AUD, IQD, AUD in IQD) in
a supply-chain model connecting through fuzzy inferences and sharing the part of
the commission with customers.

iii) No supply-chain is available with MRP and commission on this following fuzzy
rules.

iv) Use of random planning horizon is very limited and none has used it in connection
with fuzzy inferences.

v) Appropriate GA is developed connecting random planning horizon, fuzzy logic and
price discount.

vi) For the first time, surprise function, possibility for resource constraints are used in
a supply-chain model.

Seasonal products do have several characteristics such as random business period etc. as
mentioned earlier. For an item, relations between price and demand, quantity purchased and
trade credits are well known. i.e. if price is more, demand is less and vice-verse, if
purchased quantity is high, trade credit period is more, etc. These relations are normally
expressed linguistically in business systems. These are mathematically expressed by fuzzy
inferences. The difficulty lies in expressing these parameters by fuzzy membership
functions. In reality, all available data or expert’s opinions are deterministic. From past
experiences, these collected crisp data are used to form the fuzzy membership functions.
All the above facts influenced us to formulate and solve an EPQ model for
deteriorating items under random planning horizon with some linguistic relations
between demand, selling price, trade credit and ordered quantity forming fuzzy
membership functions from available raw data and using the appropriate developed
Genetic Algorithm for solution (Chapter-9). Thus the basic contributions of this
chapter are as follows:

i) Normally, in the inventory models with trade credit, amount of trade credit is
given deterministically (a numerical value) depending on the ordered quantity. A
relation is presented by a mathematical expression in crisp way. Similarly, a
deterministic mathematical expression may be available connecting price and
demand. In practice, often these relations are expressed by ”words” linguistically.
Here, linguistic relations between (price, demand) and (ordered quantity, credit
period) are considered.

ii) A new method of payment of dues of retailer to supplier is presented and a lemma
is presented which assures the validity of the new method. A comparative study
has been provided with the conventional method.

iii) The business period of the seasonal products are finite and varies every year. Thus
the time period of these products are assumed as random having a probability
distribution.
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iv) The construction of membership function (MF) from the market / business data
is very important for the model with fuzzy inferences. Here, a methodology is
presented for the construction of MF from the marketing experts’ opinions.

v) GA is very appropriate for the solution of inventory models with fuzzy logic. Here
an appropriate GA has been developed for this purpose.

1.4.2 Objective of the Thesis

The main objectives of the thesis are

i) to develop some inventory / production-inventory model (s) in different types of
environments (deterministic, random, fuzzy, fuzzy-random, etc.) from realistic point of
view.

ii) to develop / modify some solution techniques (GA, MOGA, GRG etc.) and to apply
these methods for the solution of above mentioned inventory / production-inventory
models.

iii) to convert the uncertain models into the corresponding deterministic single or multi-
objective problems by using different appropriate techniques (Fuzzy Inference, Chance
constraint technique, Possibility / Necessity measures etc.).

iv) to formulate and solve some realistic supply chain models having some linguistic rela-
tions (fuzzy rules) among the parameters / variables of supply chain partners.

v) to show different effects or relations of the models’ parameters and decision variables
through some numerical examples and to perform their sensitivity analyses.

1.5 Organization of the thesis

In the proposed thesis, some real life uncertain inventory problems are considered and
solved. The proposed thesis is divided into following six parts and seven chapters.

Part-I : Introduction and Solution Methodologies

Chapter-1

• Introduction

This Chapter contains an introduction giving an overview of the development on inventory
control system in crisp, fuzzy, random and fuzzy-random environments.
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Chapter-2

• Solution Methodologies

In this Chapter, preliminary ideas on crisp set, fuzzy set, etc. are given. The following
techniques/methods have been developed /modified and used to solve the proposed inventory
models in uncertain environments.

1. Generalized Reduced Gradient Technique (GRG).

2. Genetic Algorithm with Varying Population (GAVP) .

3. Multi-objective Genetic Algorithm (MOGA).

Part-II: Inventory Models in Crisp Environment

Chapter-3

• Note On: Partial trade credit policy of retailer in economic order quantity models for
deteriorating items with expiration dates and price sensitive demand.

In this supply chain, a credit-worthy retailer frequently receives a permissible delay on
the entire purchase amount without collateral deposits from his/her supplier (i.e., an
up-stream full trade credit). By contrast, a retailer usually requests his/her credit-risk
customers to pay a fraction of the purchase amount at the time of placing an order, and then
grants a permissible delay on the remaining balance (i.e., a down-stream partial trade
credit). Also, in selecting an item for use, the selling price of that item is one of the decisive
factors to the customers. It is well known that the higher selling price of item decreases the
demand rate of that item where the lesser price has the reverse effect. Hence, the demand
rate of an item is dependent on the selling price of that item. In addition, many products
such as sessional fruits and vegetables, pharmaceutical, volatile liquids etc. are not only
deteriorate continuously but also have their expiration dates. However, only a few
researchers take the expiration date of a deteriorating item into consideration. For the
objective function sufficient conditions for the existence and uniqueness of the optimal
solution are provided with an object to maximize the profit of the retailer. The GA process
has been applied to determine the optimal pricing and inventory policies for the retailer.
Finally, numerical examples are presented to illustrate the proposed model and the effect of
key parameters on optimal solution is examined.
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Part-III: Inventory Models in Random, Fuzzy and
Fuzzy-Random Environment

Chapter-4

• Two layer supply chain model of deteriorating items with rework and two level credit
period.

In this chapter, a single period SCM model is considered for a manufacturer with multiple
retailer. A mixture of perfect and imperfect quality items are produced by the manufacturer
and supplies them to the retailer’s. Every Retailer achieves an up-stream credit and shares it
partially to his / her customers. The defective rate is random in nature which follows an
uniform distribution and certain percentage of defective items are reworked as a perfect
quality items. Set-up cost of the manufacturer is linearly dependent on the production rate.
Also the open end customer demand at each of the retailers depends on the displayed stock
of the retailer. The whole model is formulated as profit maximization problem to maximize
the SCM profit. The model is solved numerically using GRG method.

Chapter-5

• Two plant optimal production problem in random time horizon.

This chapter presents a time-dependent production policy for a single item which are
produced from two plants situated at different location under a single management. The rate
of demand and the rate of production at these plants are different. Demands of the item are
primarily met locally from the respective plants but if a stock-out situation occurs in a plant,
immediately some stock from the other plant (if available) is rushed to the stock-out plant.
So the shortage is allowed only at one plant and inventory stock situation occurs at another.
The demand at the different plants are known function of time whereas the production rate
at the plants are unknown functions of time and taken as control variable. The planning
horizon, the production cost, holding cost, shortage cost, and transportation costs all are
random in nature. The model is formulated as a cost minimization problem in the form of
an integral. The optimum results are obtained using Kuhn-Tucker conditions and
Generalized Reduced Gradient (GRG) technique. The model is illustrated by numerically
and optimal results are presented in both tabular and graphical form.

Chapter-6

• Optimum Production Policy for a Production Inventory Model in Random Time
Horizon.

A profit maximization production inventory model with linearly stock dependent demand
is developed in random time horizon under inflation and time value of money. The time
period is random and follows exponential distribution with known mean. The unit
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production rate is partly stock dependent and decreases as the stock increases. At the end of
the time period excess amount of stock (if any) is sold at a reduced price. This model is
developed with and without shortages under the assumption that the shortage is fully
backlogged. The unit production cost is considered as crisp, random and fuzzy in nature
and different models are formulated for different types of unit production costs. Optimal
result of the different type of models are obtained using a gradient based non-linear
optimization technique- Generalized Reduced Gradient(GRG) method. All the models are
illustrated with some numeric data and some sensitivity analysis are also presented.

Part-IV: Inventory Models with Fuzzy Logic

Chapter-7

• A Supply Chain Model with Fuzzy Logic under Random Planning Horizon via Genetic
Algorithm.

In this model fuzzy logic is introduced in a single management Supply Chain Model
(SCM) with m suppliers and one wholesaler having n showrooms for sale, to make the
dealings among the chain members more meaningful and profitable in a random business
period which follows normal distribution with known mean and variance. The suppliers
with limited capacity offer some fuzzy cost discount depending on the ordered amount
following one parameter fuzzy inference. The target of the wholesaler is to purchase the
required amount of the item from the suppliers achieving maximum possible cost discounts.
The quantity supplied by the wholesaler to showrooms for sale depends not only on the
respective demand at that place but also on the selling price (i.e. mark-up) of the units
following some two parameters fuzzy rules. The chance constraint technique is used to
express the randomness of the planning horizon. The above mentioned SCM is formulated
as a profit maximization problem with respect to the wholesaler using fuzzy logic(FL) and
optimized using a real coded genetic algorithm (GA). Finally, to illustrate the model, a
practical example is considered. Raw data from a rice selling merchant are collected and
represented as imprecise numbers. The linguistic relations are derived and linguistic terms
are quantified. Then the model is formulated for maximum profit with respect to the said
merchant and solved using FL and GA. The behavior of profit and required quantity are
plotted against selling price (mark-up).

Chapter-8

• A Deteriorating Multi-item Inventory Model with Price Discount and Variable
Demands via Fuzzy Logic under Resource Constraints.

An inventory model of deteriorating seasonal products with Maximum Retail Price
(MRP) for a wholesaler having showrooms at different places under a single management
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system is considered under random business periods with fuzzy resource constraints. The
wholesaler replenishes the products instantaneously and earns commissions on MRP which
vary with the ordered quantities following All Unit Discount (AUD), Incremental Quantity
Discount (IQD) or IQD in AUD policy. Demand at showrooms are imprecise and related to
selling prices by verbal words following fuzzy logic. The wholesaler shares a part of
commission with customers. The business periods follows normal distribution and
converted to deterministic ones through chance constraint technique. The fuzzy space and
budget constraints and fuzzy relations are defuzzified using possibility measures, surprise
function and Mumdani fuzzy inference technique. The model is formulated as profit
maximization for the wholesaler and solved using a real coded Genetic Algorithm (GA) and
illustrated through some numerical examples and some sensitivity analysis. A real-life
problem of a developing country is presented, solved using the above mentioned procedures
and an appropriate inventory policy is suggested.

Chapter-9

• An EPQ Model for Deteriorating items under Random Planning Horizon with some
Linguistic Relations between Demand, Selling Price and Trade Credit, Ordered
Quantity.

An environment friendly Economic Production Quantity (EPQ) model of a single item is
presented in this chapter in which the business in each cycle starts with shortage and ends
with the end of stock. The whole problem is formulated to maximize profit of the
manufacturer with random business period and the randomness is removed by chance
constrained method. This model involves selling price dependent demand and purchased
raw material dependent credit period which are described by two sets of linguistic relations
under fuzzy logic. In addition, after the end of credit period, due raw-material cost (DRC) is
paid to the source as soon as it can be possible and a lemma is presented in support of this
approach. A comparison is drawn between this approach and the old payment policy (i.e.
DRC is paid to the end of the cycle). The model is optimized by a real coded genetic
algorithm (GA) developed for this purpose with tournament selection, arithmetic crossover
and polynomial mutation. The model is illustrated with different sets of numerical
examples for different scenarios. A practical application has also been demonstrated with
real world data. Some sensitivity analysis are presented graphically.

Part-V : Summary and Future Extension

Chapter-10

• Summary and Future Extension
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Part-VI: Bibliography and Indices

• Bibliography

• Indices
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Chapter 2

Solution Methodology

2.1 Mathematical prerequisites

2.1.1 Crisp Set Theory

Crisp Set: By crisp one means dichotomous, that is, yes or no type rather than more-or-less
type. In conventional dual logic, for instance, a statement can be true or false- and nothing
in between. In set theory, an element can either belongs to a set or not; and in optimization,
a solution is either feasible or not. A classical set, X , is defined by crisp boundaries, i.e.,
there is no uncertainty in the prescription of the elements of the set. Normally it is defined
as a well defined collection of elements or objects, x ∈ X , where X may be countable or
uncountable.

Convex Set: A subset S ⊂ <n is said to be convex, if for any two points x1, x2 in S, the line
segment joining the points x1 and x2 is also contained in S. In other words, a subset S ⊂ <n
is convex, if and only if

x1, x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S; 0 ≤ λ ≤ 1.

Convex Combination: Given a set of vectors {x1, x2, · · · , xn}, a linear combination
x = λ1x1 + λ2x2 + · · · + λnxn is called a convex combination of the given vectors, if

λ1, λ2, · · · , λn ≥ 0 and
n∑
i=1

λi = 1

Convex function: The function f : S → < is said to be convex if for any x1, x2 ∈ S and
0 ≤ λ ≤ 1, implies that

f{(1− λ)x1 + λx2} ≤ (1− λ)f(x1) + λf(x2).

The definition of convex functions can be modified for concave functions by replacing ′ ≤′
by ′ ≥′.
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2.1.2 Random Set Theory
Probability Space: An order tuple (S,Ω, P ) is said to be Probability Space if

(I) S is a non-empty set of outcomes of a random experiment E,

(II) Ω is a set of all events (i.e., subsets of S), which is a σ-field, i.e., satisfies the following
properties: (i) ∅ ∈ Ω and (ii) A ∈ Ω ⇒ Ac ∈ Ω, where Ac is the complement of A in
Ω,

(III) A1, A2, · · · ∈ Ω⇒ A =
∞⋃
i=1

Ai ∈ Ω.

(IV) P is a probability function for the events, i.e., P : Ω → [0, 1] and P ({xi}) = pi,

0 ≤ pi ≤ 1, ∀xi ∈ S(i = 1, 2, 3, · · · ),
∞∑
i=1

pi = 1.

Random Variable: Let S be a sample space of of some given random experiment. It has
been observed that the outcomes (i.e. sample points of S) are not always numbers. We may
however assign a real numbers to each sample point according to some definite rule. Such
an assignment gives us a “function defined on the sample space S”. This function is called a
random variable (or stochastic variable).
A random variable which assumes a finite number or countably infinite number of values is
called a discrete random variable. If the random variable assumes an uncountably infinite
number of values, it is called a continuous random variable.

Discrete Probability Distribution: Let X be a discrete random variable which can assume
the values x1, x2, x3, · · · (arranged in an increasing order of magnitude) with probabilities
p1, p2, p3, · · · respectively. The specification of the set of values xi together with their
probabilities pi (i = 1, 2, 3, · · · ) defines the discrete probability distribution of X , provided,

(i) P{X = xi} = pi ≥ 0 and (ii)
∑
i

pi = 1.

Continuous Probability Distribution: The distribution of random variable X is said to

be continuous if the distribution function F (x) is continuous and it’s derivative F ′(x) is
piecewise continuous everywhere. In this case, for, b > a,

P (a < X̂ ≤ b) = F (b)− F (a) =

a∫
b

F
′
(x) dx

or, P (a < X̂ ≤ b) =

a∫
b

f(x) dx
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where f(x) = F
′
(x). The function f(x) is called probability density function of the random

variable x. Provided,

(i)f(x) ≥ 0 and (ii)

∫ ∞
−∞

f(x)dx = 1

Table 2.1: Probability Distributions

Discrete distribution Continuous distribution
Discrete uniform distribution Uniform (or rectangular) distribution
Binomial distribution Normal (or Gaussian) distribution
Geometric distribution Gamma distribution
Multi modular distribution Exponential distribution
Poisson distribution Laplace distribution
Hypergeometric distribution Weibull distribution
Negative binomial Rayleigh distribution
or Pascal’s distribution Beta distribution

In any physical problem, one chooses a particular type of probability distribution depending
on (i) the nature of the problem, (ii) the underlying assumptions associated with the
distribution of the parameters, (iii) the shape of the graph between the probability density
function f(x) (or distribution function F (x)) and x obtained after plotting the available data
and (iv) the convenience and simplicity afforded by the distribution. Some continuous
probability distributions are presented here. In this thesis, Uniform Distribution,
Exponential distribution and Normal distribution have been used for stochastic models.

Uniform Distribution or rectangular Distribution:
A continuous random variable X , is said to have a uniform distribution, if its probability
density function f(x) (cf. Figure-2.1) is given by

f(x) =

{ 1

b− a
, a < x < b

0, elsewhere

where a and b are two parameters of the distribution.

Exponential Distribution:
A continuous random variableX , is said to have an exponential distribution, if its probability
density function f(x) (cf. Figure-2.2) is of the form:

f(x) = λ exp{−λ(x− θ)}, θ ≤ x , λ > 0
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Figure 2.1: p.d.f. of uniform distribution

Figure 2.2: p.d.f. of exponential distribution

where λ and θ are two parameters of the distribution. When θ = 0, the density function f(x)
reduces to the following.

f(x) = λ exp{−λx}, 0 ≤ x <∞

Normal Distribution or Gaussian Distribution:
The best known and most widely used probability distribution is the Normal distribution. The
density function of this is a bell-shaped symmetrical curve about mean and its probability
density function with parameters µ and σ(> 0) is defined as:

f(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
−∞ < x <∞

where,= µ and = σ2 be the mean and variance of the distribution respectively.
The notation N(µ,σ) is usually used to represent this distribution with mean µ and standard
deviation σ and its density function is a bell-shaped symmetrical curve about µ (cf.
Figure-2.3).
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Figure 2.3: p.d.f. of normal distribution

Beta Distribution:
A continuous random variable X , is said to have a beta distribution [c.f. Figure-2.4], if its
probability density function f(x) is given by

f(x) =
xl−1(1− x)m−1

β(l,m)
, 0 ≤ x ≤ 1 ; l,m > 0

where,

β(l,m) =
Γ(l)Γ(m)

Γ(l +m)
=

∫ 1

0

xl−1(1− x)m−1dx

l and m being two positive parameters of the distribution.

Weibull Distribution:
A random variable X has a Weibull distribution if there exist three parameters c (> 0), d
(> 0) and µ such that

Y =

(
X − µ
d

)c
which has the exponential distribution with the probability density function

fY (y) = ey (0 < y)

Then the probability density function of X denoted by f(x) (cf. Figure-2.5) is given by

f(x) = cd−1

(
x− µ
d

)c−1

exp

[{
−(x− µ)

d

}c]
where µ < x. Now, the standard Weibull distribution is obtained by putting d = 1 and µ = 0.
When µ = 0, then

f(x) = cd−cxc−1exp

{
−
(
x

d

)c}
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Figure 2.4: c.d.f. and p.d.f. of Beta distribution of first kind

Taking α = d−c and β = c, we have

f(x) = αβxβ−1exp
{
− αxβ

}
which is the form of two parameters Weibull distribution.

2.1.3 Chance Constraint Method
Chance-constrained programming is one of the techniques of stochastic programming which
deals with a situation where some or all parameters of the problem are described by random
variables. Chance-constrained technique is used in the models to remove the randomness of
random parameters which follows normal distribution. The chance constraint is taken in the
form-

Prob(|T − Ĥ| ≤ β) ≥ pr (2.1)

with Ĥ as the random variable which follows normal distribution with mean mĤ and
variance σĤ . T is the deterministic form of Ĥ . Then the equation (2.1) can be rewrite as

Prob(T − β ≤ Ĥ) ≥ pr

and Prob(Ĥ − T ≤ β) ≥ pr ,

From the first inequality

Prob(
T − β −mĤ

σĤ
≤ Ĥ −mĤ

σĤ
) ≥ pr
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Figure 2.5: p.d.f of Weibull distribution

Now Ĥ−mĤ
σĤ

represents the standard normal variate with mean 0 and variance 1. i.e.

Prob(T − β ≤ Ĥ) = 1 − F (
T − β −mĤ

σĤ
)

Where F (x) represents the continuous distribution function of standard normal distribution.
Let ε be the standard normal value such that

F (ε) = pr =
1√
2Π

∫ ε

−∞
e−

t2

2 dt.

Then the statement Prob(T − β ≤ Ĥ) ≥ pr is true if and only if

T − β −mĤ

σĤ
≤ − ε

T ≤ mĤ + β − ε.σĤ

Similarly from the 2nd inequality it can be reduce that

mĤ − β − ε.σĤ ≤ T

Thus the chance constraint (2.1) is reduces to

mĤ − β − ε.σĤ ≤ T ≤ mĤ + β − ε.σĤ

where, ε is a real number satisfying the equation (2.2).
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2.1.4 Fuzzy Set Theory
The concept of fuzzy set was initialized by Zadeh [274] in 1965. Fuzzy set theory has
been well developed and applied in a wide variety of real problems including inventory
control problems. It was developed to define and solve the complex system with sources of
uncertainty or impreciseness which are non-stochastic in nature. The term “FUZZY” was
proposed by Prof. L, A. Zadeh in 1962 [273]. A short delineation of the fuzzy set theory is
given below.

2.1.2.1 Fuzzy Set
Fuzzy sets deal with objects that are ‘matter of degree’, with all possible grades of truth
between yes or no. So a fuzzy set is a class of objects in which there is no sharp boundary
between those objects that belong to the class and those that do not. Let X be a collection of
objects and x be an element of X, then a fuzzy set Ã in X is a set of ordered pairs
Ã = {(x, µÃ(x))/x ∈ X}, where µÃ(x) is called the membership function or grade of
membership of x in Ã which maps X to the membership space M which is considered as the
closed interval [0,u], where 0 < u ≤ 1.

Note: When M consists of only two points 0 and 1, Ã becomes a non-fuzzy set (or Crisp set)
and µÃ(x) reduces to the characteristic function of the non-fuzzy set (or crisp set).

• Equality: Two fuzzy sets Ã and B̃ in X are said to be equal if and only if µÃ(x) =
µB̃(x),∀x ∈ X.

• Containment: A fuzzy set Ã in X is contained in or is a subset of another fuzzy set
B̃ in X , written as Ã ⊂ B̃ if and only if µÃ(x) ≤ µB̃(x),∀x ∈ X.

• Support: The support of a fuzzy set Ã is a crisp set, denoted by S(Ã), and defined as
S(Ã) = {x |µÃ(x) > 0}.

• Height: The height of a fuzzy set Ã is the maximum membership grade value of Ã
and denoted by h(Ã) = sup

x∈X
µÃ(x), where X is universal set.

• Normal fuzzy set: A fuzzy set Ã is called normal if its height is 1, i.e., if h(Ã) =
sup
x∈X

µÃ(x) = 1

• Core: The core of a fuzzy set Ã is a set of all points with unit membership degree in
Ã denoted by Core(Ã), and defined as Core(Ã) = {x ∈ X |µÃ(x) = 1}.

• Convexity: A fuzzy set Ã in X is said to be convex if and only if for any x1, x2 ∈
X, the membership function of Ã satisfies the inequality µÃ(λx1 + (1 − λ)x2) ≥
min{µÃ(x1), µÃ(x2)} for 0 ≤ λ ≤ 1.
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2.1.2.2 Fuzzy Number
A fuzzy number is a convex, normal fuzzy set defined on the real line. Here some
definitions of fuzzy numbers are presented below.

A general shape of a fuzzy number following the above definition may be shown
pictorially as in Fig. 2.6. Here, a1, a2, a3 and a4 are real numbers. A fuzzy number Ã in X
is said to be discrete or continuous according as its membership function µÃ(x) is discrete
or continuous. Linear Fuzzy Number (LFN), Triangular Fuzzy Number (TFN), Parabolic
Fuzzy Number (PFN) and Trapezoidal Fuzzy Number (TrFN), are special classes of
continuous fuzzy numbers.

Figure 2.6: Membership func-
tion of general fuzzy number
Ã = (a1, a2, a3, a4)

Figure 2.7: Membership function of
LFN

Definition 2.1. Linear Fuzzy Number (LFN): A LFN Ã is specified by two parameters
(a1, a2) and is defined by its continuous membership function µÃ(x) : X → [0, 1] as follows
(cf. Fig. 2.7):

µÃ(x) =


0 if x ≤ a1
a2 − x
a2 − a1

if a1 ≤ x ≤ a2

1 if x ≥ a2

Definition 2.2. Triangular Fuzzy Number (TFN): A TFN Ã is specified by the triplet
(a1, a2, a3) and is defined by its continuous membership function µÃ(x) : X → [0, 1] as
follows (cf. Fig. 2.8):

µÃ(x) =


x− a1

a2 − a1

if a1 ≤ x ≤ a2

a3 − x
a3 − a2

if a2 ≤ x ≤ a3

0 otherwise
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Figure 2.8: Membership function of
TFN

Figure 2.9: Membership function of
PFN

Definition 2.3. Parabolic Fuzzy Number (PFN): A PFN Ã is also specified by the triplet
(a1, a2, a3) and is defined by its continuous membership function µÃ(x) : X → [0, 1] as
follows (cf. Fig. 2.9):

µÃ(x) =


1− (

a2 − x
a2 − a1

)2 for a1 ≤ x ≤ a2

1− (
x− a2

a3 − a2

)2 for a2 ≤ x ≤ a3

0 otherwise

Definition 2.4. Trapezoidal Fuzzy Number (TrFN): A TrFN Ã is specified by four
parameters (a1, a2, a3, a4) and is defined by its continuous membership function
µÃ(x) : X → [0, 1] as follows (cf. Fig. 2.10):

µÃ(x) =



x− a1

a2 − a1

for a1 ≤ x ≤ a2

1 for a2 ≤ x ≤ a3
a4 − x
a4 − a3

for a3 ≤ x ≤ a4

0 otherwise

Figure 2.10: Membership function of
TrFN

Figure 2.11: α-cut of general fuzzy
number Ã = (a1, a2, a3, a4)
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Definition 2.5. α - Cut of a fuzzy number: α- cut of a fuzzy number Ã in X is denoted by
A[α] and is defined as the following crisp set (cf. Fig. 2.11):

A[α] = {x : µÃ(x) ≥ α, x ∈ X} where α ∈ [0, 1]

A[α] is a non-empty bounded closed interval contained in X and it can be denoted by
A[α] = [AL(α), AR(α)]. AL(α) and AR(α) are the lower and upper bounds of the closed
interval respectively. Fig. 2.11 represents a fuzzy number Ã with α-cuts
A[α1] = [AL(α1), AR(α1)], A[α2] = [AL(α2), AR(α2)]. It shows that if α2 ≥ α1 then
AL(α2) ≥ AL(α1) and AR(α1) ≥ AR(α2). Here, A′[α] = {x ∈ X|µÃ(x) > α} is called
‘strong α-level set’

Definition 2.6. α-cut of a function: Let F̃ (X) be the space of all compact and convex fuzzy
sets on X . If f : <n → < is a continuous function, then f̃ : F̃ (<n)→ F̃ (<) is well defined
function and its α-cut f̃(u)[α] is given by (cf. Roman-Flores et al. [207])

f̃(u)[α] = f(u[α]), ∀α ∈ [0, 1],∀ũ ∈ F̃ (<n) (2.2)

where f(A) = {f(a)/a ∈ A}.

Definition 2.7. Fuzzy Extension Principle [275]: If ã , b̃ ⊆ < and c̃ = f(ã, b̃), where
f : <×< → < is a binary operation, membership function µc̃ of c̃ is defined as (cf. page 53
of Zimmermann [278], second revised version)

For each z ∈ <, µc̃(z) = sup{min(µã(x), µb̃(y)), x, y ∈ < and z = f(x, y)} (2.3)

2.1.2.3 Defuzzification Method
In the literature of fuzzy mathematics, several approaches are available to convert a fuzzy
number into its equivalent crisp number [50, 51, 95, 269]. Each method has some merits and
demerits over the others. In this thesis, used defuzzification methods are discussed below.

A. Graded Mean Integration Representation (GMIR) of Fuzzy Number: Chen and
Hsieh [50,51] introduced GMIR method based on the integral value of graded mean α-level
of a generalized fuzzy number. The graded mean α-level value of generalized fuzzy number
Ã = (A1, A2, A3, A4) is α[AL(α)+AR(α)

2
], α ∈ [0, 1]. Then the GMIR of a general fuzzy

number Ã is

P (Ã) =

1∫
0

α[
AL(α) + AR(α)

2
]dα/

1∫
0

αdα. =
1

6
[A1 + 2A2 + 2A3 + A4] (2.4)

Here equal weightage has been given to the left and right parts of the membership function.
The representation given by (2.4) can be generalized/modified by replacing [AL(α)+AR(α)]

2
,
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α ∈ [0, 1] with [kAL(α) + (1 − k)AR(α)], α ∈ [0, 1], where the value of k depends on the
preference of the decision maker. Therefore, the modified form of Eq. (2.4) is

Pk(Ã) =

1∫
0

α[k AL(α) + (1− k)AR(α)]dα/

1∫
0

αdα

=
1

3
[k(A1 + 2A2) + (1− k)(2A3 + A4)]. (2.5)

The method is also known as k-preference integration representation.

B. Possibility/Necessity Measure of Fuzzy Event
In order to measure a fuzzy event, Zadeh [275] proposed the concept of possibility measure
in the year 1978. Considering the degree of membership µF̃ (u) of an element ũ in a fuzzy
set F̃ , defined on a referential U , one can find in the literature, three interpretations of this
degree [83].

Degree of similarity: According to degree of similarity, µF̃ (u) is the degree of proximity of
ũ to prototype elements of F̃ . Historically, this is the oldest semantics of membership grades
since Bellman et al. [14].

Degree of preference: According to degree of preference, F̃ represents a set of more or
less preferred objects (or values of a decision variable x) and µF̃ (u) represents an intensity
of preference in favour of object ũ, or the feasibility of selecting ũ as a value of x. Fuzzy
sets then represent criteria or flexible constraints. This view is the one later put forward by
Bellman and Zadeh [15], it has given birth to an abundant literature on fuzzy optimization,
especially fuzzy linear programming and decision analysis.

Degree of uncertainty: This interpretation was proposed by Zadeh [275] when he
introduced the possibility theory and developed his theory of approximate reasoning [276].
µF̃ (u) is then the degree of possibility that a parameter x has value ũ, given that all that is
known about it is that “x is F̃ ”. Then the values encompasses by the support of the
membership functions are mutually exclusive, and the membership degrees rank these
values in terms of their respective plausibility. Set functions called possibility and necessity
measures can be derived so as to rank-order events in terms of unsurprising-ness and
acceptance respectively.

Figure 2.12: (i)Possibility; (ii)Measure of Pos(ã ≥ b̃)
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Let ã and b̃ be two fuzzy numbers with membership functions µã(x) and µb̃(x) respectively.
Then according to Dubois and Prade [82], Liu and Iwamura [153], Zadeh [275]

pos(ã ∗ b̃) = sup{min(µã(x), µb̃(y)), x, y ∈ <, x ∗ y}, (2.6)

where pos represents possibility, ∗ is any one of the relations >,<,=,≤,≥ [c.f. Figure-
2.12].

nes(ã ∗ b̃) = 1− pos(ã ∗ b̃), (2.7)

where nes represents necessity.

Similarly, possibility and necessity measures of ã with respect to b̃ are denoted by Πb̃(ã)
and Nb̃(ã) respectively and are defined as

Πb̃(ã) = sup{min(µã(x), µb̃(x)), x ∈ <} (2.8)
Nb̃(ã) = min{sup(µã(x), 1− µb̃(x)), x ∈ <}. (2.9)

According to the definitions of fuzzy numbers, following lemmas can easily be derived.

Lemma 2.1. If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, pos(ã > b) ≥
α iff

a3 − b
a3 − a2

≥ α.

Lemma 2.2. If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, nes(ã > b) ≥
α iff

b− a1

a2 − a1

≤ 1− α.

Lemma 2.3. If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, pos(ã ≤ b) ≥
α iff

b− a1

a2 − a1

≥ α.

Lemma 2.4. If b̃ = (b1, b2, b3) and ã = (a1, a2, a4) be TFNs with 0 < a1 0 < b1, pos(b̃ ≥
ã) ≥ α iff b3−a1

a2−a1+b3−b2 ≥ α.

Lemma 2.5. If ã = (a1, a2, a3) be a TFN and b be a crisp number with 0 < a1 and 0 < b,

Πã(b) = Nã(b) =


b−a1
a2−a1 for a2 ≥ b ≥ a1
a3−b
a3−a2 for a3 ≥ b ≥ a2

0 otherwise.

Lemma 2.6. [165]: If ã = (a1, a2, a3, a4) be a TrFN and b be a crisp number then

pos(ã ≥ b) =


1 if a3 ≥ b
a4−b
a4−a3 if a3 ≤ b ≤ a4

0 otherwise
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Lemma 2.7. [165]: If ã = (a1, a2, a3, a4) be a TrFN and b be a crisp number then

nes(ã ≥ b) =


1 if a1 ≥ b
a2−b
a2−a1 if a1 ≤ b ≤ a2

0 otherwise

C. Credibility Measure [156]: Let Ã be any fuzzy number. Then credibility measure of Ã
is denoted by cr(Ã) and defined as

cr(Ã) =
1

2
[pos(Ã) + nes(Ã)] (2.10)

More generally, according to Maity [165] the above form can be considered as

cr(Ã) = [ρpos(Ã) + (1− ρ)nes(Ã)] where 0 ≤ ρ ≤ 1.

D. Fuzzy Expectation [154]: Let X̃ be any normalized fuzzy variable. The expected value
of the fuzzy variable X̃ is denoted by E[X̃] and defined by

E[X̃] =

∫ ∞
0

cr(X̃ ≥ r) dr −
∫ 0

−∞
cr(X̃ ≤ r) dr (2.11)

provided that at least one of the two integral is finite.

Lemma 2.8. [165]: If Ã = (a1, a2, a3) be a TFN and r be a crisp number, expected value
of Ã, E(Ã) is given by

E[Ã] =
1

2
[(1− ρ)a1 + a2 + ρ a3]

where ρ (0 ≤ ρ ≤ 1) is the degree of optimism/pessimism for DM.

Lemma 2.9. [165]: If Ã = (a1, a2, a3, a4) is a TrFN and r is a crisp number, then expected
value of Ã, E[Ã], is given by

E[Ã] =
1

2
[(1− ρ)(a1 + a2) + ρ(a3 + a4)]

where ρ (0 ≤ ρ ≤ 1) is the degree of optimism/pessimism for DM.

2.1.5 Fuzzy Logic and Fuzzy Inference
fuzzy expression: An n-dimensional fuzzy expression function is a mapping from [0, 1]n

to [0, 1]. i.e, f : [0, 1]n → [0, 1].
fuzzy logic: The fuzzy logic is a logic represented by the fuzzy expression (formula) which
satisfies the followings.
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i) Truth values, 0 and 1, and variable xi (∈ [0.1], i = 1, 2, .., n) are fuzzy expressions.

ii) If f is a fuzzy expression, ∼ f is also a fuzzy expression.

iii) If f and g are fuzzy expressions, f ∧ g and f ∨ g are also fuzzy expressions.

where ∼ (negation), ∧(conjunction) and ∨ (disjuction) are used as in the classical
logic. Thus, for a, b ∈ [0 , 1], Negation; ∼ a = 1 − a; Conjunction
a ∧ b = Min(a, b); Disjunction a ∨ b = Max(a, b).

Over view of fuzzy inference process:

The term ”inference” refers to a process of obtaining new information by using existing
knowledge and it is commonly referred to as IF-THEN rule-based form. It typically
expresses an inference such that if we know a fact (premise, hypothesis, antecedent), then
we can infer or derive another fact called a conclusion (consequent) i.e.

”If x is a Then y is b ”.
Different steps of fuzzy inference process are

Fuzzification of input value: When a value of premise is given as an input, it must
correspond to some one or more linguistic fuzzy sets with some membership values.

Figure 2.13: fuzzyfication of the inputs

Rule Strength Calculation: After the inputs are fuzzified, the degree to which each part of
the antecedent is satisfied for each rule is known. The degree of a rule is the rule strength of
the corresponding rule. If there are more than one antecedent then the rule strength is
calculated by the standard min operator µRi = ∧{µRi Ã(x) , µR)i

B̃(y), ....}, where
µRi Ã(x) , µRi B̃(y), .... are the membership values of the inputs x, y... to the antecedents Ã,
B̃ of the rule Ri. Thus the output is a single truth value for each rule and this is the rule
strength of the corresponding rule lies between 0 and 1.

Fuzzy output: After calculation of rule strength for each rule, the fuzzy output implied by
the rule is the area bounded by the line corresponding to the rule strength calculated by
standard aggregation operator ∨{µÃ(x) , µB̃(y), ....}.
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Defuzzification: The defuzzification process consists of fuzzy output and gives a crisp
value as an output. Here centroid formula, which returns the center of area under the curve,
is given by - output =

∫
xµ(x)∫
µ(x)

2.1.6 A Method for Construction of a Fuzzy Number
In this section, triangular fuzzy number corresponding to a market parameter [such as selling
price, demand etc.] is constructed from a set of data collected from some market experts
following Chang [46]. The membership function of a triangular fuzzy number Ã(m, a, b) is
of the from.

µÃ(x) =


x− a
m− a

, for a ≤ x ≤ m

b− x
b−m

, for m < x ≤ b

0, elsewhere

Let g1, g2, · · · , gn are the assertions made by n different experts for a particular parameter
[like low demand, high selling price etc]. In estimation of the fuzzy numbers, the center
around which the gi gather is to be estimated by giving more importance to the gi’s lying
closer to the center. In other words, the estimation of this center is a weighted average of
the gi. To approximate the center, a distance matrix G = [dij]n,n of the relative distances
between gi’s is calculated, where dij = |gi − gj| and dii = 0, dij = dji. Then the average
relative distances corresponding to gi is given by d̄i =

∑n
j=1 dij/(n − 1). In this method

the degree of importance is determined by pair-wise comparisons between gi’s which is
based on the average distances. If P = [pij]n,n be the pair -wise comparison matrix then
pij = d̄j/d̄i, pii = 1, pij = 1/pji. Let wi be the true degree of importance of gi and
0 ≤ wi ≤ 1. As P is the matrix obtained from comparison of distances, it is perfectly
consistent. Therefore, pij = wi/wj ∀i, j. If w be the column vector of wi, then Pw = nw,
which implies that n is an eigenvalue of P and w is the corresponding eigenvector with∑n

i=1 wi = 1, wj = 1/
∑n

i=1 pij, j = 1, 2, · · · , n. The importance degree wi serves as the
weight associated with gi.

Thus the mode of the fuzzy number, m =
∑n

i=1 wigi.

The mean deviation of the fuzzy number Ã(m, a, b) is defined as σ =
∫ b
a |x−m|.µÃ(x)dx∫ b

a µÃ(x)dx
.

Rewriting this equation we have σ = (m−a)2+(b−m)2

3(b−a)
.

Let ξ be the ratio of left spread to right spread, that is ξ = m−a
b−m . Using the expressions for σ

and ξ we have,
a = m− 3(1+ξ)ξ.σ

1+ξ2
. b = m+ 3(1+ξ)σ

1+ξ2
.

Now as the parameters σ, ξ are depends on a, b therefore σ, ξ are unknown before a, b
known. So σ, ξ are approximated from the collected data as follows. σ is approximated by
the average deviation where the average deviation is calculated from the collected data by
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the formula σ =
∑n

i=1 wi|gi −m|. For the approximation of ξ all gi’s are partitioned into
two set such as

Let, ∆ = {1, 2, · · · , n}, A = {i ; gi < m, i ∈ ∆}, B = {i ; gi ≥ m, i ∈ ∆}

now calculate to values gl, gr defined as

gl =

∑
i∈Awigi∑
i∈Awi

, gr =

∑
i∈B wigi∑
i∈B wi

Thus the ratio of the left spread to the right spread approximated as, ξ = m−gl
gr−m . Then the

lower end and the upper end of the fuzzy number Ã(m, a, b) are calculated.

2.1.7 Fuzzy-random variable and its properties
Definition 2.8. Fuzzy-random variable [203]: Let R is the set of real numbers, Fc(R) is
set of all fuzzy variables and Gc(R) is all of non-empty bounded close interval. In a given
probability space (Ω, F, P ), a mapping ξ : Ω→ Fc(R) is called a fuzzy random variable in
(Ω, F, P ), if ∀ α ∈(0,1], the set-valued function ξα : Ω→ Gc(R) defined by
ξα(ω) = (ξ(ω))α = {x|x ∈ R, µξ(ω)(x) ≥ α}, ∀ω ∈ Ω, is F measurable. Different semantics
of fuzzy-random variable are also presented by Xu and Zhou [?].

Theorem 2.1. Let ˜̄ξ is LR fuzzy random variable, for any ω ∈ Ω, the membership function
of ˜̄ξ(ω) is

µ ˜̄ξ(ω)
(t) =


L

(
ξ̄(ω)−t
ξL

)
for t ≤ ξ̄(ω)

R

(
t−ξ̄(ω)
ξR

)
for t ≥ ξ̄(ω)

where the random variable ξ̄(ω) is normally distributed with mean mξ and standard devia-
tion σξ and ξL, ξR are the left and right spreads of ˜̄ξ(ω). The reference functions L: [0,1]→
[0,1] and R : [0,1]→ [0,1] satisfy that L(1)=R(1)=0,L(0)=R(0)=1, and both are monotone
functions. Then{

Pr[Pos{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ

Pr[Nec{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
are equivalent to

t ≤
{
mξ + σξΦ

−1(1− γ) + ξRR
−1(δ)

mξ + σξΦ
−1(1− γ)− ξLL−1(1− δ)

where Φ is standard normally distributed, δ, γ ∈[0,1] are predetermined confidence levels.

Proof. According to definition of possibility we get,

Pos[ ˜̄ξ(ω) ≥ t] ≥ δ ⇔ R

[
t−ξ̄(ω)
ξR

]
≤ δ ⇔ ξ̄(ω) ≥ t− ξRR−1(δ)

So for predetermined level δ, γ ∈ [0, 1] we have,
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Pr[Pos{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
⇔ Pr[ξ̄(ω) ≥ t− ξRR−1(δ)] ≥ γ

⇔ Pr[
ξ̄(ω)−mξ

σξ
≥ t−ξRR−1(δ)−mξ

σξ
] ≥ γ

⇔ Φ

(
t−ξRR−1(δ)−mξ

σξ

)
≤ 1− γ

⇔ t ≤ mξ + σξΦ
−1(1− γ) + ξRR

−1(δ)
Similarly from the measure of necessity we have,

Nes[ ˜̄ξ(ω) ≥ t] ≥ δ ⇔ L

[
ξ̄(ω)−t
ξL

]
≥ 1− δ ⇔ ξ̄(ω) ≥ t+ ξLL

−1(1− δ)

So for predetermined level δ, γ ∈ [0, 1] we have,
Pr[Nes{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
⇔ t ≤ mξ + σξΦ

−1(1− γ)− ξLL−1(1− δ)
The proof is complete.

2.2 Single-Objective Optimization in Crisp Environment
and Solution Techniques

2.2.1 Single-Objective Optimization Problem
The problem of optimization concerns with the maximization/minimization of an algebraic
or a transcendental equation of one or more variables, known as objective function under
some available resources which are represented as constraints. Such type of problem is
known as Single-Objective Optimization Problem (SOOP). This can be formulated as:

Find x = (x1, x2, ..., xn)T

which maximizes/minimizes f(x)
subject to x ∈ X

where X =

x :
gj(x) ≤ 0, j = 1, 2, ..., l
hk(x) = 0, k = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n




(2.12)

where, f(x), gj(x), j = 1, 2, ..., l and defined on n-dimensional set.
It is noted that, when both the objective function and hk(x), k = 1, 2, ...,m are functions

constraints are linear, the above SOOP becomes a SOLOP. Otherwise, it is a SONLOP.
A decision variable vector x satisfying all the constraints is called a feasible solution to

the problem. The collection of all such solutions forms a feasible region. The SOOP (2.12)
is to find a feasible solution x∗ such that for each feasible point x, f(x) ≤ f(x∗) for
maximization problem and f(x) ≥ f(x∗) for minimization problem. Here, x∗ is called an
optimal solution or solution to the problem.
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Local Minimum: x∗ ∈ X is said to be a local minima of (2.12) if there exists an ε > 0
such that f(x) ≥ f(x∗), ∀x ∈ X : |x− x∗| < ε,.
Convex Function: A function f(x1, x2, ..., xn) is convex if the Hessian Matrix, given by
H(x1, x2, ..., xn) =

[
∂2f

∂xi∂xj

]
n×n

, is positive semi-definite/positive definite.

Global Minimum: x∗ ∈ X is said to be a global minima of (2.12) if
f(x) ≥ f(x∗), ∀x ∈ X . Otherwise, if the function f(x) is convex then the local minimum
solution x ∈ X is global minimum.
Convex Programming Problem: The problem defined in (2.12) is to be called convex
programming problem if the objective function f(x1, x2, ..., xn) and the constraint functions
gj(x1, x2, ..., xn), j = 1, 2, ...,m are convex.

For solution of SONLOP by any available NLP method, local optimal solutions are
guaranteed. Also, it is known that, a local minimum/maximum solution is a global
minimum/maximum for a convex/concave optimization (i.e., a NLP problem to minimize a
convex function or to maximize a concave function) problem.

Lot of mathematical techniques based on linearization, gradient based techniques,
evolutionary algorithms, stochastic search algorithms, etc., are available in the literature to
solve such type of SONLOP. Here, few methods are illustrated, which have been used in
this thesis to solve the inventory problems, non-linear in nature.

2.2.2 Gradient Based Solution Techniques for Single-Objective
Optimization

Necessary Condition for Optimality: If a function f(x) is defined for all x ∈ X and has a
relative minimum at x = x∗, where x∗ ∈ X and all the partial derivatives ∂f(x)

∂xr
for

r = 1, 2, ..., n are exists at x = x∗, then ∂f(x∗)
∂xr

= 0.
Sufficient Condition for Optimality: The sufficient condition for a stationary point x∗ to
be an extreme point is that the matrix of second partial derivatives (Hessian Matrix) of f(x)
evaluated at x = x∗ is (i) positive definite when x∗ is a relative minimum point, and (ii)
negative definite when x∗ is a relatively maximum point.

2.2.2.1 Generalized Reduced Gradient (GRG) Technique
The GRG technique is a method for solving NLP problems for handling equality as well as
inequality constraints. Consider the NLP problem:

Find x = (x1, x2, ...xn)T

which maximizes f(x)
subject to x ∈ X

where X =

x :
gj(x) ≤ 0, j = 1, 2, ..., l
hk(x) = 0, k = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n




(2.13)
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By adding a non-negative slack variable sj (≥ 0), j = 1, 2, ..., l to each of the above
inequality constraints, the problem (2.13) can be stated as,

Maximize f(x)
subject to x ∈ X

where X =

x :

x = (x1, x2, ...xn)T

gj(x) + sj = 0, j = 1, 2, ..., l
hk(x) = 0, k = 1, 2, ...,m
xi ≥ 0 i = 1, 2, ...n
sj ≥ 0, j = 1, 2, ...l




(2.14)

where the lower and upper bounds on the slack variables, sj, j = 1, 2, ..., l are taken as a
zero and a large number (infinity) respectively.

Denoting sj by xj+n, gj(x) + sj by ξj , hk(x) by ξl+k, the above problem can be rewritten
as,

Maximize f(x)
subject to x ∈ X

where X =

x :
x = (x1, x2, ...xn+l)

T

ξj(x) = 0, j = 1, 2, ...l +m
xi ≥ 0 i = 1, 2, ...n+ l



 (2.15)

This GRG technique is based on the idea of elimination of variables using the equality
constraints. Theoretically, (l+m) variables (dependent variables) can be expressed in terms
of remaining (n − m) variables (independent variables). Thus one can divide the (n + l)
decision variables arbitrarily into two sets as

x = (y, z)T

where, y is (n −m) design or independent variables and z is (l + m) state or dependent
variables and

y = (y1, y2, ..., yn−m)T

z = (z1, z2, ..., zl+m)T

Here, the design variables are completely independent and the state variables are dependent
on the design variables used to satisfy the constraints

ξj(x) = 0, (j = 1, 2, ..., l +m).

Consider the first variations of the objective and constraint functions:

df(x) =
n−m∑
i=1

∂f

∂yi
dyi +

l+m∑
i=1

∂f

∂zi
dzi = ∇T

y f dy +∇T
z f dz (2.16)
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dξj(x) =
n−m∑
i=1

∂ξj
∂yi

dyi +
l+m∑
i=1

∂ξj
∂zi

dzi

or dξ = C dy +Ddz (2.17)

where ∇T
y f =

(
∂f

∂y1

,
∂f

∂y2

, ...,
∂f

∂yn−m

)
and ∇T

z f =

(
∂f

∂z1

,
∂f

∂z2

, ...,
∂f

∂zl+m

)

C =



∂ξ1

∂y1

... ... ...
∂ξ1

∂yn−m

∂ξ2

∂y1

... ... ...
∂ξ2

∂yn−m
... ... ... ... ... ... ...
... ... ... ... ... ... ...
∂ξl+m
∂y1

... ... ...
∂ξl+m
∂yn−m


, D =



∂ξ1

∂z1

... ... ...
∂ξ1

∂zl+m

∂ξ2

∂z1

... ... ...
∂ξ2

∂zl+m
... ... ... ... ... ... ...
... ... ... ... ... ... ...
∂ξl+m
∂z1

... ... ...
∂ξl+m
∂zl+m


,

dy = (dy1, dy2, ..., dyn−m)T

and dz = (dz1, dz2, ..., dzl+m)T

Assuming that the constraints are originally satisfied at the vector x (ξ(x) = 0), any
change in the vector dx must correspond to dξ = 0 to maintain feasibility at x + dx. Thus,
Eq. (2.17) can be solved as

Cdy +Ddz = 0

or dz = −D−1Cdy (2.18)

The change in the objective function due to the change in x is given by the Eq. (2.16), which
can be expressed, using Eq. (2.18) as

df(x) = (∇T
y f −∇T

z fD
−1C)dy

or
df(x)

dy
= GR

where GR = ∇T
y f −∇T

z fD
−1C

is called the generalized reduced gradient. Geometrically, the reduced gradient can be
described as a projection of the original n−dimensional gradient into the (n − l)
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dimensional feasible region described by the design variables.
A necessary condition for the existence of minimum of an unconstrained function is that

the components of the gradient vanish. Similarly, a constrained function assumes its
minimum value when the appropriate components of the reduced gradient are zero. In fact,
the reduced gradient GR can be used to generate a search direction S to reduce the value of
the constrained objective function. Similarly, to the gradient ∇f that can be used to
generate a search direction S for an unconstrained function. A suitable step length λ is to be
chosen to minimize the value of f(x) along the search direction. For any specific value of
λ, the dependent variable vector z is updated using Eq. (2.18). Noting that Eq. (2.17) is
based on using a linear approximation to the original non-linear problem, so the constraints
may not be exactly equal to zero at λ, i.e., dξ 6= 0. Hence, when y is held fixed, in order to
have

ξj(x) + dξj(x) = 0, j = 1, 2, ..., l +m (2.19)

following must be satisfied.

ξ(x) + dξ(x) = 0 (2.20)

Using Eq. (2.17) for dξ in Eq. (2.20), following is obtained

dz = D−1(−ξ(x)− Cdy) (2.21)

The value dz given by Eq. (2.21) is used to update the value of z as

zupdate = zcurrent + dz (2.22)

The constraints evaluated at the updated vector x and the procedure of finding dz using Eq.
(2.22) is repeated until dz is sufficiently small.

2.2.2.2 Variational Principle (Unconstraint problems)
The variational principle or method deals with the problem in which the quantity to be
optimized appears in an integral, i.e., it gives necessary condition for extreme value of the
quantity appearing in the integral. Here we have to find out a path y = y(x), a ≤ x ≤ b
which optimizes the functional

J =

b∫
a

F (y,
dy

dx
, x)dx (2.23)

The value of y is given at the end points x = a and x = b. These are called boundary
conditions.
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Now for the optimum value of J , the necessary condition is known as Euler’s equation
and is given by

∂F

∂y
− d

dx
(
∂F

∂ẏ
) = 0, where ẏ =

dy

dx
(2.24)

Solving above equation, the path y = y(x) can be obtained easily and for which the
functional J can be optimized.

Transversality condition: In the case, if y is not prescribed at an end points say, x = a
then we need an additional condition ∂F

∂ẏ
= 0 at x = a. This condition is called

transversality condition. Similar condition can be consider when y is not prescribed at
x = b.

2.2.3 Optimal Control Theory (Pontryagin Maximum Principle)
Pontryagin Maximum Principle: Let, the dynamic behavior of the system be described by
a vector differential equation subject to some specified initial conditions and

dx(t)

dt
= f1(x(t), u(t), t), x(0) = x0 (2.25)

x(t) is a vector of dependent variable and ẋ(t) is the rate of change of x(t) w.r.t time t.
u(t) is a dependent variable vector and f is the vector value function for the dependent
variable u(t) and time t.
Initial condition: The value of the dependent variable vector x(t0) takes on a specified set
of values, denoted by the vectorx0 with some specified time. The value of the dependent
variable x(t) w. r. t. time, starting from the initial time t0 up to the whole planning period T
will depend on the values of the control variables u(t) .

Therefore, for a given set of values of u(t) in the interval (t0, T ) and the above
differential equation can be solved to determine the values of x(t) over time in (t0, T ) and
subsequently the trajectory of the system can be obtained. The governing vector differential
equation (2.25) yields solution in general. However the existence and uniqueness of the
solution may exist under some vigorous mathematical criterion.

The decision marker is to choose a set of control functions such that the system can be
moved to a desired terminal state in the whole planning period T and the problem is the
realism of Control Theory. A system is said to be under control specified to a time t0 if for
any state x(t0) and any desired terminal state x(t1), there exit a finite time t1 > t0 and
control function u(t) in t within (t0, t1) that moves x(t0) to x(t1) at t1.

The optimal control problem and the problem in hand is to

Maximize J(u, x) =

∫ T

0

F (x(t), u(t), t)dt+ S(x(T ))

subject to
dx(t)

dt
= f1(x(t), u(t), t), x(0) = x0
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where F stands for the scalar integrated function in the objective function and S(x(t)) is
the salvage value function of the terminal state of the system.

The objective function J(u, x) is the control function being denoted as a function of u(t).
The problem is to choose the control function u(t), tε(0, t) which maximizes the objective
function J subjected to the dynamics constraints of the system.

Generally u(t) is taken as unconstrained. But in most practical cases of interest u(t) is
restricted to lie within the set of admissible functions and to satisfy some constraint equation
represented by the vector equation g(x(t), u(t), t) ≤ b.

The formulation of the problem now becomes

Maximize J(u, x) =

∫ T

0

F (x(t), u(t), t)dt+ S(x(T ))

subject to
dx(t)

dt
= f1(x(t), u(t), t), x(0) = x0

u(t) is a piece-wise continuous function and g(x(t), u(t), t) ≤ b
To solve the above optimal control problem we defined two function, viz (i) Hamitonion

and (ii) Lagrangian. Hamiltonion (H) can be expressed as

H(x, u, q, t) = F (x, u, t) + qT (t)f1(x, u, t),

Here, q(t) is a vector function of adjoint variables and are multipliers associated with the
dynamic system constraint. Again Lagrangian function can be expressed as:

L(x, u, q, λ, t) = H(x, u, q, t) + λT (g(x, u, t)− b), λ is the Lagrange multipliers associated
with the constraints g(x(t), u(t), t) ≤ b

The necessary conditions (not sufficient) to be satisfied for a control function to be
optimal are as follows:

A) Hamiltonian Maximizing condition: H(x∗, q∗, u∗, t) ≥ H(x∗, u, q∗, t) for all admissible
u.

B) System Dynamic Constraints:

dx∗(t)

dt
= f1(x∗(t), u∗(t), t), x∗(0) = x0

C) Stationary of the gradient of the Lagrangian with respect to u(t) at (x∗, u∗, λ∗.t∗) is

Lu(x
∗, u∗, λ∗, µ∗, t) = φ, a zero vector

D) Complementary slackness condition:

λ∗(t) ≥ φ, λ∗(t)T .(g(x∗(t), u∗(t), t)− b) = 0
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E) Adjoint equation:

dq(t)

dt
= −Lx(x∗(t), u∗(t).q∗(t), λ∗(t), t)

where Lx is the vector of partial derivatives of the Lagrangian with respect to x(t).
The terminal condition in q(t) as q∗(T ) = Sx(x(T )) is the Gradient of the Salvage value
function S w.r.t. x(t) at t=T.
For x∗(t), u∗(t), q∗(t), µ∗(t), the above conditions are to be solved simultaneously.
The steps of solution is then.

CASE-2.2.3a: Direct Solution

1) Solve with the Hamiltonian maximizing condition to obtain u∗(t) as a functions of
q(t), x(t) and t.
2) Solve the system dynamic constraint (2.25) equations with the initial condition
x(0) = x0 and the adjoint equations along with the boundary condition q(T ) = Sx(x(T ))
for trial values of µ∗(t) to get a two-point boundary valued problem (TPBVP) as x(t) is
specified at t = 0(x(0) = x0) where as q(t) is specified at t = T (q(T ) = Sx(x(T ))).
3) Check the Lagrangian and Complementary Slackness condition by choosing appropriate
values for µ∗(t).

CASE 2.2.3b: Numerical Solution

Start by using Hamiltonian maximizing condition,u∗(t) can be solved in terms of S(t) and
q(t) So solved values of u∗(t) then can be plugged into: dx∗(t)

dt
= f 1

1 (x∗, q∗, t) with
x∗(0) = x0

and dq∗(t)
dt

= −Hx(x
∗, q∗, t) with q∗(T ) = Sx(x

∗(t)).

The (TPBVP) for the variables (x∗, q∗) can be solved either numerically or by trial and
error method using the following steps.
Steps:
a) Guess a value of q(0) which converts the (TPBVP) into an initial value problem (IVP).
b) Solve for x∗(t) and q∗(t) numerically, and
c) Check for q∗(T ) = Sx(x(T )).
If this is not satisfied, we take better set of q(0) and proceed accordingly.

2.2.3.1 Lagrange Function

Let us consider Maximize J(u, x) =
∫ T

0
F (x(t), u(t), t)dt+ S(x(T ))

subject to ẋ(t) = f1(x(t), u(t), t),
g(x(t), u(t), t) ≤ b,
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x(0) = x0 and u(t) is a piece-wise continuous function of t.
Again Lagrangian function can be expressed as:
L(x, u, q, λ, t) = H(x, u, q, t) + λT (g(x, u, t) − b), λ is a Lagrange multipliers associated
with the constraints g(x(t), u(t), t) ≤ b which also satisfy the complementary slackness
condition.

2.2.3.2 Kuhn-Tucker Condition

Kuhn-Tucker’s necessary and sufficient conditions for Optimality: Let us consider a
maximization problem as

Maximize J(u, x) (2.26)
subject to gi(x(t), u(t)) ≤ bi, i = 1, 2, ..l (2.27)

where x(t) = x(x1(t), x2(t), ..., xn(t))T and u(t) = u(u1(t), u2(t), ..., un(t))T

For (2.26)-(2.27), to determine optimal u∗ and x∗,
Kuhn-Tucker’s necessary conditions are

∂J(u, x)

∂xj
−

m∑
i=1

λi
∂gi(x(t), u(t))

∂xj
= 0, j = 1, 2, ...n (2.28)

∂J(u, x)

∂uj
−

m∑
i=1

λi
∂gi(x(t), u(t))

∂uj
= 0, j = 1, 2, ...n (2.29)

λi (gi(x(t), u(t))− bi) = 0 (2.30)
and gi(x(t), u(t)) ≤ bi, λi ≥ 0 (2.31)

and sufficient conditions are :
J(u, x) is concave and all bi − gi(x, u) are convex functions of x, u.

2.2.4 Soft Computing Techniques for Optimization
Heuristic optimization provides a robust and efficient approach for solving complex real
world problems. Recently, complicated inventory control problems are also solved using
heuristic approaches by several researchers [155, 168]. Among basic heuristic algorithms
GA and PSO are much used in different areas of science and technology [19, 142]. In this
thesis, some soft computing techniques are developed/modified to solve different inventory
control problems and are presented below.

2.2.4.1 Genetic Algorithm (GA)
Now-a-days Genetic Algorithm (GA) (Michalewicz [178]; Mondal and Maiti, [181]) is
extensively used to solve complex decision making problems in different fields of science
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and technology. GA is an exclusive search algorithm based on the mechanics of natural
selection and genesis which initially was developed by Holland [110], then Goldberg [?].
General structure of GA is presented below:

GA procedures
Representation: A n-dimensional real vector’, Xi = (xi1, xi2, ..., xin), is used to represent
the ith solution, where xi1, xi2, ..., xin represent n decision variables of the decision making
problem under consideration. Xi is called ith chromosome and xij is called jth gene of ith

chromosome.
Initialization: N such solutions Xi = (xi1, xi2, ..., xin), i = 1, 2, ...,N are randomly
generated by random number generator within the boundaries of each variable [Bjl, Bjr], j=
1, 2, ..., n. These bounds are calculated from the nature of the problem and previous
experience. Initialized (P(1)) sub-function is used for this purpose.
Constraint Checking: For constrained optimization problems, at the time of generation of
each individuals Xi of P(1), constraints are checked using a separate sub-function “check
constraint(Xi)”, which returns 1 if Xi satisfies the constraints otherwise returns 0. If check
constraint (Xi) =1, then Xi is included in P(1) otherwise Xi is again generated and it
continues until constraints are satisfied.
Diversity Preservation: At the time of generation of P(1), diversity is maintained using
entropy originating from information theory. Following steps are used for this purpose.

(i) Probability, prjk, that the value of the ith gene (variable) of the jth chromosome which
is different from the ith gene of the kth chromosome, is calculated using the formula
prjk = 1− xji−xki

Bjr−Bjl
where [Bjl, Bjr] is the variation domain of the ith gene.

(ii) Entropy of the ith gene, Ei(M), i=1, 2, ..., n is calculated using the formula: Ei(M) =∑M−1
j=1

∑M
k=j+1 −prjklog(prjk), where M is the size of the current population.

(iii) Average entropy of the current population is calculated by the formula: E(M) =
1
n

∑n
i=1Ei(M)

(iv) Incorporating the above three steps, a separate sub-function “check diversity(Xi)” is
developed. Every time a new chromosome Xi is generated, the entropy between this
one and previously generated individuals is calculated. If this information quantity is
higher than a threshold, ET , fixed at the beginning, Xi is included in the population
otherwiseXi is again generated until diversity exceeds the threshold,ET . This method
induces a good distribution of initial population.

Fitness Value: This fitness value is measured to check whether the initialised or generated
chromosomes are suited for the consideration. Chromosome with higher fitness value
receives larger probability of inheritance in subsequent generation, whereas chromosome
with low fitness will more likely to be eliminated. In this thesis, the value of the objective
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function is taken as the fitness of the chromosome.
Algorithm 1: GA PSEUDOCODE

1

1. Start
2. Set iteration counter t=0, Maxsize=200, ε = 0.0001 and pm(0) = 0.9.
3. Randomly generate Initial population P(t), where diversity in the population is

maintained using entropy originating from information theory.
4. Evaluate initial population P(t).
5. Set Maxfit= Maximum fitness in P(t) and Avgfit=Average fitness of P(t).
6. While (Maxfit− Avgfit ≤ ε) do
7. t=t + 1.
8. Increase age of each chromosome.
9. For each pair of parents do
10 Determine probability of crossover p̃c for the selected pair of parents
11. Perform crossover with probability p̃c.
12. End for
13. For each offspring perform mutation with probability pm do
14. Store offsprings into offspring set.
15. End for
16. Evaluate P(t).
17. Remove from P(t) all individuals with age greater than their lifetime.
18. Select a percent of better offsprings from the offspring set and insert into

P(t), such that maximum size of the population is less than Maxsize.
19. Remove all offsprings from the offspring set.
20. Reduce the value of the probability of mutation pm.
21. End While
22. Output: Best chromosome of P(t).
23. End algorithm.

Crossover: For each pair of parent solutions Xi, Xj , a random number c is generated from
the range [0, 1] and if c ¡ pc, crossover operation is made on Xi, Xj . To make crossover
operation on each pair of coupled solutions Xi, Xj a random number c1 is generated from
the range [0,1] and their offsprings Y1 and Y2 are determined by the formula:

Y1 = c1Xi + (1− c1)Xj , Y2 = c1Xj + (1− c1)Xi.
For constrained optimization problems, if a child solution satisfies the constraints of

the problem, then it is included in the offspring set otherwise it is not included in the
offspring set.

Mutation:

(i) Selection for mutation: For each offspring generate a random number r from the range
[0, 1]. If r < pm then the solution is taken for mutation, where pm is the probability of
mutation.
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Figure 2.14: GA Process

(ii) Mutation process: To mutate a solution X = (x1, x2, ..., xn), a random integer I in the
range [1,n] has to be selected. Then replace xi by randomly generated value within the
boundary [Bil, Bir] of ith component of X. New solution (if satisfies constraints of the
problem) replaces the parent solution. If child solution does not satisfy the constraint,
then parent solution will not be replaced by child solution. Constraint checking of a
child solution Ci is made using “check constraint (Ci)” function.

Reduction process of pm: According to real world demand as generation increases, pm will
decrease smoothly since the search space was more wide initially and after some iterations,
it should move towards the convergence. This concept lead us to reduce the value of pm in
each generation. Let pm(0) is the initial value of pm. Then probability of mutation in T-th
generation pm(T ) is calculated by the formula pm(T ) = pm(0) exp(−T/α1), where α1 is
calculated so that the final value of pm is small enough (10−2 in our case). So
α1 = Maxgen/log[pm(0)

10−2 ], where Maxgen is the expected number of generations that the
GA can run for convergence.
Selection of offsprings: Maximum population growth in a generation is assumed as forty
percent. So not all offsprings are taken into the parent set for next generation. At first
offspring set is arranged in descending order in fitness. Then better solutions are selected
and entered into parent set such that population size does not exceeds Maxsize.
Termination Condition: Algorithm terminates when difference between maximum fitness
(Maxfit) of chromosome, i.e., fitness of the best solution of the population and average
fitness (Avgfit) of the population becomes negligible.
Implementation: With the above functions and values, the algorithm is implemented using
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C-programming language

2.3 Multi-Objective Optimization Problem

2.3.1 Multi-Objective Programming Problem
Development of single objective mathematical programming problems and methods for
their solutions have been presented in the earlier section. But, the world has become more
complex and almost every important real-world problem involves more than one objective.
In such cases, decision makers find imperative to evaluate best possible approximate
solution alternatives according to multiple criteria.

A general multi-objective programming problem (MOPP) is of the following form:

minimize fm(X), m = 1, 2, ...,M ;
subject to gj(X) ≥ 0, j = 1, 2, ..., J ;

xLi ≤ xi ≤ xUi , i = 1, 2, ..., n;

 (2.32)

where the solution X is a vector of n decision variables (DV). i.e. X = (x1, x2, ..., xn)T .
The last set of constraints are called variable bounds, restricting each DV xi to take a value
within a lower xLi and an upper xUi bound. These bounds constitute the decision space.
Here f1(x), f2(x), ..., fM(x) are M (≥ 2) objectives. It is noted that, if the objectives of
the original problem are: minimize fi(x), for i = 1, 2, ....,m0 and maximize fi(x) for i =
m0 + 1,m0 + 2, ....,M, then the objective in the mathematical formulation will be

Min F (x) = (f1(x), f2(x)...., fm0(x),−fm0+1(x),−fm0+2(x), ....,−fM(x))T .

subject to the same constraints as in (2.32).
If fi(x), (i = 1, 2, ....,M) and gj(x), (j = 1, 2, ...., J) are linear, the corresponding

problem is called Multi-Objective Linear Programming (MOLP) problem. When all or any
one of the above functions is non-linear, it is referred as a Multi-Objective Non-linear
Programming (MONLP) problem. Here, the problem is often referred to as a Vector
Minimum Problem (VMP).

Convex and non-convex MOPP: The multi-objective optimization problem (2.32) is said
to be convex if all the objective functions and the feasible region are convex, otherwise it is
called non-convex.

Ideal Objective Vector: An objective vector minimizing each of the objective functions is
called an ideal (or perfect) objective vector.

Complete optimal solution: x∗ is said to be a complete optimal solution to the MONLP in
(2.32) iff there exists x∗ ∈ X such that fi(x∗) ≤ fi(x), i = 1, 2, ...., k for all x ∈ X.

In general, the objective functions of the MONLP conflict with each other, a complete
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optimal solution does not always exist and so Pareto (or non dominated) optimality concept
is introduced.

Pareto optimal solution: x∗ is said to be a Pareto optimal solution to the MONLP iff there
does not exist another x ∈ X such that fi(x) ≤ fi(x

∗) for all i, i = 1, 2, ...., k and fj(x) <
fj(x

∗) for at least one index j, j = 1, 2, ...., k.
An objective vector F ∗ is Pareto-optimal if there does not exist another objective vector

F (x) such that fi ≤ f ∗i for all i = 1, 2, · · · , k and fj < f ∗j for at least one index j. Therefore,
F ∗ is Pareto-optimal if the decision vector corresponding to it is Pareto optimal.

Unless an optimization problem is convex, only locally optimal solution is guaranteed
using standard mathematical programming techniques. Therefore, the concept of Pareto-
optimality needs to be modified to introduce the notion of a locally Pareto-optimal solution
for a non-convex problem as defined by Geoffrion [?].

Locally Pareto optimal solution: x∗ ∈ X is said to be a locally Pareto optimal solution to
the MONLP if and only if there exists an r > 0 such that x∗ is Pareto optimal inX∩N(x∗, r),
where N(x∗, r) is a r-neighborhood of x∗, i.e, there does not exist another x ∈ X ∩N(x∗, r)
such that fi(x) ≤ fi(x

∗).

Concept of Domination: Most evolutionary multi-objective optimization algorithms use
the concept of domination. In these algorithms, two solutions are compared on the basis of
whether one dominates the other solution or not. Let us use the operator w between two
solutions i and j as i w j denotes that solution i is better than solution j on a particular
objective. Similarly i v j for a particular objective implies that solution i is worse than
solution j on this objective. With this assumption a solution x is said to dominate the other
solution y, if both the following conditions hold.
• The solution x is not worse than the solution y in all the objectives.
• The solution x is strictly better than the solution y in at least one objective, i.e., fj(x) w
fj(y) for at least one j ∈ {1, 2, ..k}

Now, let us introduce some non-linear programming techniques which have been used in this
thesis to achieve at least local Pareto optimal solutions.

2.3.2 Solution Techniques for Multi-Objective Programming Problem
in Crisp Environment

2.3.2.1 Multi-Objective Genetic Algorithm (MOGA) :
Genetic algorithm approach was first proposed by Holland [110]. Because of its generality
and its several advantages over conventional optimization methods it has been successfully
applied to many optimization problems. There are several approaches using genetic
algorithms to deal with the multi-objective optimization problems. These algorithms can be
classified into two types-(i) Non-Elitist MOGA and (ii) Elitist MOGA. A fast and elitist
MOGA was developed following Deb et al. [78] and is named as Fast and Elitist
Multi-objective Genetic Algorithm (FEMOGA).
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2.3.2.2 Fast and Elitist Multi-Objective Genetic Algorithm
This multi-objective genetic algorithm has the following two important components.

(a) Division of a population of solutions into subsets having non-dominated solutions:
Consider a problem having M objectives and take a population P of feasible solutions
of the problem of size N . We like to partition P into subsets F1, F2, · · · , Fk, such
that every subset contains non-dominated solutions, but every solution of Fi is not
dominated by any solution of Fi+1, for i = 1, 2, ..k − 1. To do this for each solution,
x, of P , calculate the following two entities.

(i) Number of solutions of P which dominate x, let it be nx.

(ii) Set of solutions of P that are dominated by x. Let it be Sx.

The above two steps require O(MN2) computations. Clearly F1 contains every
solution x having nx = 0. Now for each solution x ∈ F1, visit every member y of Sx
and decrease ny by 1. In doing so if for any member y, ny = 0, then y ∈ F2. In this
way F2 is constructed. The above process is continued to every member of F2 and
thus F3 is obtained. This process is continued until all subsets are identified. For each
solution x in the second or higher level of non-dominated subsets, nx can be at most
N − 1. So each solution x will be visited at most N − 1 times before nx becomes
zero. At this point, the solution is assigned a subset and will never be visited again.
Since there is at most N − 1 such solutions, the total complexity is O(N2). So overall
complexity of this component is O(MN2).

(b) Determine distance of a solution from other solutions of a subset: To determine
distance of a solution from other solutions of a subset following steps are followed:

(i) First sort the subset according to each objective function values in ascending
order of magnitude.

(ii) For each objective function, the boundary solutions are assigned an infinite dis-
tance value (a large value).

(iii) All other intermediate solutions are assigned a distance value for the objective,
equal to the absolute normalized difference in the objective values of two adjacent
solutions.

(iv) This calculation is continued with other objective functions.

(v) The overall distance of a solution from others is calculated as the sum of
individual distance values corresponding to each objective. Since M
independent sorting of at most N solutions (In case the subset contains all the
solutions of the population) are involved, the above algorithm has O(MNlogN)
computational complexity.
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Using the above two operations proposed multi-objective genetic algorithm takes the fol-
lowing form:

1. Set probability of crossover pc and probability of mutation pm.
2. Set iteration counter T = 1.
3. Generate initial population set of solution P (T ) of size N .
4. Select solution from P (T ) for crossover and mutation.
5. Made crossover and mutation on selected solution and get the child set C(T ).
6. Set P1 = P (T )UC(T ) // Here U stands for union operation.
7. Divide P1 into disjoint subsets having non-dominated solutions. Let these sets be
F1, F2, · · ·Fk.

8. Select maximum integer n such that order of P2(= F1UF2U ... UFn) ≤ N.
9. if O(P2) < N sort solutions of Fn+1 in descending order of their distance from other

solutions of the subset. Then select first N −O(P2) solutions from Fn+1 and add with
P2, where O(P2) represents order of P2.

10. Set T = T + 1 and P (T ) = P2.
11. If termination condition does not hold go to step-4.
12. Output: P(T)
13. End algorithm.

MOGAs that use non-dominated sorting and sharing are mainly criticized for their
• O(MN3) computational complexity
• non-elitism approach
• the need for specifying a sharing parameter to maintain diversity of solutions in the

population.
In the above algorithm, these drawbacks are overcame. Since in the above algorithm
computational complexity of step-7 is O(MN2), step-9 is O(MNlogN) and other steps are
≤ O(N), so overall time complexity of the algorithm is O(MN2). Here selection of new
population after crossover and mutation on old population, is done by creating a mating
pool by combining the parent and offspring population and among them, best N solutions
are taken as solutions of new population. By this way, elitism is introduced in the
algorithm. When some solutions from a non-dominated set Fj (i.e., a subset of Fj) are
selected for new population, those are accepted whose distance compared to others (which
are not selected) are much i.e., isolated solutions are accepted. In this way taking some
isolated solutions in the new population, diversity among the solutions is introduced in the
algorithm, without using any sharing function. Since computational complexity of this
algorithm < O(MN3) and elitism is introduced, this algorithm is named as FEMOGA.
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Part II

Inventory Models in Deterministic
Environment
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Chapter 3

Note on: Partial Trade Credit Policy of
Retailer in Economic Order Quantity
Models for Deteriorating Items with
Expiration Dates and Price Sensitive
Demand

3.1 Introduction

In supply chain management, it is too difficult to preserve deteriorating items in all business
sectors. Many products such as fruits, vegetables, medicines, high-tech products,
pharmaceuticals, and volatile liquids not only deteriorate continuously due to evaporation,
obsolescence and spoilage but also have their expiration dates, i.e., the product will have a
maximum lifetime which is time bound. However, only a few researchers take the
expiration date of a deteriorating item into consideration. In the present article, we consider
the replenishment policies for inventory of the items which are subject to deteriorate
continuously and also have their expiration dates.

On the other hand, to take the decision about procuring of an item, inventory management
is generally influenced by pricing of that item. Again, in selecting an item for use, the
selling price of that item is one of the decisive factors to the customers. It is well known
that the higher selling price of an item decreases the demand rate of that item where the
lesser price has the reverse effect. Hence, the demand rate of an item is dependent on the
selling price of that item. Incorporating this effect, we investigate the dependency on
pricing for deteriorating items with their expiration dates.
In daily life, the deterioration of goods is a frequent and common phenomenon.
Incorporating this feature in model formulation, Chung and Huang [63] amended
Huang [113] by developing two-warehouse inventory model for deteriorating items under

65



CHAPTER 3. NOTE ON: PARTIAL TRADE CREDIT POLICY OF RETAILER IN
ECONOMIC ORDER QUANTITY MODELS FOR DETERIORATING ITEMS WITH
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trade credit financing. Min et al. [179] formulated an inventory model for deteriorating
items under stock-dependent demand and two-level trade credit to study the retailer’s
optimal ordering policy. Liang and Zhou [147] developed a two-warehouse inventory
model for deteriorating items under conditionally permissible delay in payment. Guchhait
et al. [96] developed a two storage inventory model of a deteriorating item with variable
demand under partial trade credit period. Majumder et al. [172] developed an EPQ model
for deteriorating items under two level partial trade credit policy with crisp and fuzzy
demand.

Again, it is usually observed that customers pay reasonable prices of a commodity on the
basis of its quality and longevity. Hence, pricing strategy becomes one of the most
important aspect for business organizations to sell deteriorating inventory and enhance
revenues. In this context, Thangam and Uthayakumar [243] presented two-echelon trade
credit financing model for perishable items to derive optimal credit period, selling price and
replenishment time with price and credit linked demand. Dye and Ouyang [84] established
EOQ model for deteriorating items to determine optimal selling price, replenishment
number and replenishment schedule with time and price dependent demand under two
levels of trade credit policy. Other interesting articles can be found in Mahata and
Goswami [158], Mahata and Mahata [160], Tsao [245], Chang et al. [47], Kreng and
Tan [137, 138], Ho [109], Chung [66].

All the above mentioned research work did not consider the fact that deteriorating items
have their expiration dates. In fact, the study of deteriorating items with expiration dates has
received a relatively little attention in the literature. Currently, Bakker et al. [10] provided
an excellent review of inventory systems with deterioration since 2001. Recently, Seifert et
al. [229] presented an excellent review of trade credit financing. Some relevantly recent
articles in trade credit financing were developed by Chern et al. [55], Taleizadeh [239],
Yang et al. [266], Mahata [161] and Guchhait et al. [97].

In this chapter, we reformulate the supplier-retailer inventory system for deteriorating
items with expiration dates and price sensitive demand of Mahata [161]. In this SCM the
retailer receives an up-stream credit period offered by the supplier(s) and offers a down
stream partial trade credit period to the end costumers. The demand of the items is a
function of selling price which changes reversely with selling price. Items are deteriorated
with an expiration date. Each buyer pays a part of his/her total purchase cost during the
placing of order and the rest part is paid during the end of offered credit period. The whole
model is formulated as a profit maximization problem. The model is also evaluated
theoretically and numerically.

The rest of this chapter is organized as follows. Section-3.2 contains the notations which
are required to formulate the model and the assumptions under which the model is
developed. The formulation of the model is given in section-3.3. All the theoretical
developments with supporting lemma are given in section-3.4. Section-3.5 provides a
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solution methodology to explore the model numerically and the results of the numerical
experiment is given in section-3.6. Some discussions and conclusions about the model have
been made in the section-3.7 and section-3.8 respectively.

3.2 Notations and Assumptions

Partial trade credit policy of retailer in Economic Order Quantity model for deteriorating
items with expiration dates and price sensitive demand has been developed with the following
notations and assumptions.

3.2.1 Notations:
A ordering cost per order in dollars.
h inventory holding cost in dollar per unit per year excluding interest charges.
c unit purchasing cost in dollars.
s unit selling price in dollars with (s > c).
M retailer’s trade credit period offered by the supplier in years.
N customer’s trade credit period offered by the retailer in years.
α fraction of the purchase cost in which the customer must pay the retailer at

the time of placing an order with 0 ≤ α ≤ 1.
1− α portion of the purchase cost for which the retailer offers its customer a

permissible delay of N periods.
T time in years.
I(t) stock level in units at any time t.
θ(t) time-varying deterioration rate at time t, where 0 ≤ θ(t) < 1.
m expiration date or maximum lifetime in years of the deteriorating item.
T replenishment cycle time in years (a decision variable).
Q order quantity.
Ie interest earned per dollar per year.
Ic interest charged per dollar in stocks per year.
TP (s, T ) annual total profit in dollars of inventory system, which is a function of s

and T .
D(s) = as−b unit time demand, which is a decreasing function of the retail price s, where

a(> 0) is a scaling factor and b(> 1) is a price elasticity coefficient. For
simplicity of notations, D(s) and D will be used interchangeably.

3.2.2 Assumptions:

i) The market demand for the item is assumed to be sensitive to the customer’s retail prices
and is defined as D(s) = as−b.

67



CHAPTER 3. NOTE ON: PARTIAL TRADE CREDIT POLICY OF RETAILER IN
ECONOMIC ORDER QUANTITY MODELS FOR DETERIORATING ITEMS WITH

EXPIRATION DATES AND PRICE SENSITIVE DEMAND

ii) All deteriorating items have their expiration dates. The physical significance of the
deterioration rate is the rate to be closed to 1 when time is approaching to the maximum
lifetime m. The items deteriorates at a rate θ(t) which depends on time as follow:

θ(t) =
1

1 +m− t
, 0 ≤ t ≤ T ≤ m. (3.1)

Note that it is clear from equation (3.1) that the replenishment cycle time T must be
less than or equal to m, and the proposed deterioration rate is a general case for non-
deteriorating items, in which m −→∞ and θ(t) −→ 0.

iii) During the credit period offered by the supplier, the retailer uses the sales revenue to
earn interest at a rate Ie. At the end of the permissible delay period, the retailer pays the
purchasing cost to the supplier and pays interest charges at a rate of Ic for the items in
stock or the items already sold but have not been paid for yet.

iv) Replenishment rate is instantaneous.

v) In today’s time-based competition, we may assume that shortages are not allowed to
occur.

vi) Time horizon is infinite.

3.3 Model Formulation
The retailer receives Q units at t = 0. Hence, the inventory starts with Q units at t = 0,
and then gradually depletes to zero at t = T due to the combined effect of demand and
deterioration. Hence, the inventory level is governed by the following differential equation:

dI(t)

dt
= −D − θ(t)I(t) for 0 ≤ t ≤ T (3.2)

with boundary condition I(T ) = 0 .Solving the above differential equation (3.2) we obtain
the inventory level at time t as

I(t) = D(1 +m− t)ln
(

1 +m− t
1 +m− T

)
for 0 ≤ t ≤ T (3.3)

As a result, the retailer’s order quantity is

Q = I(0) = D(1 +m)ln

(
1 +m

1 +m− T

)
(3.4)

The annual total relevant cost consists of the following elements:

1. Annual ordering cost is A
T

.
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2. Annual purchase cost per cycle is c
T
I(0) = cD(1+m)

T
ln

(
1+m

1+m−T

)

3. Annual stock holding cost (AHC) (excluding interest charges)

AHC =
h

T

T∫
0

I(t)dt

=
hD

T

[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+
T 2

4
− (1 +m)T

2

]

3.3.1 Interest calculation for retailer:

Case 1: N < M
Based on the values of M (i.e., the time at which the retailer must pay the supplier to avoid
interest charge), T (i.e., the replenishment cycle time), and T +N (i.e., the time at which the
retailer receives the payment from the last customer), we have to examine following three
situations: (1) 0 < T +N ≤M, (2) T ≤M ≤ T +N, and (3) M ≤ T .
Situation 1: 0 < T +N ≤M

In this case, the retailer receives all returns from the customers before paying the purchase
amount to the supplier. Consequently, the retailer does not incur interest charges in this case.
On the other hand, interest earned per cycle per unit time is Ie

T
[IE1 + IE2] where Figure

3.1(a) for IE1 and Figure 3.1(b) for IE2.

Figure 3.1: Earned Interest (N ≤ M , 0 ≤ T +N ≤ M ): (a) For Instant Payment;
(b) For Delay payment;
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IE1 = interest earned due to instant payment of sold units in time (0,T]

=

T∫
0

{αsD(M − t)}dt

= αsD

(
MT − T 2

2

)
(3.5)

IE2 = interest earned due to credit payment of sold units in time (0,T]

=

T∫
0

{(1− α)sD(M −N − t)}dt

= (1− α)sDT

(
M −N − T

2

)
(3.6)

Situation 2: T ≤M ≤ T +N
In this case, the retailer’s interest earned per cycle per unit time is Ie

T
[IE1 + IE2] where

Figure 3.2(a) for IE1 and Figure 3.2(b) for IE2.

Figure 3.2: Earned Interest (N ≤ M , T ≤M ≤ T +N ): (a) For Instant Payment;
(b) For Delay payment;

IE1 = interest earned due to instant payment of sold units in time (0,T]

=

T∫
0

{αsD(M − t)}dt

= αsD

(
MT − T 2

2

)
(3.7)
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IE2 = interest earned due to credit payment of sold units in time (0,M-N]

=

M−N∫
0

{(1− α)sD(M −N − t)}dt

= (1− α)sD
(M −N)2

2
(3.8)

Since M ≤ T + N , the retailer has to pay interest. Interest charged per cycle per unit time
is Ic

T
[IC1 + IC2] where

IC1 = interest charged due to credit payment of sold units in time (M-N,T]

=

T∫
M−N

{(1− α)cD(t−M +N)}dt

= (1− α)cD
(T −M +N)2

2
(3.9)

IC2 = interest charged due to deteriorated units

= cD

[
(1 +m)ln

(
1 +m

1 +m− T

)
− T

]
(T −M +N) (3.10)

Situation 3: M ≤ T
In this case, the retailer’s interest earned per cycle per unit time is Ie

T
[IE1 + IE2] where

Figure 3.3(a) for IE1 and Figure 3.3(b) for IE2.

Figure 3.3: Earned Interest (N ≤ M , M ≤ T ): (a) For Instant Payment;
(b) For Delay payment;
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IE1 = interest earned due to instant payment of sold units in time (0,M]

=

M∫
0

{αsD(M − t)}dt

= αsD
M2

2
(3.11)

IE2 = interest earned due to credit payment of sold units in time (0,M-N]

=

M−N∫
0

{(1− α)sD(M −N − t)}dt

= (1− α)sD
(M −N)2

2
(3.12)

Since M ≤ T , the retailer has to pay interest. Interest charged per cycle per unit time is
Ic
T

[IC1 + IC2 + IC3 + IC4 + IC5] where

IC1 = interest charged due to stock in time [M,T]

= c

T∫
M

I(t)dt

= cD

[
(1 +m−M)2

4

{
2ln

(
1 +m−M
1 +m− T

)
− 1

}
+

(1 +m− T )2

4

]
(3.13)

IC2 = interest charged due to instant payment of sold units in time [M,T]

=

T∫
M

{(1− α)cDN}dt

= (1− α)cDN(T −M) (3.14)

IC3 = interest charged due to credit payment of sold units in time (M-N,M]

=

M∫
M−N

{(1− α)cD(t−M +N)}dt

= (1− α)cD
N2

2
(3.15)
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IC4 = interest charged due to deteriorated units during (0,M]

= c(T +N −M)

M∫
0

θ(t)I(t)dt

= cD(T +N −M)

[
(1 +m)ln

(
1 +m

1 +m−M

)
−M

{
1− ln

(
1 +m−M
1 +m− T

)}]
(3.16)

IC5 = interest charged due to deteriorated units during (M,T]

= c

T∫
M

θ(t)I(t)(T +N − t)dt

= cD

[
ln(1 +m− T )

2

{
(T −M)(3T −M + 2N)− (1 +m− T )(3 +m− T )

}
+ln(1 +m−M)

(1 +m−M)(3 +m−M)

2
− (T −M)

(6 +M − T )

4

]
(3.17)

Therefore, the total profit per unit time for the retailer when N ≤M is given by

TP1(s, T ) =


TP11(s, T ) if 0 < T ≤M −N
TP12(s, T ) if M −N ≤ T ≤M
TP13(s, T ) if M ≤ T

(3.18)

where,

TP11(s, T ) = sD +
sDIe

2

(
2M − 2N − T + 2Nα

)
−cD(1 +m)

T
ln

(
1 +m

1 +m− T

)
− A

T

−hD
T

[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+
T 2

4
− (1 +m)T

2

]
(3.19)
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TP12(s, T ) = sD − cD(1 +m)

T
ln

(
1 +m

1 +m− T

)
− A

T

−hD
T

[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+
T 2

4
− (1 +m)T

2

]
+
sDIe
2T

{
α(2MT − T 2) + (1− α)(M −N)2

}
−cDIc

T

[
(1− α)(T −M +N)

2
+ (1 +m)ln

(
1 +m

1 +m− T

)
−T
]
(T −M +N) (3.20)

TP13(s, T ) = sD − cD(1 +m)

T
ln

(
1 +m

1 +m− T

)
− A

T

−hD
T

[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+
T 2

4
− (1 +m)T

2

]
+
sDIe
2T

{
αM2 + (1− α)(M −N)2

}
−cDIc

T

[
(1 +m)(T +N −M)ln

(
1 +m

1 +m− T

)
−(T −M)(1 +m+M)

2
− N(T +M)

2

+(1− α)N

(
T −M +

N

2

)]
(3.21)

Case 2: N ≥M
Based on the values of M and T , we have to explore following two situations: (a) T ≤ M,
(b) M ≤ T .
Situation a: T ≤M

In this case, the retailer’s interest earned per cycle per unit time is Ie
T

[IE1] where 3.4(a) for
Instant Payment, 3.4(b) For Delay Payment.

IE1 = interest earned due to instant payment of sold units in time (0,T]

=

T∫
0

{αsD(M − t)}dt

= αsD

(
MT − T 2

2

)
(3.22)

Since M ≤ T + N , the retailer has to pay interest. Interest charged per cycle per unit time
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Figure 3.4: Case (N ≥ M , T ≤M ): (a) For Instant Payment;
(b) For Delay payment;

is Ic
T

[IC1 + IC2] where

IC1 = interest charged due to credit payment of sold units in time (0,T]

=

T∫
0

{(1− α)cD(t+N −M)}dt

=
(1− α)cDT

2
(T + 2(N −M)) (3.23)

IC2 = interest charged due to deteriorated units

= cD

[
(1 +m)ln

(
1 +m

1 +m− T

)
− T

]
(T +N −M) (3.24)

Situation b: M ≤ T
In this case, the retailer’s interest earned per cycle per unit time is Ie

T
[IE1] where Figure

3.5(a), 3.5(b).

IE1 = interest earned due to instant payment of sold units in time (0,M]

=

M∫
0

{αsD(M − t)}dt

= αsD
M2

2
(3.25)

Since M ≤ T , the retailer has to pay interest. Interest charged per cycle per unit time is
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Figure 3.5: Case (N ≤ M , T ≤M ): (a) For Instant Payment;
(b) For Delay payment;

Ic
T

[IC1 + IC2 + IC3 + IC4 + IC5] where

IC1 = interest charged due to stock in time [M,T]

= c

T∫
M

I(t)dt

= cD

[
(1 +m−M)2

4

{
2ln

(
1 +m−M
1 +m− T

)
− 1

}
+

(1 +m− T )2

4

]
(3.26)

(3.27)

IC2 = interest charged due to instant payment of sold units in time [M,T]

=

T∫
M

{(1− α)cDN}dt

= (1− α)cDN(T −M) (3.28)

IC3 = interest charged due to credit payment of sold units in time (0,M]

=

M∫
0

{(1− α)cD(t+N −M)}dt

= (1− α)cD
M(2N −M)

2
(3.29)
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IC4 = interest charged due to deteriorated units during (0,M]

= c(T +N −M)

M∫
0

θ(t)I(t)dt

= cD(T +N −M)

[
(1 +m)ln

(
1 +m

1 +m−M

)
−M

{
1− ln

(
1 +m−M
1 +m− T

)}]
(3.30)

IC5 = interest charged due to deteriorated units during (M,T]

= c

T∫
M

θ(t)I(t)(T +N − t)dt

= cD

[
ln(1 +m− T )

2

{
(T −M)(3T −M + 2N)− (1 +m− T )(3 +m− T )

}
+ln(1 +m−M)

(1 +m−M)(3 +m−M)

2
− (T −M)

(6 +M − T )

4

]
(3.31)

Therefore, the total profit per unit time for the retailer when N ≥M is given by

TP2(s, T ) =

{
TP21(s, T ) if T ≤M
TP22(s, T ) if M ≤ T

(3.32)

where

TP22(s, T ) = sD − cD(1 +m)

T
ln

(
1 +m

1 +m− T

)
− A

T
+
sDIeαM

2

2T

−hD
T

[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+
T 2

4
− (1 +m)T

2

]
−cDIc

T

[
(1 +m)(T +N −M)ln

(
1 +m

1 +m− T

)
− N(T +M)

2

−(T −M)(1 +m+M)

2
+ (1− α)

(
NT − M2

2

)]
(3.33)

Hence our problem is

maximize TP (s, T ) =

{
TP1(s, T ) if N ≤M
TP2(s, T ) if M ≤ N

(3.34)

where TPi(s, T ), i = 1, 2 is defined in equations (3.18) and (3.32) respectively.
It is to be noted that, for fixed s, TP11(s,M − N) = TP12(s,M − N), TP12(s,M) =
TP13(s,M) and TP21(s,M) = TP22(s,M). Hence for fixed s, TPi(s, T ) is continuous
function on T > 0, for i = 1, 2.
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3.4 Theoretical Experiment
In this section, how to obtain the optimal ordering cycle length T ∗, as well as the optimal
selling price s∗, is discussed here for the following two cases.

3.4.1 Optimal solution for the Case of N ≤M

For fixed s, the first order partial derivative of TP11(s, T ) with respect to T is

∂TP11(s, T )

∂T
=

1

T 2

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}]
−
(
hD

4
+
sDIe

2

)
(3.35)

Motivated by equation (3.35), we assume an auxiliary function, say F11(T ), T ∈ (0,M−N ],
where

F11(T ) =

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}]
−
(
hD

4
+
sDIe

2

)
T 2 (3.36)

Differentiating F11(T ) with respect to T ∈ (0,M −N ], we have

F ′11(T ) =
dF11(T )

dT
= −DT

[
(1 +m)

(
c+

h(1 +m)

2

)
1

(1 +m− T )2

+

(
h

2
+ sIe

)]
< 0 (3.37)

Thus F11(T ) is strictly decreasing function with respect to T ∈ (0,M − N ]. Moreover
lim
T→∞

F11(T ) = −∞, F11(0) = A > 0 and

F11(M −N) =

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m−M +N

)
− M −N

1 +m−M +N

}]
−
(
hD

4
+
sDIe

2

)
(M −N)2 = 41(say)

If41 ≤ 0, then by intermediate value theorem ∃ unique value of T [ say T11 ∈ (0,M −N ]
] such that F11(T11) = 0.
If 41 > 0, we have F11(T ) > 0 ∀T ∈ (0,M − N ] which implies TP11(s, T ) is strictly
increasing function of T . Hence TP11(s, T ) has a maximum value at the boundary point
T = M −N.

78



3.4. THEORETICAL EXPERIMENT

Lemma 1: Let T ∗11 denotes the optimal value of T ∈ (0,M − N ]. For fixed s, the profit
function TP11(s, T ) is concave and reaches its global maximum at point T = T ∗11

Proof: From the above discussion, T ∗11 which maximizes profit function TP11(s, T ) for fixed
s is given by

T ∗11 =

{
T11 if 41 ≤ 0
M −N if 41 ≥ 0

(3.38)

[
∂2TP11(s, T )

∂T 2

]
T=T ∗11

=
F ′11(T ∗11)

T ∗211

− 2F11(T ∗11)

T ∗311

< 0, since F ′11(T ∗11) < 0, F11(T ∗11) ≥ 0

Thus T ∗11 gives global maximum for the profit function TP11(s, T ). This completes the
proof.�

On the other hand, for fixed T ∗11, the first order partial derivative of TP11(s, T ∗11) with
respect to s is given by

∂TP11(s, T ∗11)

∂s
=

bγ1

sb+1
− (b− 1)γ2

s−b
(3.39)

where

γ1 = a

[
(1 +m)

T ∗11

(
c+

h(1 +m)

2

)
ln

(
1 +m

1 +m− T ∗11

)
+
hT ∗11

4
− h(1 +m)

2

]
γ2 = a

[
1 + Ie

(
M − T ∗11

2
− (1− α)N

)]
Equating equation (3.39) with zero and solving for s (denoted by s∗11) we get

s∗11 =
bγ1

(b− 1)γ2

(3.40)

Furthermore, at s = s∗11[
∂2TP11(s, T ∗11)

∂s2

]
s=s∗11

= −(b− 1)γ2

s
∗(b+1)
11

< 0, since γ2 > 0 (3.41)

Thus s∗11 is the global optimal which maximizes the profit function TP11(s, T ∗11) for fixed
T ∗11. Hence the following lemma.
Lemma 2: For fixed T ∗11 ∈ (0,M − N ] the profit per unit time TP11(s, T ∗11) has a unique
global maximum value at the point s = s∗11 which is shown as in equation (3.40).
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Again for fixed s, the first order partial derivative of TP12(s, T ) with respect to T is

∂TP12(s, T )

∂T
=

1

T 2

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
− hDT 2

4
− sDIe

2
{αT 2 + (1− α)(M −N)2}

−cDIc(1− α)

2
{T 2 − (M −N)2}+ cDIcT

2 − cDIc(1 +m)×[
T (T +N −M)

1 +m− T
+ (M −N)ln

(
1 +m

1 +m− T

)]]
(3.42)

Motivated by equation (3.42), we assume an auxiliary function, say F12(T ), T ∈ [M −
N,M ], where

F12(T ) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
−hDT

2

4
− sDIe

2
{αT 2 + (1− α)(M −N)2}

−cDIc(1− α)

2
{T 2 − (M −N)2}+ cDIcT

2

−cDIc(1 +m)

[
T (T +N −M)

1 +m− T
+ (M −N)ln

(
1 +m

1 +m− T

)]
(3.43)

Differentiating F12(T ) with respect to T ∈ [M −N,M ], we have

F ′12(T ) =
dF12(T )

dT
= −DT

[
(1 +m)

(
c+

h(1 +m)

2

)
1

(1 +m− T )2

+

(
h

2
+ sIeα

)
+ cIc

{
(1− α)

+
2T

1 +m− T
+

(1 +m)(T +N −M)

(1 +m− T )2

}]
< 0 (3.44)

Thus F12(T ) is strictly decreasing function with respect to T ∈ [M − N,M ]. Moreover
lim
T→∞

F12(T ) = −∞.

F12(M −N) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m−M +N

)
− M −N

1 +m−M +N

}
−
(
hD

4
+
sDIe

2

)
(M −N)2

−cDIc(M −N)

{
(1 +m)ln

(
1 +m

1 +m−M +N

)
−(M −N)

}
= 42(say) (3.45)
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F12(M) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m−M

)
− M

1 +m−M

}
−hDM

2

4
− sDIe

2
{αM2 + (1− α)(M −N)2}

−cDIc(1− α)

2
{M2 − (M −N)2}+ cDIcM

2

−cDIc(1 +m)

[
MN

1 +m−M
+ (M −N)ln

(
1 +m

1 +m−M

)]
= 43(say) (3.46)

If42 < 0, we have F12(T ) < 0 ∀T ∈ [M −N,M ] which implies that TP12(s, T ) is strictly
decreasing function of T ∈ [M − N,M ]. Hence TP12(s, T ) has a maximum value at the
boundary point T = M −N.
If43 ≥ 0, we have F12(T ) > 0 ∀T ∈ [M −N,M ] which implies that TP12(s, T ) is strictly
increasing function of T ∈ [M − N,M ]. Hence TP12(s, T ) has a maximum value at the
boundary point T = M.
If 42 ≥ 0 and 43 ≤ 0, then by intermediate value theorem ∃ unique value of T [ say
T12 ∈ [M −N,M ] ] such that F12(T12) = 0.
Based on above argument and fact that 41 > 42 > 43. Hence we obtain the following
lemma.
Lemma 3: Let T ∗12 denotes the optimal value of T ∈ [M − N,M ]. For fixed s, the profit
function TP12(s, T ) is concave and reaches its global maximum at point T = T ∗12.
Proof: From the above discussion, T ∗12 which maximizes profit function TP12(s, T ) for fixed
s is given by

T ∗12 =


M −N if 42 ≤ 0 < 41

T12 if 43 ≤ 0 ≤ 42

M if 43 ≥ 0
(3.47)

[
∂2TP12(s, T )

∂T 2

]
T=T ∗12

=
F ′12(T ∗12)

T ∗212

− 2F12(T ∗12)

T ∗312

< 0, since F ′12(T ∗12) < 0, F12(T ∗12) ≥ 0

Thus T ∗12 gives global maximum for the profit function TP12(s, T ). This completes the
proof.�

On the other hand, for fixed T ∗12, the first order partial derivative of TP12(s, T ∗12) with
respect to s is given by

∂TP12(s, T ∗12)

∂s
=

bξ1

sb+1
− (b− 1)ξ2

s−b
(3.48)
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where

ξ1 = a

[
(1 +m)

T ∗12

(
c+

h(1 +m)

2

)
ln

(
1 +m

1 +m− T ∗12

)
− h(1 +m)

2

+
hT ∗12

4
+
cIc
T ∗12

{
(1− α)(T ∗12 +N −M)

2

+(1 +m)ln

(
1 +m

1 +m− T ∗12

)
− T ∗12

}
(T ∗12 +N −M)

]
ξ2 = a

[
1 +

Ie
2T ∗12

[α{M2 − (M − T ∗12)2}+ (1− α)(M −N)2]

]

Equating equation (3.48) with zero and solving for s (denoted by s∗12) we get

s∗12 =
bξ1

(b− 1)ξ2

(3.49)

Furthermore, at s = s∗12

[
∂2TP12(s, T ∗12)

∂s2

]
s=s∗12

= −(b− 1)ξ2

s
∗(b+1)
12

< 0, since ξ2 > 0 (3.50)

Thus s∗12 is the global optimal which maximizes the profit function TP12(s, T ∗12) for fixed
T ∗12. Hence the following lemma.
Lemma 4: For fixed T ∗12 ∈ [M − N,M ] the profit per unit time TP12(s, T ∗12) has a unique
global maximum value at the point s = s∗12 which is shown as in equation (3.49).
Likewise, for fixed s, the first order partial derivative of TP13(s, T ) with respect to T is

∂TP13(s, T )

∂T
=

1

T 2

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
− hDT 2

4
− sDIe{αM2 + (1− α)(M −N)2}

−cDIc(1 +m)T 2

1 +m− T
− cDIc(1 +m)(M −N)

[
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

]
+
cDIc

2
{M(1 +m+M −N)

−N(1− α)(2M −N)}
]

(3.51)
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Motivated by equation (3.51), we assume an auxiliary function, say F13(T ), T ∈ [M,∞),
where

F13(T ) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
−hDT

2

4
− sDIe{αM2 + (1− α)(M −N)2} − cDIc(1 +m)T 2

1 +m− T

−cDIc(1 +m)(M −N)

[
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

]
+
cDIc

2
{M(1 +m+M −N)−N(1− α)(2M −N)} (3.52)

Differentiating F13(T ) with respect to T ∈ [M,∞), we have

F ′13(T ) =
dF13(T )

dT

= −DT
[
(1 +m)

(
c+

h(1 +m)

2

)
1

(1 +m− T )2
+
h

2

+
cIc(1 +m)

(1 +m− T )2
{(1 +m− T ) + (1 +m−M +N)}

]
< 0 (3.53)

Thus F13(T ) is strictly decreasing function with respect to T ∈ [M,∞). Moreover
lim
T→∞

F13(T ) = −∞.

F13(M) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m−M

)
− M

1 +m−M

}
−hDM

2

4
− sDIe{αM2 + (1− α)(M −N)2}

−cDIc(1− α)

2
{M2 − (M −N)2}+

cDIcM(1 +m+M −N)

2

−cDIc(1 +m)

[
MN

1 +m−M
+ (M −N)ln

(
1 +m

1 +m−M

)]
= 44(say) (3.54)

If 44 < 0, we have F13(T ) < 0 ∀T ∈ [M,∞) which implies that TP13(s, T ) is strictly
decreasing function of T ∈ [M,∞). Hence TP13(s, T ) has a maximum value at the
boundary point T = M.
If 44 ≥ 0, then by intermediate value theorem ∃ unique value of T [ say T13 ∈ [M,∞) ]
such that F13(T13) = 0.
Hence we obtain the following lemma.
Lemma 5: Let T ∗13 denotes the optimal value of T ∈ [M,∞). For fixed s, the profit function
TP13(s, T ) is concave and reaches its global maximum at point T = T ∗13.
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Proof: From the above discussion, T ∗13 which maximizes profit function TP13(s, T ) for
fixed s is given by

T ∗13 =

{
M if 44 ≤ 0 < 43

T13 if 0 ≤ 44
(3.55)

[
∂2TP13(s, T )

∂T 2

]
T=T ∗13

=
F ′13(T ∗13)

T ∗213

− 2F13(T ∗13)

T ∗313

< 0, since F ′13(T ∗13) < 0, F13(T ∗13) ≥ 0

Thus T ∗13 gives global maximum for the profit function TP13(s, T ). This completes the
proof.�

On the other hand, for fixed T ∗13 the first order partial derivative of TP13(s, T ∗13) with respect
to s is given by

∂TP13(s, T ∗13)

∂s
=

b(θ2 + θ3 + θ4)

sb+1
− (b− 1)θ1

s−b
(3.56)

where,

θ1 = a

[
1 +

Ie
2T ∗13

{αM2 + (1− α)(M −N)2}
]

θ2 =
ac(1 +m)

T ∗13

ln

(
1 +m

1 +m− T ∗13

)

θ3 = a

[
h(1 +m)2

2T ∗13

ln

(
1 +m

1 +m− T ∗13

)
+
hT ∗13

4
− h(1 +m)

2

]

θ4 =
acIc
T ∗13

[
(1 +m)(T ∗13 +N −M)ln

(
1 +m

1 +m− T ∗13

)
− N(T ∗13 +M)

2

−(T ∗13 −M)(1 +m+M)

2
+ (1− α)N

(
T ∗13 −M +

N

2

)]
Equating equation (3.56) with zero and solving for s (denoted by s∗13) we get

s∗13 =
b(θ2 + θ3 + θ4)

(b− 1)θ1

(3.57)

Furthermore, at s = s∗13,[
∂2TP13(s, T ∗13)

∂s2

]
s=s∗13

= −(b− 1)θ1

s
∗(b+1)
13

< 0, since θ1 > 0 (3.58)

Thus s∗13 is the global optimal which maximizes the profit function TP13(s, T ∗13) for fixed
T ∗13. Hence the following lemma.
Lemma 6: For fixed T ∗13 ∈ [M,∞) the profit per unit time TP13(s, T ∗13) has a unique global
maximum value at the point s = s∗13 which is shown as in equation (3.58).
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3.4.2 Optimal solution for the Case of N ≥M

For fixed s, the first order partial derivative of TP21(s, T ) with respect to T is

∂TP21(s, T )

∂T
=

1

T 2

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
− hDT 2

4
− sDIeαT

2

2

−cDIc(T +N −M)T 2

1 +m− T
− cDIc(1− α)T 2

2

+cDIc(N −M)

{
(1 +m)ln

(
1 +m

1 +m− T

)
− T

}]
(3.59)

Using the similar arguments as in Case 1, there exists unique value of T (say T21 ∈ (0,M ])
such that ∂TP21(s,T )

∂T
= 0. Hence we can easily obtain the following lemma.

For convenience let

45 = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m−M

)
− M

1 +m−M

}
−hDM

2

4
− sDIeαM

2

2
− cDIc(1− α)M2

2
− cDIcM

2N

1 +m−M

+cDIc(N −M)

[
(1 +m)ln

(
1 +m

1 +m−M

)
−M

]
(3.60)

Lemma 7: Let T ∗21 denotes the optimal value of T ∈ (0,M ]. For fixed s, the profit function
TP21(s, T ) is concave and reaches its global maximum at point T = T ∗21.
Proof: From the above discussion, T ∗21 which maximizes profit function TP21(s, T ) for fixed
s is given by

T ∗21 =

{
T21 if 45 ≤ 0
M if 45 > 0

(3.61)

[
∂2TP21(s, T )

∂T 2

]
T=T ∗21

=
F ′21(T ∗21)

T ∗221

− 2F21(T ∗21)

T ∗321

< 0, since F ′21(T ∗21) < 0, F21(T ∗21) ≥ 0

where

F21(T ) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
−hDT

2

4
− sDIeαT

2

2
− cDIc(T +N −M)T 2

1 +m− T
− cDIc(1− α)T 2

2

+cDIc(N −M)

[
(1 +m)ln

(
1 +m

1 +m− T

)
− T

]
(3.62)
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F ′21(T ) =
dF21(T )

dT

= −DT
[
(1 +m)

(
c+

h(1 +m)

2

)
1

(1 +m− T )2
+
h

2

−sIeα + cIc

{
(1− α) +

T (T +N −M)

(1 +m− T )2
+

3T +N −M
1 +m− T

}]
(3.63)

Thus T ∗21 gives global maximum for the profit function TP21(s, T ). This completes the
proof.�

On the other hand, for fixed T ∗21 the first order partial derivative of TP21(s, T ∗21) with respect
to s is given by

∂TP21(s, T ∗21)

∂s
=

b(β2 + β3 + β4)

sb+1
− (b− 1)β1

s−b
(3.64)

where

β1 = a

[
1 + Ieα(M − T ∗21

2
)

]
β2 =

ac(1 +m)

T ∗21

ln

(
1 +m

1 +m− T ∗21

)
β3 = a

[
h(1 +m)2

2T ∗21

ln

(
1 +m

1 +m− T ∗21

)
+
hT ∗21

4
− h(1 +m)

2

]
β4 =

acIc
T ∗21

[
(T ∗21 +N −M)

[
(1 +m)ln

(
1 +m

1 +m− T ∗21

)
− T ∗21

]
+(1− α)

(
T ∗21

2
−M +N

)]
Equating equation (3.64) with zero and solving for s (denoted by s∗21) we get

s∗21 =
b(β2 + β3 + β4)

(b− 1)β1

(3.65)

Furthermore, at s = s∗21[
∂2TP21(s, T ∗21)

∂s2

]
s=s∗21

= −(b− 1)β1

s
∗(b+1)
21

< 0, since β1 > 0 (3.66)

Thus s∗21 is the global optimal which maximizes the profit function TP21(s, T ∗21) for fixed
T ∗21. Hence the following lemma.
Lemma 8: For fixed T ∗21 ∈ (0,M ] the profit per unit time TP21(s, T ∗21) has a unique global
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maximum value at the point s = s∗21 which is shown as in equation (3.65).
Analogously, for fixed s, the first order partial derivative of TP22(s, T ) with respect to T is

∂TP22(s, T )

∂T
=

1

T 2

[
A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
− hDT 2

4
− sDIeαM

2

2

−cDIc(T +N −M)T (1 +m)

1 +m− T
− cDIc(1− α)M2

2

+cDIc(N −M)(1 +m)ln

(
1 +m

1 +m− T

)
+
cDIcM

2
(1 +m+M −N)

]
(3.67)

Using the similar arguments as in Case 1, there exists unique value of T (T22 ∈ [M,∞))
such that ∂TP22(s,T )

∂T
= 0. Hence we can easily obtain the following lemma.

For convenience let

46 = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m−M

)
− M

1 +m−M

}
−hDM

2

4
− sDIeαM

2

2
− cDIcMN(1 +m)

1 +m−M
− cDIc(1− α)M2

2

+cDIc(N −M)(1 +m)ln

(
1 +m

1 +m−M

)
+
cDIcM

2
(1 +m+M −N) (3.68)

Lemma 9: Let T ∗22 denotes the optimal value of T ∈ [M,∞). For fixed s, the profit function
TP22(s, T ) is concave and reaches its global maximum at point T = T ∗22.
Proof: From the above discussion, T ∗22 which maximizes profit function TP22(s, T ) for fixed
s is given by

T ∗22 =

{
T22 if 46 ≥ 0
M if 46 < 0

(3.69)

[
∂2TP22(s, T )

∂T 2

]
T=T ∗22

=
F ′22(T ∗22)

T ∗222

− 2F22(T ∗22)

T ∗322

< 0, since F ′22(T ∗22) < 0, F22(T ∗22) ≥ 0
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where

F22(T ) = A+D(1 +m)

(
c+

h(1 +m)

2

){
ln

(
1 +m

1 +m− T

)
− T

1 +m− T

}
−cDIc(T +N −M)T (1 +m)

1 +m− T
− hDT 2

4
− sDIeαM

2

2

−cDIc(1− α)M2

2
+ cDIc(N −M)(1 +m)ln

(
1 +m

1 +m− T

)
+
cDIcM

2
(1 +m+M −N) (3.70)

F ′22(T ) =
dF22(T )

dT

= −DT
[
(1 +m)

(
c+

h(1 +m)

2

)
1

(1 +m− T )2
+
h

2

+
cIc(1 +m)T

(1 +m− T )2
{(T +N −M) + 2(1 +m− T )}

]
(3.71)

Thus T ∗22 gives global maximum for the profit function TP22(s, T ). This completes the
proof.�

On the other hand, for fixed T ∗22 the first order partial derivative of TP22(s, T ∗22) with respect
to s is given by

∂TP22(s, T ∗22)

∂s
=

b(η2 + η3 + η4)

sb+1
− (b− 1)η1

s−b
(3.72)

where

η1 = a

[
1 +

IeαM
2

2T ∗22

]
η2 =

ac(1 +m)

T ∗22

ln

(
1 +m

1 +m− T ∗22

)
η3 = a

[
h(1 +m)2

2T ∗22

ln

(
1 +m

1 +m− T ∗22

)
+
hT ∗22

4
− h(1 +m)

2

]
η4 =

acIc
T ∗22

[
(1 +m)(T ∗22 +N −M)ln

(
1 +m

1 +m− T ∗22

)
− (T ∗22 −M)(1 +m+M)

2

−N(T ∗22 +M)

2
+ (1− α)

(
NT ∗22 −

M2

2

)]
Equating equation (3.72) with zero and solving for s (denoted by s∗22) we get

s∗22 =
b(η2 + η3 + η4)

(b− 1)η1

(3.73)
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Furthermore, at s = s∗22[
∂2TP22(s, T ∗22)

∂s2

]
s=s∗22

= −(b− 1)η1

s
∗(b+1)
22

< 0, since η1 > 0 (3.74)

Thus s∗22 is the global optimal which maximizes the profit function TP22(s, T ∗22) for fixed
T ∗22. Hence the following lemma.
Lemma 10: For fixed T ∗22 ∈ [M,∞) the profit per unit time TP22(s, T ∗22) has a unique global
maximum value at the point s = s∗22 which is shown as in equation (3.73).

3.5 Solution methodology: A Routine Framework for GA
The numerical experiment of the proposed model has been done using the heuristic search
method say Genetic Algorithm (GA). The discussion about the Genetic Algorithm process
and algorithms are given in the section-2.2.4.
At the beginning of the GA module, the different parameters of GA i.e. generation number
(MAXGEN), population size (POPSIZE), probability of cross-over (PXOVER), probability
of mutation (PMUT), random seed (RSEED), distribution index for SBX (DISBX) and for
mutation (DIMUT) and the others input data have to be supplied. As there is no clear
indication as to how large a population should be, here with POPSIZE = no of
variables×12, the expected result is obtained. Here the chromosomes are structured by
some real numbers, where a chromosome is a string of genes which are specified by the
decision variables of the problem namely- the unit selling price (s) and the length of the
business period (T ). The variable boundaries may be fixed or flexible. The fitness function
is the profit function (TP (s, T )) given by equation (3.34).

3.6 Numerical Experiment
The optimum results are obtained and some sensitivity analyses for the model have been
performed using the solution methodology given by sec. -3.5. To illustrate the problem
numerically, the following input data are used.

3.6.1 Input Data
An inventory system is considered with the following parametric values.

D = as−b units/year where, a = 5 × 106, b = 2.3, A = $130/order, h = $7/unit/year,
c = $15/unit, Ic = 15%/year, Ie = 12%/year, m = 1 year, α = 0.5.

GA parameters: To find the numeric solution of the model, the above mentioned Gentic
algorithm is used with corresponding parameters as follows:
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POPSIZE=50 MAXGEN=200, PXOVER=0.8, PMUT=0.2, RSEED=1.2, DISBX=2,
DIMUT=100, T -(0.0001 to 2), s-(10 to 40), M -(10/365 to 60/365), and N -(15 to 60).

3.6.2 Optimum Result

The optimum result of the model for the given parametric values are

(i) Optimum value of M = 60/365 year and N = 15/365 year.

(ii) Total business length T ∗ = 0.103 year.

(iii) Optimum quantity Q∗ = 256.75 unit.

(iv) Optimum value of selling price s∗ = $ 27.59/unit.

(v) Average interest earned (AIE) = $ 7206.27.

(vi) Average interest paid (AIP) = $ 0.0.

(vii) Average stock holding cost (AHC) = $ 890.93

(viii) Optimum average profit TP ∗ = $ 30710.16.

A sensitivity analysis has been performed for different values of M, N and given in Table-
3.1.

3.7 Discussion

Based on the above computational results, the following managerial insights can be
obtained.
• It is observed that for fixed α and M , when customer credit period N increases, the
optimal retail price (s∗) and optimal cycle time (T ∗) increase, whereas the optimal total
profit per unit time (TP ∗(s∗, T ∗)) decreases. These results imply that a longer delay in
payment period provided by the retailer leads to lower demand rate and higher retail price.
It may be interesting to observe that when α = 0.5, the optimal replenishment cycle time
increases as long M ≤ N and then decreases subsequently.
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Table 3.1: Sensitivity analysis for α = 0.5

M N T ∗ s∗ Q∗ AIE AIP TP ∗

60 10 0.0978 27.4836 245.52 8408.18 0.0 30950.28
15 0.0979 27.5118 245.35 7819.8 0.0 30891.37
30 0.0987 27.5904 245.75 559.88 6.072 30696.52
45 0.1002 27.695 247.42 490.78 55.5 30493.02
60 0.1009 27.789 247.26 453.67 149.7 30341.16

45 10 0.0983 27.6335 243.85 484.96 0.414 30601.11
15 0.099 27.6663 244.96 432.15 6.21 30520.94
30 0.1005 27.7678 246.68 324.61 55.57 30318.45
45 0.1012 27.8659 246.44 288.4 149.23 30167.46
60 0.1015 27.9536 245.41 286.63 263.29 30042.03

30 10 0.1010 29.1874 221.08 180.46 1694.05 28433.88
15 0.1015 29.2253 221.54 115.13 1735.6 28347.73
30 0.1022 29.3659 220 122.49 1823.5 28188.42
45 0.0847 27.9778 203 157.4 1715.35 30210.67
60 0.0847 28.0678 201.99 156.75 2404.48 30101.82

15 10 0.1036 32.5214 176.9 29.39 4368.56 24776.3
15 0.1038 32.5479 176.96 26.38 4370.5 24758.24
30 0.1035 32.5743 176.11 26.42 4633.36 24753.29
45 0.1039 32.5969 176.53 26.3 4826.42 24713.27
60 0.1043 32.63 176.81 26.16 5013.47 24673.71

10 10 0.1041 33.6233 164.7 11.21 4981.87 23775.08
15 0.1040 33.6258 164.5 11.21 5052.35 23777.01
30 0.1050 33.666 165.68 11.09 5163.1 23732.9
45 0.1048 33.666 165.36 11.11 5271.47 23734.81
60 0.1052 33.6746 165.91 11.07 5383.32 23714.07

• For fixed value of N and α, it can be noted that the optimal retail price and the optimal
length of replenishment cycle decrease, whereas per unit time retailer’s profit (TP ∗(s∗, T ∗))
increases with an increase in retailers credit period M. These results imply that a longer
credit period provided by the supplier may ultimately cause the retailers to shorten the
replenishment cycle length to take advantage of trade credit frequently.
• With an increase in the value of the of the parameter α, the optimal retail price and the
optimal length of replenishment cycle decrease, whereas retailer’s profit per unit time
increases. These results indicate that if the amount of the part payment of purchase cost is
more, then the demand can be stimulated by reducing the retail price and thereby the
retailer can raise the profit.
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CHAPTER 3. NOTE ON: PARTIAL TRADE CREDIT POLICY OF RETAILER IN
ECONOMIC ORDER QUANTITY MODELS FOR DETERIORATING ITEMS WITH

EXPIRATION DATES AND PRICE SENSITIVE DEMAND

3.8 Conclusion
Here a supplier-retailer inventory system for deteriorating items with expiration date,
price-dependent demand and two-level trade credit has been developed and the
corresponding mathematical problem has been solved. A sensitivity analysis with different
trade credit values is performed.

The presented model can be extended to formulate a SCM with supplier-wholesaler-retailer
and to consider three level trade-credit offered by supplier, wholesaler and retailer. Moreover,
a new policy for the payment of dues can be applied. In this policy, retailer clears all his /
her dues as and when he / she has the required amount.
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Part III

Inventory Models in Random, Fuzzy and
Fuzzy-Random Environment
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Chapter 4

Two layers supply chain imperfect
production inventory model with two
level credit period and production rate
dependent defective rate

4.1 Introduction

Business organizations all over the world are striving hard to evolve strategies to survive in
the area of competition ushered in by globalization. Supply chain management (SCM) is
one such strategy. It is an effective methodology and presents an integrated approach to
resolve issues in sourcing customer service, demand flow and distribution. The focus is on
the customer. The results are in the form of reduced operational costs, improved flow of
supplies, reduction in delays of production and increased customer satisfaction. While the
goal of supply chain management is to reduce cost of producing and reaching the finished
products to the customers, inventory control is the means to achieve the goal. Researchers
as well as practitioners in manufacturing industries have given importance to develop
inventory control problems in supply chain management. All steps from supply of raw
materials to finished products can be included into a supply chain, connecting raw materials
supplier, manufacturer, retailer and finally customers. Recent reviews on supply chain
management are provided by Weng [252], Munson and Rosenblatt [187], Yang and
Wee [264], Khouja [133], Yao et al. [271], Chaharsooghi et al. [37], Wang et al. [249] and
others.

Now-a-days, with the advent of multi-nationals in the developing countries, there is a stiff
competition amongst the multi- nationals to capture the market. Thus in the recent
competitive market, the inventory/stock is decoratively exhibited and colorably displayed
through electronic media to attract the customers and thus to boost the sale. For this reason,
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Datta and Pal [73], Mandal and Phaujder [174], Mondal and Maiti [175] and others
considered linear form of stock dependent demand. Salameh and Jaber [215] developed an
inventory model with such demand for imperfect quality items using the EPQ/EOQ formula
and assumed that inferior quality items are sold as a single batch at the end of the total
screening process. Thereafter, Goyal and Cardenas-Barron [93] extended the idea of
Salameh and Jaber’s [215] model and proposed a practical approach to determine EPQ for
items with imperfect quality. Yu et al. [272] generalized the models of Salameh and
Jaber [215], incorporating deterioration and partial back ordering. Liu and Yang [152]
investigated a single stage production system with imperfect process delivering two types of
defects: reworkable and non-reworkable items. The reworkable items are sent for
reworking, whereas non-reworkable items are immediately discarded from the system.
They determined the optimal lot size that maximized the expected total profit over the
expected time length of the production cycle. Ma et al. [157] considered the effects of
imperfect production processes and the decision on whether and when to implement a
screening process for defective items generated during a production run. Sana [219]
developed an economic production lot size model in an imperfect production system.

Naturally, inventory models are based on the assumption that the retailer pays for the item
immediately after the units are received. However, it may not be true for today’s
competitive business transactions. Now-a-days, it is normally found that the supplier allows
a certain fixed time period (termed as credit period) to his/her retailers for settling the
account that the retailer owes to the supplier for the item supplied. Goyal [93] developed an
EOQ model under the conditions of permissible delay in payments. Chung and Liao [64]
studied a lot-sizing problem under a supplier’s trade credit depending on the retailer’s order
quantity. Manna [177] considered a three-layer supply chain in an imperfect production
inventory model with two storage facilities under fuzzy rough environment. In recent
business environment, trade credit is used as a tool by a supplier to encourage the retailer to
procure a greater volume of goods, to earn a reasonable profit. On the other hand, trade
credit offers a lower unit purchasing cost as well as representing an important source of
short-term external finance for retailers.

This study differs from the others in the following view.

1. The production system, considered here undergoes an out-of-control (starting point of
imperfect production) state from an in-control state. A mixture of perfect and imperfect
quality items are produced by the manufacturer where the defective rate is random which
follows an uniform distribution.

2. This is a supply chain model in which the manufacturer deals with more than one retailer
with unknown production rate.

3. Partial trade credit sharing is considered in this model.

4. The rework process is one of common criterion to control the out-of-control state. In
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this study rework process is applied and some non-repairable items are sold with reduced
price.

5. The demand of the customer is considered as a function of retailer’s stock.

In this chapter, a single period SCM model is considered with a manufacturer and n
retailers. A mixture of perfect and imperfect quality items are produced by the
manufacturer and supplies those to the retailers. Manufacturer also offers a period of delay
in payment to the retailers. The defective rate is random in nature which follows uniform
distribution and certain percentage of defective items is reworked as a perfect quality items.
Each retailer shares his/her delay period with his/her customers partially. Set-up cost of the
manufacturer is linearly dependent on the production rate. Also the open end customer
demand at each of the retailers depends on the displayed stock of the retailer. The whole
model is formulated as profit maximization problem to maximize the SCM profit. The
model is solved numerically using GRG method using Lingo-12.0 software.

The rest of this chapter is organized as follows. Section-4.2 contains all the notations
and assumptions which are used to formulate the model. The formulation of the model is
discussed in Section-4.3. Section-4.4 contains the solution methodology which is used to
solve the model numerically. In section-4.5 a numerical experiment has been made with
some practical data and the optimal result is given in tabular form. Section-4.6 and 4.7
contains some discussions and conclusions on the model respectively.

4.2 Notations and Assumptions

To develop the model, the following notations and assumptions have been used to develop
the proposed model.

4.2.1 Notations:

For convenience, the following notations are used to formulate the model.
qm(t) inventory level at any time t of perfect quality items for the manu-

facturer.
qr(t) inventory level at any time t of perfect quality items for the

retailer.
P production rate in units.
θ defective rate.
δ percentage of rework of defective units per unit time.
dr selling rate of perfect quality items of the manufacturer, where,

dr =
∑n

i=1 d
i
r.

dir demand rate of perfect quality items of the i− th retailer.
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qir(t) inventory position of i− th retailer.
dic(t) = di0 + di1q

i
r(t) demand rate of perfect quality items of the customers of i− th

retailer.
t1 production run-time in one period.
t2 time of zero sock situation of the retailer.
M time length of credit period of retailers, offered by the manufact-

urer.
N i time length of the customers offered by i− th retailer.
T i time at which the selling season ends for i− th retailer.
n number of retailers where the item is sold.
Iem rate of interest per year earned manufacturer from retailer.
Ier rate of interest per year earned retailer from customer.
sc screening cost per unit item.
Am = Am0 + Am1P set up cost of manufacturer.
hm holding cost per unit for per unit time for perfect item in manufa-

cturer.
rcm reworking cost per unit for manufacturer.
cp production cost per unit.
sm selling price per unit of perfect quality items for manufacturer.
Air set up cost of the i− th retailer.
hir holding cost per unit for per unit time of perfect quality items of

the i− th retailer.
sir selling price per unit of perfect quality items of the i− th retailer.

4.2.2 Assumptions:
The problem is constructed under the following considerations.

i) A manufacturer produces a mixture of perfect and imperfect quality items in single
period business. Some portion of imperfect items are reworked as a perfect quality
items.

ii) The defective rate θ is a random variable which follows uniform distribution.

iii) The whole model is formulated for a finite time horizon.

iv) The period length is different for different retailers.

v) Production rate (P ) is a decision variable.

vi) Set up cost of manufacturer has been considered as a linear function of production rate.

vii) It is assumed that the length of credit period (M ) offered by manufacturer must be less
than the cycle length T i of the i− th retailer i.e. M < T i for i = 1, 2, · · · , n.
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viii) The length of the credit period N i offered by i − th retailer to the end customers must
be less than M .

ix) The customer demand dic, faced by i− th retailer is a linear function of stock level qir(t)
of himself/herself.

4.3 Model Formulation

4.3.1 Mathematical formulation for manufacturer

The rate of change of inventory level of manufacturer [c.f. 4.1] for perfect quality items can
be represented by the following differential equations:

dqm
dt

=

{
P − dr − (1− δ)θP, 0 ≤ t ≤ t1
−dr, t1 ≤ t ≤ t2

(4.1)

with boundary conditions qm(0) = 0, qm(t2) = 0.
The solution of the differential equations (4.1) are given by

qm(t) =

{
{P − dr − (1− δ)θP}t, 0 ≤ t ≤ t1
−dr(t− t2), t1 ≤ t ≤ t2

From the continuity conditions of qm(t) at t = t1, the following is obtained,

t2 =
1

dr
{P − (1− δ)θP}t1

Inventory holding cost for perfect items is:

HCM = hm

[ ∫ t1

0

qm(t) dt+

∫ t2

t1

qm(t) dt
]

= hm

[ ∫ t1

0

{P − dr − (1− δ)θP}t dt+

∫ t2

t1

{−dr(t− t2)} dt

=
hm
2

[
{P − dr − (1− δ)θP}t21 + dr(t1 − t2)2

]
(4.2)

Production cost for the manufacturer= cpPt1.
Inspection cost = scPt1.
Reworking cost for manufacture = rcm

∫ t1
0
δθP dt = rcmδθP t1

Set up cost of the manufacturer=Am.
Revenue of perfect quality items for the manufacturer = smdrt2.
Disposal cost during (0, t2) = dc(1− δ)θP t1
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Total expected profit TEPm of manufacturer during the period (0, t2) is given by

TEPm = smdrt2 − (cp + sc)Pt1 − rcmδθP t1 − dc(1− δ)θP t1

−hm
2

[
{P − dr − (1− δ)θP}t21 + dr(t1 − t2)2

]
− Am (4.3)

4.3.2 Formulation for i− th retailer
The i− th retailer receives his/her required quantity per unit time from the manufacturer and
fulfill the customers’ demand rate dic. Those retailers start their business on or before the
production run time t1, pay r portion of the price amount payable initially and the remaining
(1 − r) portion pay at the end of his/her business period. But those retailers arrive after
the production run time t1, pay the total amount at their business starting time. They pay the
initial amount by getting loan from a bank at the rate of interest of Ip per year. Every retailer’s
earns interest at the rate of Ie by depositing sales revenue continuously. The inventory level
qir(t) [c.f. 4.1] for the i− th retailer’s is governed by the following differential equation.

Figure 4.1: Inventory Policy for perfect quality items

dqir(t)

dt
=

{
(dir − dic), 0 ≤ t ≤ t2
−dic, t2 ≤ t ≤ T i

with boundary conditions qir(0) = 0 and qir(T
i) = 0.

The customer demand is dic(t) = di0 + di1q
i
r(t), where di0 > 0 and 0 < di1 < 1.

Therefore the solutions of above differential equations are given by

qir(t) =


(dir−di0)

di1
(1− e−di1t), 0 ≤ t ≤ t2

−d
i
0

di1
[1− e−di1(t−T i)], t2 ≤ t ≤ T i
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From the continuity conditions of qir(t) at t = t2, we have
T i = t2 + 1

di1
log{1 +

(dir−di0)

di0
(1− e−di1t2)}

Holding cost of the i− th retailer is given by

HCRi = hir

[ ∫ t2

0

qir(t) dt+

∫ T i

t2

qir(t) dt
]

= hir

[(dir − di0)

di1

{
t2 +

1

di1
(e−d

i
1t2 − 1)

}
− di0
di1

{
(T i − t2) +

1

di1
{1− e−di1(t2−T i)}

}]
Holding cost (HCR) for all retailers’ is given by

HCR =
n∑
i=1

hir

[(dir − di0)

di1

{
t2 +

1

di1
(e−d

i
1t2 − 1)

}
− di0
di1

{
(T i − t2)

+
1

di1
{1− e−di1(t2−T i)}

}]
(4.4)

Sales revenue from perfect quality items of the i− th retailer is given by

SRRi = sir

[ ∫ t2

0

(di0 + di1q
i
r(t)) dt+

∫ T

t2

(di0 + di1q
i
r(t)) dt

]
= sir

[
di0T

i + (dir − di0)
{
t2 +

1

di1
(e−d

i
1t2 − 1)

}
− di0

{
(T i − t2)

+
1

di1
{1− e−di1(t2−T i)}

}]
= sir

[
dirt2 +

(dir − di0)

di1
(e−d

i
1t2 − 1)− di0

di1
{1− e−di1(t2−T i)}

]
All retailers’ total sales revenue (SRR) is given by

SRR =
n∑
i=1

sir

[
dirt2 +

(dir − di0)

di1
(e−d

i
1t2 − 1)− di0

di1
{1− e−di1(t2−T i)}

]
(4.5)

All retailers’ total purchase cost (PCR) is given by

PCR =
n∑
i=1

smd
i
rt2 (4.6)

Here it is assumed that the retailers trade credit period offered by the manufacturer is M
and that of customers offered by the retailer is N i (where N i < M ). The retailer is charged
by the manufacturer, an interest at the rate of Ip per year per unit for the unpaid amount
after the delay period and can earn an interest at the rate of Ie (Ie > Ip) per year per unit for
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the amount sold during the period (N i,M ) respectively. Depending on the cycle times of
the retailer and offering as well as receiving credit periods, three different cases may arise,
which have been discussed separately.

Case-1 (N i < M < t2 < T i): Interest paid by the i− th retailer (IP i
1) is given by

IP i
1 = smIp

∫ T i

M

qir(t) dt

= smIp

[ ∫ t2

M

qir(t) dt+

∫ T i

t2

qir(t) dt
]

= smIp

[(dir − di0)

di1

{
(t2 −M) +

1

di1
(e−d

i
1t2 − e−di1M)

}
− di0
di1

{
(T i − t2)

+
1

di1
{1− e−di1(t2−T i)}

}]

Interest earned by the i− th retailer (IEi
1),

IEi
1 = sirIe

[
(T i −N i)

∫ N i

0

dic(t) dt+ (T i −M)

∫ M

N i

(M − t)dic(t) dt

+(T i − t2)

∫ t2

M

(t2 − t)dic(t) dt+

∫ T i

t2

(T i − t)dic(t) dt
]

= sirIe

[
(T i −N i)

{
di0N

i + (dir − d0)
{
N +

1

di1
(e−d

i
1N

i − 1)
}}

+(T i −M)
{dir

2
(M −N i)2 − (M −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1M)
}

+(T i − t2)
{dir

2
(M − t2)2 − (t2 −M)

e−d
i
1M

di1
+

1

(di1)2
(e−d

i
1M − e−di1t2)

}
+
di0
di1

(T i − t2)e−d
i
1(t2−T i) +

di0
(di1)2

{1− e−di1(t2−T i)}
]

All retailers’ total interest payable (IP1) is expressed as

IP1 =
n∑
i=1

smIp

[(dir − di0)

di1

{
(t2 −M) +

1

di1
(e−d

i
1t2 − e−di1M)

}
− di0
di1

{
(T i − t2)

+
1

di1
{1− e−di1(t2−T i)}

}]
(4.7)
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All retailers’ total interest earned (IE1) is obtained as

IE1 =
n∑
i=1

sirIe

[
(T i −N i)

{
di0N

i + (dir − d0)
{
N +

1

di1
(e−d

i
1N

i − 1)
}}

+(T i −M)
{dir

2
(M −N i)2 − (M −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1M)
}

+(T i − t2)
{dir

2
(M − t2)2 − (t2 −M)

e−d
i
1M

di1
+

1

(di1)2
(e−d

i
1M − e−di1t2)

}
+
di0
di1

(T i − t2)e−d
i
1(t2−T i) +

di0
(di1)2

{1− e−di1(t2−T i)}
]

(4.8)

Therefore, all retailers’ total profit is given by

TEP 1
r(P, t1) = SRR− PCR−HCR− IP1 + IE1 −

n∑
i=1

Air (4.9)

where, SRR, PCR, HCR, IP1 and IE1 are given equations (4.5), (4.6), (4.4), (4.7) and
(4.8) respectively. So, the total profit (ITP) for this case of the integrated system is written as

E[ITP1(P, t1)] = E[TEPm(P, t1)] + E[TEP (1)
r (P, t1)] (4.10)

where, TEPm(P, t1), TEP (1)
r (P, t1) are given by equation (4.3) and (4.9) respectively.

Case-2 N i < t2 < M < T i: Interest paid by the retailer (IP i
2),

IP i
2 = smIp

∫ T i

M

qir(t) dt

= smIp

∫ T i

M

−d
i
0

di1
[1− e−di1(t−T i)] dt

=
di0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
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Interest earned by the retailer (IEi
2),

IEi
2 = sirIe

[
(T i −N i)

∫ N i

0

dic(t) dt+ (T i − t2)

∫ t2

N i

(t2 − t)dic(t) dt

+(T i −M)

∫ M

t2

(M − t)dic(t) dt+

∫ T i

M

(T i − t)dic(t) dt
]

= sirIe

[
(T i −N i)

{
di0N

i + (dir − di0)
{
N i +

1

di1
(e−d

i
1N

i − 1)
}}

+(T i − ti2)
{dir

2
(ti2 −N i)2 − (t2 −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1t2)
}

+(T i −M)
{di0
di1

(M − t2)e−d
i
1(t2−M) +

di0
(di)2

1

{1− e−di1(t2−M)}
}

+
di0
di1

(T i −M)e−d
i
1(M−T i) +

d0

(di1)2
{1− e−di1(M−T i)}

]
All retailers’ total interest payable (IP2) is expressed as

IP2 =
n∑
i=1

di0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
(4.11)

All retailers’ total interest earned (IE2) is obtained as

IE2 =
n∑
i=1

sirIe

[
(T i −N i)

{
di0N

i + (dir − di0)
{
N i +

1

di1
(e−d

i
1N

i − 1)
}}

+(T i − ti2)
{dir

2
(ti2 −N i)2 − (t2 −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1t2)
}

+(T i −M)
{di0
di1

(M − t2)e−d
i
1(t2−M) +

di0
(di)2

1

{1− e−di1(t2−M)}
}

+
di0
di1

(T i −M)e−d
i
1(M−T i) +

d0

(di1)2
{1− e−di1(M−T i)}

]
(4.12)

Therefore, all retailers’ total profit is given by

TEP (2)
r (P, t1) = SRR− PCR−HCR− IP2 + IE2 −

n∑
i=1

Air (4.13)

where, SRR, PCR, HCR, IP2 and IE2 are given equations (4.5), (4.6), (4.4), (4.11) and
(4.12) respectively.

So, the total profit (ITP) for this case of the integrated system is written as

E[ITP2(P, t1)] = E[TEPm(P, t1)] + E[TEP (2)
r (P, t1)] (4.14)
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where, TEPm(P, t1), TEP (2)
r (P, t1) are given by equation (4.3) and (4.13) respectively.

Case 3: t2 < N i < M < T i: Interest paid by the retailer (IP i
3),

IP i
3 = smIp

∫ T i

M

qir(t) dt

= smIp

∫ T i

M

−d
i
0

di1
[1− e−di1(t−T i)] dt

=
d0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
Interest earned by the retailer (IEi

3),

IEi
3 = sirIe

[
(T i −N i)

{∫ t2

0

dic(t) dt+

∫ N i

t2

dic(t) dt
}

+

∫ T i

N i

(T i − t)dic(t) dt
]

= sirIe

[
(T i −N i)

{∫ t2

0

{di0 + di1q
i
r(t)} dt+

∫ N i

t2

{di0 + di1q
i
r(t)} dt

}
+

∫ T

N i

(T i − t){di0 + di1q
i
r(t)} dt

]
= sirIe

[
(T i −N i)

{
di0N

i + (dir − di0){t2 +
1

di1
(e−d

i
1t2 − 1)} − di0

{
(N i − t2)

+
1

di1
{1− e−di1(t2−N i)}

}}
+
di0
di1

(T i −N i)e−d
i
1(N i−T i) +

di0
(di1)2

{1− e−di1(N i−T i)}
]

All retailers’ total interest payable (IP3) is expressed as

IP3 =
n∑
i=1

d0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
(4.15)

All retailers’ total interest earned (IE3) is obtained as

IE3 =
n∑
i=1

sirIe

[
(T i −N i)

{
di0N

i + (dir − di0){t2 +
1

di1
(e−d

i
1t2 − 1)} − di0

{
(N i − t2)

+
1

di1
{1− e−di1(t2−N i)}

}}
+
di0
di1

(T i −N i)e−d
i
1(N i−T i)

+
di0

(di1)2
{1− e−di1(N i−T i)}

]
(4.16)

Therefore, all retailers’ total profit is given by

TEP (3)
r (P, t1) = SRR− PCR−HCR− IP3 + IE3 −

n∑
i=1

Air (4.17)
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where, SRR, PCR, HCR, IP3 and IE3 are given equations (4.5), (4.6), (4.4), (4.15) and
(4.16) respectively.

So, the total profit (ITP) for this case of the integrated system is written as

E[ITP3(P, t1)] = E[TEPm(P, t1)] + E[TEP (3)
r (P, t1)] (4.18)

where, TEPm(P, t1), TEP (3)
r (P, t1) are given by equation (4.3) and (4.17) respectively.

When manufacturer and retailers’ have decided to share resources to undertake mutually
beneficial cooperation, the joint total profit which is a function of P and t1 can be obtained
by maximized E[ITP (P, t1)] is given by

Maximize E[ITP (P, t1)] =


E[ITP1(P, t1)], if N i < M < t2 < T i

E[ITP2(P, t1)], if N i < t2 < M < T i

E[ITP3(P, t1)], if t2 < N i < M < T i
(4.19)

where, ITP1(P, t1), ITP2(P, t1) and ITP3(P, t1) are given by equation (4.10), (4.14) and
(4.18) respectively.

4.4 Solution Methodology
The proposed non-linear problem is solved by a gradient based non-linear optimization
method- Generalized Reduced Gradient (GRG) method [c.f. sec.-2.2.2] using LINGO
Solver 12.0 for a given set of particular input data.

4.5 Numerical Experiment

4.5.1 Input Data
To verify the model numerically some realistic data are collected from rice mill with two of
its retailer which are given by the following.

For Manufacturer: Am0 = $48, Am1 = $0.05, cp = $24 / unit, dc = $0.6 / unit,
hm = $0.90 , sc = $0.80 / unit, sm = $89 / unit, rcm = $2 / unit, δ = 0.70, Iem = 12% /
year.

The defective rate θ is a random variable which follows uniform distribution with
corresponding probability density function as

f(x) =
1

b− a
, for a < x < b

= 0, elsewhere. Here a = 2, b = 4.5

For 1st Retailer: d1
r = 30 d1

0 = 4, d1
1 = 0.3, s1

r = $122 / unit, A1
r = $85, h1

r = $1.5,
I1
er = 10% / year.

106



4.6. DISCUSSION

For 2nd Retailer: d2
r = 32, d2

0 = 5 d2
1 = 0.3, s2

r = $85 / unit, A2
r = $40, h2

r = $0.55,
I2
er = 10% / year.

4.5.2 Optimal Results

After solving the equation (4.19) for the above input data, the obtained optimum results are
given in Table-4.1 for different cases.

Table 4.1: Optimum results for all of the different cases

Cases Ex. Profit
(N1, N2) M (P) (t1) (t2) (T 1, T 2) E[ITP (P, t1)]

Case-1
(N i < M < t2 < T i) (0.11, 0.11) 0.24 93.32 0.13 0.42 (0.46, 0.48) 2381.09

Case-2
(N i < t2 < M < T i) (0.09, 0.10) 0.58 45.82 0.37 0.56 (0.59, 0.58) 2956.81

Case-3
(t2 < N i < M < T i) (0.44, 0.42) 0.58 97.61 0.12 0.41 (0.54, 0.49) 2316.64

4.6 Discussion

The optimum results in the Table-4.1 are as per expectation. Case-2 of the proposed model
gives the maximum profit than the other two cases. In this case (Case-2), the credit periods
to customers offered by the retailers are lowest than the other two cases. Due to this
retailers’ losses due to the offer of trade credit to customers is minimum. The time periods
for the retailers are also maximum than the other two cases. This fetches more revenues to
the retailers. But the production rate of Case-2 is minimum than those of Case-1 and
Case-3. This consideration is supposed to produce less amount which fetches less revenue.
But, combination of these three considerations gives maximum profit as first two
assumptions overpower the third assumption. Among the two cases- Case-1 and Case-2,
though the customers’ trade credit are almost same the time periods (T 1, T 2), trade credit
(M), the production period (t1) for Case-2 are more than those of Case-1 and due to this, the
total profit for Case-2 is more than the Case-1. Among Case-2 and Case-3, customers’ trade
credits (N1, N2) and the production period (t1) dominate the scenario and the total profit for
Case-3.It is interesting to note that the total profits for Case-1 and Case-3 are not much
different. Except (N1, N2) and M , the other parameters for these cases are almost same.
Here, both (N1, N2) and M for Case-3 are higher than Case-1. The retailers get more time
(M ) to replay the dues and in return, give more trade credits to customers. These
parameters balances the total profit.
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4.7 Conclusion
In this chapter a production inventory model has been developed for a supply chain involving
manufacturer, retailers and the end customers in a target to find the perfect production rate
and exact maintenance policy for which the total supply chain profit will be maximum.
• The manufacturer produces an imperfect item with random defective rate. Researcher may
develop the model for different type of defective rates (such as, fuzzy, fuzzy-random, rough
etc.)
•A retailer shares a certain percentage of his/her delay in payment facility with the customers
to push the sale. There are many scope to extend this study by considering different type
of credit length. Also the effect of new method of payment [given in sec.-9.4.1] may be
considered here.
• The model can also be developed for different types of customer demand.
• Finally, the numerical results are obtained using the data given by a merchant. So the
results have greater importance from the managerial point of view.
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Chapter 5

Two plant optimal production problem in
random time horizon

5.1 Introduction

In any manufacturing system, taking the perfect production decision for demand
satisfaction is one of common problem to the manufacturer. Higher production rate
increases the stock holding cost and lower production rate creates shortage situation. Also
there are some other factors which also affect the production rate. Different type production
models are continuously studied by several researchers to find the optimal production
policy for different business situations. Levin et al. [145] gave a brief discussion about
contemporary policy for managing operating systems. GrubbstroK and Winkr [94] used
control theory to develop an inventory trigger control policy. Khouja and Mehrez [131]
studied an EPQ model with imperfect quality items where the production rate is variable.
He et al. [107] studied a production inventory model for deteriorating items for different
market demands. Cárdenas-Barrón and Sana [36] formulated a production inventory model
for two echelon supply chain where demand depends on the sale. It is always seen the
requirement of larger space to store items increases according to the growth of business.
But, the situation may not support to enlarge the go-down. In this case the situation can be
tackle by making another warehouse at a distance from the business place. Jaggi et al. [118]
studied an inventory model of deteriorating items with two warehouses. Liang and
Zhou [147] have also studied a two warehouse inventory model for deteriorating items
under conditionally permissible delay in payment. A two storage inventory model is
formulated by Guchhait et al. [96] with variable demand under permissible delay in
payment. Kar et al. [129] presented an inventory model of muti-deteriorating items where a
business manager sells business materials from two different shops due to congested space.

The normal phenomenon of a real life oriented inventory problem is that the time horizon
is uncertain. Moon et al. [185] have presented an economic order quantity model with
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random planning horizon. A two storage inventory model is constructed by Roy et al. [211]
with fuzzy deterioration for a random planning horizon. Datta and Pal [74] studied the
effects of inflation and time value of money on an inventory model with linear time
dependent demand rate where shortage is allowed. A fuzzy inventory model with two
warehouses is studied by Maiti [166] and solved using the possibility measure dependent
fuzzy goal technique.

Every production firm starts its business with a budget which is to be maintain over the
whole business horizon and it is very difficult in reality. Chen and Wang [49] have studied a
supply chain with trade-credit contract under the consideration of budget restriction.

In-spite of all these studies, we present here a production inventory model which is newer
from the previous studies in the following context.

1. In this EPQ model, two production houses are considered to control the stock out situation
under a random environment which makes this investigation different from the others.
Here market demand is satisfied from both of th production house.

2. The randomness of the different parameters of the model are removed using chance con-
straint method and taking expected value.

3. The production rates are unknown functions of time and the demand rates are known
functions of time.

4. None has investigated a two plant production-inventory models with dynamic production
rate, trended demand, random shortage (occurs only at one production house) under a
random planning horizon till now.

In this model, a production house is considered with two production plants situated at
different places. A single item is produced at both of the plants under a single management
with different production rates for a random time horizon. All the inventory parameters are
also random. Production rate and Demand at both of the plants are linear function of time.
At plant-1, the demand rate is not lower than the production rate, so shortage may arise at
this plant. At plant-2, the demand rate is not greater than the production rate, so there may
be a over stock situation. In this process, if there is an excess demand at a particular
production center then excess produced amount is shifted to another production center
having shortage of items. The model is formulated as a cost minimization problem for the
time dependent production-inventory model in the form of an integral. The objective is to
find the optimum production rates for two production centers. The problem is solved using
gradient based non-linear optimization technique (GRG) using Lingo 12.0 software. Some
particular cases re considered, derived and solved. The problems are illustrated through
some numerical examples and presented in tabular and graphical forms.
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5.2. NOTATIONS AND ASSUMPTIONS

The next of this chapter is organized as follows. Section-5.2 contains the notations and
assumptions that we have made for the development of the model. The formulation and the
theoretical development of the models are given in section-5.3. A solution methodology
presented in the section-5.4 and the numerical experiment done through that solution
methodology is presented in section-5.5 .The corresponding discussions and conclusions
are given in section-5.6 and -5.7 respectively.

5.2 Notations and Assumptions
In the proposed model, the following notations and assumptions are used for the i-th plant
[i=1,2].

5.2.1 Notations
T̂ length of each cycle which random in nature.
Z budget cost.
m number of times stock transported from plant-1 to plant-2 over the

whole business period (number of replenishment cycle).
Ĉt random transportation cost.
S2(t) shortage level at plant-2 at time t in each cycle.
π̂21 per item per unit time shortage cost for plant-2.
µT̂ mean value of T̂ .
ĥi1 per unit item per unit time the holding cost for the i-th plant.
Ĉiu per unit item production cost for the i-th plant.
Di(t) = di0 + di1t per unit time demand rate for the i-th plant.
Ui(t) = ui0 + ui1t per unit time production rate.
Xi(t) and Ii(t) inventory level at time t for i− th plant where, [Xi(t) = Ii(t) for

Xi(t) > 0].
βj a real number which is used to fixed the surplus stock of plant-1

in the interval [tj−1, tj] that can be transported to plant-2 in the
interval (tj, tj + 0) where, 0 ≤ βj < 1 and j = 1, 2, · · · ,m.

5.2.2 Assumptions

i) This is a single period inventory model with random time horizon.

ii) Shortages are allowed only plant-2 and over stock situation occurs only at plant-1.

iii) Both the plants are in a single management system.

iv) The production rate is a unknown function of time and considered as a control variable.
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v) The demand rate is a known function of time.

vi) After the demand satisfaction, the excess amount of stock at plant-1 is transported to the
plant-2 if there be unwanted stock out situation occurs.

vii) There is only one cycle over a finite business period and the transfer of stock is done
with in a zero lead time.

5.3 Model Formulation

5.3.1 Model-I: Random Time horizon for both Plant
In this investigation a production-inventory control problem is considered with two
production center namely, plant-1 and plant-2 for a finite but random business planning
horizon T̂ . Here, the randomness of the time horizon is removed using chance constraint
method. Let the deterministic value of T̂ is Tr. Then the corresponding chance-constraint is

Prob(|T̂ − Tr| < ε1) ≥ η1 (5.1)

where, T̂ is normally distributed with corresponding mean and variance mT̂ and σT̂ respec-
tively. If k1 represents the value of the standard normal variable for which

η1 = F (k1)

=
1√
2Π

∫ k1

−∞
e−

t2

2 dt (5.2)

The cumulative probability P [t ≤ k1] is available in standard statistical table for different
values of k1. Then according to chance constraint technique [c.f. 2.1.5], the constraint (5.1)
becomes

µT̂ − ε1 − σT̂k1 ≤ Tr ≤ µT̂ + ε1 − σT̂k1 (5.3)

Now the whole business plane is subdivided into m equal sub-intervals. The j − th
sub-interval is [tj−1, tj] where, tj = jTr

m
for, j = 0, 1, · · · ,m.

The position of plant-2 is at the heart of market with unavailability of space and raw
materials and some non-supportive circumstances for production. Therefore, the production
rate [U2(t)] is poor but according to its position the demand rate [D2(t)] may be higher than
[U2(t)] at plant-2 which may create a shortage situation.

For plant-1 it is considered that due to the availability of raw material, man power
support, space availability and some of other advantages production rate [U1(t)] is higher
than its demand rate [D1(t)]. So, the stock continuously increases upto the time of end of
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production process.

Moreover, lower production rate and higher demand rate create shortage at plant-2 during
business running period and then it is fully back-logged within a small duration using the
excess amount of item produced at plant-1. The transportation of excess item of plant-1 to
plant-2 is made in bulk release pattern.

Since the business horizon is finite so, the inventory level at both of the plants are
continuous function of time over the business period except for a finite number of times.

In the first interval [0, t1], β1I1(t1) amount is transported to plant-2 from plant-1 within a
small time gap (t1, t1 + 0). Similarly, for the second interval (t1 + 0, t2] the amount
transported from plant-1 to the 2nd one is β2I1(t2) in small time gap (t2, t2 + 0). This
process continues in each of the remaining intervals (tj−1 + 0, tj], for j = 3, · · ·m till the
end of the business period.

Thus the inventory position at the different time are given by

I1(t+ 0) =

{
(1− βj)I1(t), for t = tj
0, for t = Tr

(5.4)

I2(t) =


0, for t = tj
βjI1(t), for t = tj + 0
0, for t = Tr

(5.5)

The differential equation expressing the inventory level Xi(t) in production rate Ui(t) and
demand rate Di(t) for i-th (i=1,2) plant in the time horizon is

dXi(t)

dt
= Ui(t)−Di(t) (5.6)

where, X2(t) =


0, for t = tj
βjI1(t), for t = tj + 0
0, for t = Tr

(5.7)

with, Ii(t) = max[Xi(t), 0], S2(t) = max[−X2(t), 0]. (5.8)

Thus the objective function of the problem is given by

Minimize J =

∫ Tr

0

[ 2∑
i=1

{ĥi1Ii(t) + ĈiuUi(t)}+ π̂21S2(t)

]
dt+

m−1∑
j=1

ĈtβjI1(tj) (5.9)
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where Tr is given by the equation (5.3) and the other constraints are given by the following-

2∑
i=1

∫ Tr

0

ĈiuUi(t)dt ≤ Z (5.10)

X1(t) ≥ 0 (5.11)
0 ≤ D1(t) ≤ U1(t) (5.12)
0 ≤ U2(t) ≤ D2(t) (5.13)

Equivalent deterministic form of the model

The whole problem given by (5.9) with the constraints (5.10), (5.11), (5.12) and (5.13) is
converted into its deterministic form using two method. Method-1 is the chance constraint
method and Method-2 is taking the expected value.

Method-1(Using Chance Constraint Method):
Let hri1, Criu, πr21, Crt are the deterministic value of the random numbers

ĥi1, Ĉiu, π̂21, Ĉt respectively. Then the objective function (5.9) becomes

Minimize J =

∫ Tr

0

[
2∑
i=1

{hri1Ii(t) + CriuUi(t)}+ πr21S2(t)]dt+
m−1∑
j=1

CrtβjI1(tj) (5.14)

and the budget constraint (5.10) becomes

2∑
i=1

∫ Tr

0

CriuUi(t)dt ≤ Z (5.15)

and the other constraints are

Prob(|hr1 − hri1| < ε2) ≥ η2

Prob(|Ĉiu − Criu| < ε3) ≥ η3

Prob(|π̂21 − πr21| < ε4) ≥ η4

Prob(|Ĉt − Crt| < ε5) ≥ η5

If ki represents the standard normal value for which F (ki) = ηi for, i = 2, 3, 4, 5, where
F (x) is the distribution function of standard normal variable given by equation (??), then
following the chance constraint method [c.f. 2.1.3] the above inequalities are reduces to

µĥi1 − ε2 − σĥi1k2 ≤ ĥi1 ≤ µĥi1 + ε2 − σĥi1k2 (5.16)

µĈiu − ε3 − σĈiuk3 ≤ ĥi1 ≤ µĈiu + ε3 − σĈiuk3 (5.17)
µ ˆπ21 − ε4 − σ ˆπ21k4 ≤ µ ˆπ21 + ε4 − σ ˆπ21k4 (5.18)
µĈt − ε5 − σĈtk5 ≤ µĈt + ε5 − σĈtk5 (5.19)
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Where, µĥi1 , µĈiu , µπ̂21 , µĈt and σĥi1 , σĈiu , σπ̂21 , σĈt are the mean and standard deviation
(S.D.) of the normal variables ĥi1, Ĉiu, π̂21, and Ĉt respectively.

Method-2(Considering the expected value) :
Here, the expected value of the random parameters ĥi1, Ĉiu, π̂21 and Ĉt are considered,

where ĥi1, Ĉiu, π̂21 and Ĉt all are normal variate with parameters (µĥi1 , σĥi1), (µĈiu , σĈiu),
(µπ̂21 , σπ̂21), (µĈt , σĈt) respectively. If expected value of a random parameter ĥi1 is
represented as E[ĥi1] (and, similar for other parameters), then the equation (5.9) becomes

MinimizeJ =

∫ Tr

0

[
2∑
i=1

{E[ĥi1]Ii(t) + E[Ĉiu]Ui(t)}+ E[π̂21]S2(t)]dt

+
m−1∑
j=1

E[Ĉt]βjI1(tj) (5.20)

and the constraints are

2∑
i=1

∫ Tr

0

E[Ĉiu]Ui(t)dt ≤ Z (5.21)

Prob(|T̂ − Tr| < ε1) ≥ η1 (5.22)

There are some particular cases which can derived from the presented model. Such as

5.3.2 Model-II: Time horizon is crisp for both plant

Here, the time horizon for both of the plants are considered as crisp in nature. If T is the
time horizon in this case, then the problem takes the form

Minimize J =

∫ T

0

[ 2∑
i=1

{ĥi1Ii(t) + ĈiuUi(t)}+ π̂21S2(t)

]
dt+

m−1∑
j=1

ĈtβjI1(tj) (5.23)

where the budget constraints are given by

2∑
i=1

∫ T

0

ĈiuUi(t)dt ≤ Z (5.24)

and the other constraints are given by (5.11), (5.12) and (5.13).
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5.3.3 Theoretical Experiment
The problem is evaluated using the Optimal Control Theory (c.f. sec.-2.2.3). According to
this method the problem given by equations (5.14), (5.15), the corresponding Hamiltonian
function is

H =
2∑
i=1

[−{hri1Ii(t) + CriuUi(t)}+ qi(t){Ui(t)− di0 − di1t}]− πr21S2(t). (5.25)

and the Lagrangian function for the constraints is

L = H + λ1I1(t) + λ2I2(t) + λ3

[ 2∑
i=1

CriuUi(t)−
Z

Tr

]
(5.26)

where, λi ≥ 0, for i = 1, 2, 3 are the Lagranges multipliers. The Kuhn-Tucker conditions
are

λ1I1(t) = 0, λ2I2(t) = 0, λ3

[ 2∑
i=1

CriuUi(t)−
Z

Tr

]
= 0. (5.27)

where, the corresponding ad-joint functions qi(t), i = 1, 2 are given by the first order differ-
ential equations,

dqi(t)

dIi(t)
= − δL

δIi(t)
, for, i = 1, 2.

which can be reduces to

dq1(t)

dI1(t)
= hr11 − λ1, for I1(t) ≥ 0, and (5.28)

dq2(t)

dI2(t)
= hr21 − λ2, for I2(t) ≥ 0 (5.29)

= −π̂21, for X2(t) < 0 (5.30)

where, qi(Tr) = 0, for i = 1, 2
Also following the maximum principle [c.f. sec.-2.2.3], the Lagrangian function is
maximized at every point of time with respect to the control function Ui(t). This leads to
the following relations.

δL

δUi(t)
= qi(t)− (1− λ3)E[Ĉiu] (5.31)

Here, Ui(t) is the control variable and bounded with lower and upper bounds. Thus the
following three cases may arise.
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case-1: δL
δUi(t)

> 0, case-2: δL
δUi(t)

= 0, case-3: δL
δUi(t)

< 0.

For case-1, the Lagrangian function is an increasing function of production function Ui(t).
For case-2, the Lagrangian function is independent of production function Ui(t).
For case-3, the Lagrangian function is a decreasing function of production function Ui(t).
Using the boundary conditions given by (5.12), (5.13) the optimal production function can
be reduced for case-1 and case-3 as the following.

U1(t) = u10 + u11t, for q1(t) > (1− λ3)C11u (5.32)
= 0, for q1(t) < (1− λ3)C11u (5.33)

U2(t) = u20 + u21t, for q2(t) > (1− λ3)C12u (5.34)
= 0, for q2(t) < (1− λ3)C12u (5.35)

Let equation (5.33) and(5.35) are satisfied for 0 ≤ t ≤ t11 and 0 ≤ t ≤ t21 respectively.
Then using the conditions (5.28) to (5.31) in equations (5.33) to (5.35), the optimum pro-

duction function is reduced as

U1(t) = u10 + u11t, for 0 ≤ t ≤ t11 (5.36)
= 0, for t11 ≤ t ≤ Tr (5.37)

U2(t) = u20 + u21t, for 0 ≤ t ≤ t12 (5.38)
= 0, for t12 ≤ t ≤ Tr (5.39)

Using equations (5.37), (5.38) and Ii(t) = max[Xi(t), 0], S2(t) = max[−X2(t), 0], the
optimum stock function in [0,Tr] for plant-1 is obtained as

I1(t) = I1(tj + 0) + (u10 − d10)(t− tj)− (u11 − d11)
(t2 − t2j)

2
(5.40)

for, tj < t ≤ t11

= I1(t11)− d10(t− t11) + d11
(t2 − t211)

2
for, t11 ≤ t ≤ tj+1 (5.41)

= I1(tj+1 + 0)− d10(t− tj+1)− d11

(t2 − t2j+1)

2
for, t > tj+1 (5.42)

Similarly, using the equations (5.39), (5.39) and Ii(t) = max[Xi(t), 0],
S2(t) = max[−X2(t), 0], the optimum stock and shortage functions in [0,Tr] for plant-2 is
reduced as

X2(t) = I2(tj + 0) + (u20 − d20)(t− tj)− (u21 − d21)
(t2 − t2j)

2
(5.43)

for, tj < t ≤ t21

= I2(t12)− d20(t− t21) + d21
(t2 − t221)

2
for, t21 ≤ t ≤ tj+1 (5.44)

= I2(tj+1 + 0)− d20(t− tj+1)− d21

(t2 − t2j+1)

2
for, t > tj+1 (5.45)
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Thus the problem reduces to

Minimize J =
2∑
i=1

(Hi + Pi) + S2 +
m−1∑
j=1

CrtβjI1(tj) (5.46)

subject to the constraints given by (5.3) and (5.10) to (5.13)., where Hi, Pi and S2 are given
by

Hi =

∫ Tr

0

hri1Ii(t)dt. (5.47)

Pi =

∫ Tr

0

CriuUi(t)dt. (5.48)

= Criu(ui0ti1 +
ui1
2
t2i1). (5.49)

and S2 =

∫ Tr

0

πr21S2(t)dt. (5.50)

= πr21

[
(d20 − u20)

t2
2

+ (d21 − u21)
t2

3

6

]
(5.51)

5.4 Solution methodology

The objective function given by equation (5.46), with its corresponding constraints is evalu-
ated numerically, using gradient based optimization technique- Generalized Reduced Gradi-
ent (GRG) Method [c.f. sec.-2.2.2] through Lingo software of 12.0 version.

5.5 Numerical Experiments

To illustrate the models numerically, the following data are considered according to some
manufacturer suggestion.

5.5.1 Input Data

d10 = 11, d11 = 0.2, n = 5, d20 = 17, d21 = 0.25 (demands are in units).
The mean and standard deviation (s.d.) of the random parameters are given by the Table-5.1.
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Table 5.1: Mean and s.d. of random parameters

T̂ Ĉiu ĥi1 π̂21 Ĉt
plant mean 10 6.10 0.31 - 0.35

-1 s.d. 3 0.20 0.15 - 0.2
Lt.of int. (5.48,6.52) (0.21,0.51)

plant mean 10 6.43 0.15 0.25
-2 s.d. 3 0.25 0.15 0.15

Lt.of int. (5.7,6.81) (0.22,0.58) (0.25,0.57) (0.26,0.56)
ε 0.02 0.021 0.025 0.025 0.024
η 0.95 0.95 0.90 0.93 0.94

5.5.2 Optimal Result

Using the methodology mentioned in sec.5.4 the optimal results using the above inputted
data are obtained for different models and presented in Table-5.2. For the above mentioned
data, the stock positions at two plants at the ends of different replenishment cycles are given.

Table 5.2: Optimum result for different models

Model Method Plant ui0 ui1 Tr Total Cost
-1 -1 12.02 0.24 9.275 1729.3

-I -2 16.57 0.36 9.372
-2 -1 11.98 0.27 9.267 1734.65

-2 16.04 0.41 9.357
-1 -1 12.11 0.23 9.684 1781.21

-II -2 16.53 0.21 9.89
-2 -1 12.09 0.25 9.776 1801.02

-2 16.23 0.24 9.866

Figure 5.1: Stock level at different time at plant-1 and plant-2
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Table 5.3: Sensitivity analysis for different models

Method Plant tj 0 1.897 3.794 5.691 7.588 9.275 9.374 9.485
-1 I1(tj) 0 1.999 3.245 4.07 4.66 4.833 2.839 0

Model -1 Plant tj 0 1.897 3.794 5.691 7.588 9.275 9.374 9.485
-2 I2(tj) 0 -0.62 0 0 0 1.92 2.989 0

I2(tj + 0) 0 0.262 1.43 1.792 2.056 3.13 2.989 0
Method Plant tj 0 1.903 3.806 5.709 7.612 9.567 9.461 9.515

-1 I1(tj) 0 2.112 3.4136 4.433 5.123 5.262 3.212 0
-I -2 Plant tj 0 1.903 3.806 5.709 7.612 9.067 9.461 9.515

-2 I2(tj) 0 -0.68 0 0 0 1.435 3.513 0
I2(tj + 0) 0 0.313 1.604 2.084 2.408 3.912 3.513 0

Method Plant tj 0 2 4 6 8 9.684 9.89 10
-1 I1(tj) 0 2.28 3.896 5.077 5.972 6.235 2.951 0

Model -1 Plant tj 0 2 4 6 8 9.684 9.89 10
-2 I2(tj) 0 -0.57 0 0 0 1.52 3.625 0

I2(tj + 0) 0 0.21 1.340 1.746 2.054 3.712 3.625 0
Method Plant tj 0 2 4 6 8 9.776 9.857 10

-1 I1(tj) 0 2.28 3.8816 5.231 6.212 6.842 3.11 0
-II -2 Plant tj 0 2 4 6 8 9.36 9.82 10

-2 I2(tj) 0 -0.64 0 0 0 1.61 4.112 0
I2(tj + 0) 0 0.297 1.595 2.150 2.553 4.432 4.112 0

5.6 Discussion
The following discussions can be made from the above results.
• The model presented in this chapter highlights on a production inventory model with
unknown production rate which is a function of time and gives a procedure to get the
optimum production function.
• From the optimum results given in Table-5.2, it can be seen that the optimal production
rate functions for plant-1, plant-2 are U1(t) = 16.57 + 0.36t and U2(t) = 12.02 + 0.24t
respectively. From these functions, its clear that the production rate at plant-1 is greater
than plant-2 as per expectation. Moreover, the demand function for the respective plant-1
and plant-2 are D1(t) = 11 + 0.2t and D2(t) = 17 + 0.25t respectively. Hence it is
obvious that there is a excess stock at the plant-1 which is supplied to plant-2 in each
replenishment cycles. This indicates that the process presented here has worked positively
as per expectation from the model formulation.
• Moreover the stock situation is presented in Table-5.3 also supports the above discussion.
From Table-5.3 it can be seen that the stock situation at time t = t1 there is a shortage
occurred at the plant-2 and in a infinitesimal small duration of time (at t = t1 + 0) the
shortage is covered by the excess stock occurred at the plant-1.
• As the time increases, the amount of stock increases at both of the plants. This happen as
the production rate is a linear function of time and also the demand for both the plants.
• Ti is seen that during the nd of the business period, last business time for deterministic
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model (Model-II) is 10 units where this parameter for the random model (Model-I) is
slightly different from 10 units. This is as per expectation.

5.7 Conclusion
In comparing with the existing literature on production-inventory models, the followings
are the main contributions in the proposed model:
• For the first time, a two plant production-inventory model is considered with time
dependent production rate which is an unknown function of time in a random planning
horizon with shortage at one of the two plants.
• Manufacturer continuously produces items at both plants and the shortage situation is
covered instantly as it occurs at one of the two plants using the excess stock occurs at the
other plant.
• There are many scopes for the future research in this context. The models can be
formulate in other deterministic and non-deterministic environments such as fuzzy,
fuzzy-random, fuzzy-rough etc.
• The model also can be reformulated using the lead time, trade credit to get some other
realistic pictures of productions and costs.
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Chapter 6

Optimum Production Policy for a
Production Inventory Model in Random
Time Horizon

6.1 Introduction

According to Levin et al. [145] ” At times, the presence of inventory has a motivational
effect on the people around it. It is common belief that large piles of goods displayed in
super market will lead the customers to buy more. So inventory can be used to increase the
demand for an item in the market”. For this reason, in the recent competitive market within
the developing countries like India, Brazil etc. the inventory / stock is decoratively
exhibited and colorably displayed through electronic media to attract the customers and to
boost the sale. Hence several authors such as Datta and pal [75], Mandal and
Phaujder [174], Maiti and Maiti [170] and others considered stock dependent demand in
their models.

Normally, most of the classical production-inventory models are developed without
considering the effect of inflation and time value of money. But according to the recent
economical situation of most of the countries, the effect of inflation and time value of
money cannot be ignored. Also for various factors, the time value of money in the world
economy changes in very small duration. The first inventory model with the inflationary
effect was developed by Buzacott [27]. Jolai et al. [125] examined the effect of inflation on
an EOQ production lot size model of deteriorating items with partial backlogging. Effect of
inflation was also considered by Jaggi [119] in an inventory model with two warehouse and
partial back logging. Neetu and Tomer [192] considered inflationary effect in some
inventory models for deteriorating items with infinite planning horizon. Moon and
Lee [184] presented an EOQ model under inflation and discount with a random product life
cycle.

In production-inventory models, production rate is an important controlling factor. A
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manufacturer normally tries to slowdown i.e. slash-down the production rate to avoid the
unnecessary idle stock in the go-down. So the production rate decreases as the inventory
level goes up. This contradicts the modern marketing policy where demand proportional to
the displayed stock level. Roy et al. [212, 213] solved some inventory problems with
constant production rate and without shortages under a random planning horizon.

The present investigation differs from existing literature in the following pointof view.

1. The present production-inventory model involves stock dependent production rate and
stock dependent demand rate over a random planning horizon.

2. The present model is developed with and without shortages and the unit production rate
is also considered as crisp, random, fuzzy and fuzzy-random in nature.

3. Till now, none has investigated inventory models under the above assumption.

In this study, a production inventory model is developed with displayed stock dependent
demand over a random planning horizon under inflation taking time value of money into
account. The random business period follows exponential distribution with known mean.
The unit production rate is partly stock dependent and the unit production cost is considered
as crisp, random, fuzzy and fuzzy-random in nature and different models are presented for
each of these considerations. All models are formulated as profit maximization problems
which are developed with and without shortages. Models are solved using the non-linear
optimization technique- Generalized Reduced Gradient (GRG) technique and illustrated
through some numerical examples. Some sensitivity analysis also made for different
production rates.

The rest of the chapter is organized as follows. Some notations and assumptions which
are considered in this model are given in Section-6.2. Section-6.3 contains the formulation
of the models for different considerations. A short note given about the solution procedure
in Section-6.4 and section-6.5 presents some numerical experiment with optimal result
which are obtained using our proposed solution method. A brief discussion and conclusion
is given in Section-6.6 and 6.7 respectively.

6.2 Notations and Assumptions
The corresponding production-inventory model is developed on the basis of the following
assumptions and notations.

6.2.1 Notations
n Number of full cycles.
tu time from the beginning of each cycle, when shortages are fully backlogged .
ut u0 − u1x(t), production function where u0 and u1 are unknown constants.
d(t) d0 + d1x(t), demand rate where d0 and d1 are unknown constants.
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t1 time when stock is maximum and production is stopped.
t2 time when stock is zero and shortages begins.
t3 time when shortages are maximum and production is started.
c1 holding cost per unit item per unit time.
s1 shortage cost per unit item per unit time.
s2 per unit item reduced selling price.
x(t) inventory position in each cycle at time t, where, (j − 1)tu ≤ t ≤ jtu.
H random time horizon, where h is the real time horizon.
Q1 maximum stock level in each cycle.
Q2 maximum shortage amount in each cycle.
e−Rt difference between discount and inflation at any time t, where R is

a known constant.
p0e
−(j−1)γ per unit item production cost where, p0 and γ are known constants.

m0 mark-up imposed upon the unit production cost to fix the unit selling price.
c1

3 + c2
3e
−δj the set-up cost for the j-th cycle.

6.2.2 Assumptions

i) Demand rate is a known linear function of displayed stock amount.

ii) Shortages are allowed and fully backlogged whenever it is possible.

iii) Unit production rate is unknown and partly depends on displayed stock and decreases
according to time increment.

iv) Lead time is negligible.

v) Business period is random and follows an exponential distribution with known mean.

6.3 Formulation of the Models

6.3.1 Model-A: Model with deterministic production cost and
shortages

Formulation for first n full cycles

In the j − th cycle (j = 1, 2, · · · , n), production starts with maximum production rate at
the beginning of the cycle and stopped at t = (j − 1)tu + t1, when the stock is maximum.
The shortage begins at the time t = (j − 1)tu + t2 and at the time t = (j − 1)tu + t3, when
shortage is Q, the production starts again and the shortage is fully backlogged at the time
end of cycle i.e. at t = jtu. So following Fig.-6.1 the leading differential equation for the
j − th cycle is given by

125



CHAPTER 6. OPTIMUM PRODUCTION POLICY FOR A PRODUCTION
INVENTORY MODEL IN RANDOM TIME HORIZON

Figure 6.1: Model of the problem for n full cycle

dx(t)

dt
=


u0 − d0 − (u1 + d1)x(t) for, (j − 1)tu ≤ t ≤ (j − 1)tu + t1
−d0 − d1x(t) for, (j − 1)tu + t1 ≤ t ≤ (j − 1)tu + t3
u0 − d0 − (u1 + d1)x(t) for, (j − 1)tu + t3 ≤ t ≤ jtu

(6.1)

with the boundary conditions

x(t) =


0 for, t = (j − 1)tu
Q1 for, t = (j − 1)tu + t1
0 for, t = (j − 1)tu + t2
Q2 for, t = (j − 1)tu + t3
0 for, t = jtu, where, j = 1, 2, · · · , n.

(6.2)

Using the boundary conditions given by (6.2), the solution of the differential equation (6.1)
is given by

x(t)



for, (j − 1)tu ≤ t ≤ (j − 1)tu + t1,

=
u0 − d0

u1 + d1

[
1− e−(u1+d1){t−(j−1)tu}

]
for, (j − 1)tu + t1 ≤ t ≤ (j − 1)tu + t3,

=

(
Q1 +

d0

d1

)
e−d1{t−(j−1)tu−t1} − d0

d1

for, (j − 1)tu + t3 ≤ t ≤ jtu,

=

(
Q2 −

u0 − d0

u1 + d1

)
e−d1{t−(j−1)tu−t3} − u0 − d0

u1 + d1

(6.3)
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where,

Q1 =
u0 − d0

u1 + d1

[
1− e−(u1+d1)t1

]
(6.4)

t2 = t1 +
1

d1

log

[
d1Q1 + d0

d0

]
(6.5)

Q2 = −d0

d1

[1− e−d1(t3−t2)] (6.6)

tu = t3 +
1

d1

log

(
1−Q2

u1 + d1

u0 − d0

)
(6.7)

Expected value of holding cost for n full cycles
Present value of holding cost of the inventory for j − th (1 ≤ j ≤ n) cycle, HCj is given by

HCj = c1

[ ∫ (j−1)tu+t1

(j−1)tu

+

∫ (j−1)tu+t2

(j−1)tu+t1

]
x(t)e−Rtdt

= c1

∫ (j−1)tu+t1

(j−1)tu

u0 − d0

u1 + d1

[
1− e−(u1+d1){t−(j−1)tu}

]
e−Rtdt

+c1

∫ (j−1)tu+t2

(j−1)tu+t1

[{
Q1 +

d0

d1

}
e−d1{t−(j−1)tu−t1} − d0

d1

]
e−Rtdt

= c1[I1j + I2j] (say) (6.8)

where,

I1j =

∫ (j−1)tu+t1

(j−1)tu

u0 − d0

u1 + d1

[
1− e−(u1+d1){t−(j−1)tu}

]
e−Rtdt

=
u0 − d0

u1 + d1

[
1− eRt1

R
− 1− e−(u1+d1+R)t1

u1 + d1 +R

]
e−R(j−1)tu

and, I2j =

∫ (j−1)tu+t2

(j−1)tu+t1

[{
Q1 +

d0

d1

}
e−d1{t−(j−1)tu−t1} − d0

d1

]
e−Rtdt

=

[(
Q1 +

d0

d1

)
ed1t1{e−(R+d1)t1 − e−(R+d1)t2}

d1 +R

−d0{e−Rt1 − e−Rt2}
d1R

]
e−R(j−1)tu

Therefore, the present value of total holding cost (HC) for n full cycle is

HC =
n∑
j=1

HCj = c1

n∑
j=1

(I1j + I2j)

127



CHAPTER 6. OPTIMUM PRODUCTION POLICY FOR A PRODUCTION
INVENTORY MODEL IN RANDOM TIME HORIZON

Since, the business planning horizon H is a random variable which follows exponential
distribution with corresponding probability density function as

f(h) =

{
λe−λh, h ≥ 0
0, otherwise

Therefore, the expected value of holding cost for n full business cycle is

E{HC} =
∞∑
n=0

∫ (n+1)tu

ntu

HCλe−λhdh

= c1

∞∑
n=0

∫ (n+1)tu

ntu

n∑
j=1

(I1j + I2j)λe
−λhdh

= c1

[
u0 − d0

u1 + d1

{
1− e−Rt1

R
− 1− e−(u1+d1+R)t1

u1 + d1 +R

}{
e−λtu

1− e−(R+λ)tu

}
+

{
ed1t1(Q1 + d0

d1
)

d1 +R
{e−(R+d1)t1 − e−(R+d1)t2} − d0(eRt1 − eRt2)

d1R

}
×{

1− e−λtu
1− e−(R+λ)tu

}]
(6.9)

Expected value of production cost for n full cycles
The present value of production cost for j-th full cycle (j = 1, 2, · · · , n), PCj , is given by

PCj = p0e
−(j−1)γ

[ ∫ (j−1)tu+t1

(j−1)tu

+

∫ jtu

(j−1)tu+t3

]{
u0 − u1x(t)

}
e−Rtdt

= [PC1j + PC2j] (say) (6.10)

Where,

PC1j = p0e
−(j−1)γ

∫ (j−1)tu+t1

(j−1)tu

{
u0 − u1x(t)

}
e−Rtdt

= p0e
−(j−1)(γ+Rtu)

[
(u0d1 + u1d0)(1− e−Rt1)

R(u1 + d1)
+
u1(u0 − d0){1− e−(u1+d1+R)t1}

(u1 + d1)(u− 1 + d1 +R)

]

and, PC2j = p0e
−(j−1)γ

∫ jtu

(j−1)tu+t3

{
u0 − u1x(t)

}
e−Rtdt

= p0e
−(j−1)(γ+Rtu)

[
(u0d1 + u1d0)(e−Rt3 − eRtu)

R(u1 + d1)

−
{
Q2 −

u0 − d0

u1 + d1

}
u1e

(u1+d1)t3{e−(u1+d1+R)t3 − e−(u1+d1+R)tu}
(u1 + d1 +R)

]
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Then the expected value of total production cost (PC) over the n full cycle is

E{PC} =
∞∑
n=0

∫ (n+1)tu

ntu

n∑
j=1

(PC1j + PC2j)λe
−λhdh

=
p0e
−λtu

1− e−(R+λ)tu−γ

[
(u0d1 + u1d0)(1− e−Rt1)

R(u1 + d1)

+
u1(u0 − d0){1− e−(u−1+d1+R)t1}

(u1 + d1)(u1 + d1 +R)
+

(u0d1 + u1d0)(e−Rt3 − e−Rtu)

R(u1 + d1)

−u1

(
Q2 −

u0 − d0

u1 + d1

)
e−Rt3 − e−(u1+d1)(tu−t3)−Rtu

u1 + d1 +R

]
(6.11)

Expected value of shortage cost for n full cycles
The present value of shortage cost for the j-th full cycle (SCj) where j = 1, 2, · · · , n is given
by

SCj = s1

[ ∫ (j−1)tu+t3

(j−1)tu+t2

+

∫ jtu

(j−1)tu+t3

]
{d0 + d1x(t)}e−Rtdt

= s1{SC1j + SC2j} (say)

where, SC1j =

∫ (j−1)tu+t3

(j−1)tu+t2

{d0 + d1x(t)}e−Rtdt

=
d0{e−(d1+R)t2 − e−(d1+R)t3}

R + d1

e−R(j−1)tu

and, SC2j =

∫ jtu

(j−1)tu+t3

{d0 + d1x(t)}e−Rtdt

=

[(
Q2 +

u0 − d0

u1 + d1

)
e−(u1+d1)t3{e−(u1+d1+R)t3 − e(u1+d1+R)tu}

u1 + d1 +R

+
(u0 − d0)(e−Rt3 − eRtu)

R(u1 + d1)

]
e−R(j−1)tu

Thus the expected value of total shortage cost (SC) over n full cycles is given by

E{SC} = s1

∞∑
n=0

∫ (n+1)tu

ntu

n∑
j=1

(SC1j + SC2j)λe
−λhdh

=
s1e
−λtu

1− e−(R+λ)tu

[
d0{e−(d1+R)t2 − e−(d1+R)t3}

R + d1

+

(
Q2 +

u0 − d0

u1 + d1

)
{e−2(u1+d1)t3−Rt3 − e(u1+d1)(tu−t3)+Rtu}

u1 + d1 +R

+
(u0 − d0)(e−Rt3 − eRtu)

R(u1 + d1)

]
(6.12)
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Expected value of set-up cost for n full cycles
Present value of set-up cost in j-th full cycle where, j = 1, 2, · · · , n is

[c1
3 + c2

3e
−δj]e−R(j−1)tu .

Therefore the expected value of total set-up cost (SUC) for n full cycle is given by

E{SUC} =
∞∑
n=0

∫ (n+1)tu

ntu

n∑
j=1

[c1
3 + c2

3e
−δj]e−R(j−1)tuλe−λhdh

=
c1

3e
−λtu

1− e−(R+λ)tu
+

c2
3e
−δje−λtu

1− e−(Rtu+λtu+δ)
(6.13)

Expected value of sell revenue for n full cycles
The present value of sell revenue (SRj) in j-th full cycle where, j = 1, 2, · · · , n is given by

SRj = m0p0e
−(j−1)γ

[ ∫ (j−1)tu+t1

(j−1)tu

+

∫ (j−1)tu+t2

(j−1)tu+t1

+

∫ jtu

(j−1)tu+t3

]
{d0 + d1x(t)}e−Rtdt

= m0p0e
−(j−1)γ[SR1j + SR2j + SR3j]

where,

SR1j =

∫ (j−1)tu+t1

(j−1)tu

{d0 + d1x(t)}e−Rtdt

=

[
(u0d1 + u1d0)(1− e−Rt1)

R(u1 + d1)
− d1(u0 − d0){1− e−(u1+d1+R)t1}

(u1 + d1)(u1 + d1 +R)

]
e−R(j−1)tu

SR2j =

∫ (j−1)tu+t2

(j−1)tu+t1

{d0 + d1x(t)}e−Rtdt

=

[
(d0 + d1Q1)

e−Rt1 − e−d1(t2−t1)−Rt1

d1 +R

]
e−R(j−1)tu

and

SR3j =

∫ jtu

(j−1)tu+t3

{d0 + d1x(t)}e−Rtdt

= e−(j−1)Rtu

[
(u0d1 + u1d0)(e−Rt3 − e−Rtu)

R(u1 + d1)
+

(
Q2 −

u0 − d0

u1 + d1

)
×

d1{e−Rt3 − e−(u1+d1)(tu−t3)−Rtu}
u1 + d1 +R

]
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Therefore the expected value of total sale revenue (SR) for n full cycle is given by

E{SR} =
∞∑
n=0

∫ (n+1)tu

ntu

m0p0

n∑
j=1

e−(j−1)γ[SR1j + SR2j + SR3j]λe
−λhdh

=
m0p0e

−λtu

1− e−(Rtu+λtu+γ)

[
(u0d1 + u1d0)(1− e−Rt1)

R(u1 + d1)

+
d1(u0 − d0){1− e−(u1+d1+R)t1}

(u1 + d1)(u1 + d1 +R)
+
d0 + d1Q1

d1 +R
{e−Rt1 − e−d1(t2−t1)−Rt2}

+
(u0d1 + u1d0)(e−Rt3 − e−Rtu)

R(u1 + d1)
+

(
Q2 −

u0 − d0

u1 + d1

)
×

d1{e−Rt3 − e−(u1+d1)(tu−t3)−Rtu}
u1 + d1 +R

]
(6.14)

Expected value of total profit for n full cycles
Thus the expected value of total profit (TP1) in n full cycles can be obtained using the
following expression.

E{TP1} = E{SR} − E{HC} − E{PC} − E{SC} − E{SUC} (6.15)

Where, the expected value of HC, PC, SC, SUC, and SR are given by equations (6.9),
(6.11), (6.12), (6.13) and (6.14) respectively.

Formulation for last cycle

The leading differential equation describing the inventory level x(t) in the last cycle (ntu ≤
t ≤ (n+ 1)tu), are given by

dx(t)

dt
=


u0 − d0 − (u1 + d1)x(t) for, ntu ≤ t ≤ ntu + t1
−d0 − d1x(t) for, ntu + t1 ≤ t ≤ ntu + t3
u0 − d0 − (u1 + d1)x(t) for, ntu + t3 ≤ t ≤ (n+ 1)tu

(6.16)

with the boundary conditions

x(t) =


0 for, t = ntu
Q1 for, t = ntu + t1
0 for, t = ntu + t2
Q2 for, t = ntu + t3
0 for, t = (n+ 1)tu

(6.17)
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Using the boundary conditions (6.17) the solution of the differential equation (6.16) is given
by

x(t)



for, ntu ≤ t ≤ ntu + t1

=
u0 − d0

u1 + d1

[1− e−(u1+d1)(t−ntu)]

for, ntu + t1 ≤ t ≤ ntu + t3

=

[
Q1 +

d0

d1

]
e−d1(t−ntu−t1) − d0

d1

for, ntu + t3 ≤ t ≤ (n+ 1)tu

=

[
Q2 −

u0 − d0

u1 + d1

]
e−d1(t−ntu−t3) − u0 − d0

u1 + d1

(6.18)

Therefore the expected value of total set-up cost (SUCL) for last cycle is given by

E{SUCL} =
∞∑
n=0

∫ (n+1)tu

ntu

[c1
3 + c2

3e
−δ(n+1)]e−Rntuλe−λhdh

=
c1

3(1− e−λtu)

1− e−(R+λ)tu
+
c2

3e
−δ(1− 1e−λtu)

1− e−(Rtu+λtu+δ)
(6.19)

Now the following cases may arise:
Case-1 (ntu ≤ h ≤ ntu + t1)

Figure 6.2: Model structure for last cycle case-1

According to Fig.-6.2 Present value of holding cost of the inventory for the last cycle,
HCL1 is given by

HCL1 = c1

∫ h

ntu

x(t)e−Rtdt

= c1
u0 − d0

u1 + d1

[
e−Rntu − eRh

R
− e−2(u1+d1)ntu−Rntu − e−(u1+d1)(ntu+h)−Rh

u1 + d1 +R

]
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Therefore, the expected value of holding cost for the last cycle (ntu ≤ t ≤ ntu + t1) is

E{HCL1} =
∞∑
n=0

∫ ntu+t1

ntu

HCL1λe
−λhdh

=
c1(u0 − d0)

(u1 + d1){1− e−(R+λ)tu}

[
1− e−λt1

R
− λ{1− e−(R+λ)t1}

R(R + λ)

− 1− e−λt1
u1 + d1 +R

+
λ{1− e−(u1+d1+R+λ)t1}

(u1 + d1 +R)(u1 + d1 +R + λ)

]
(6.20)

Present value of production cost (PCL1) for this case of the last cycle is

PCL1 = p0e
−nγ

∫ h

ntu

{u0 − u1x(t)}e−Rtdt

= p0e
−nγ
[

(u0d1 + u1d0)(e−Rntu − e−Rh)
R(u1 + d1)

−u1(u0 − d0){e−Rntu − e−(u1+d1)(h−ntu)−Rh}
(u1 + d1)(u1 + d1 +R)

]
The expected value of production cost is given by

E{PCL1} =
∞∑
n=0

∫ ntu+t1

ntu

PCL1λe
−λhdh

=
p0

1− e−(R+λ)tu−γ

[
(u0d1 + u1d0)

R(u1 + d1)

{
(1− e−λt1)− λ(1− e−Rt1−λt1)

R + λ

}
− u1(u0 − d0)

(u1 + d1)(u1 + d1 +R)

{
(1− e−λt1)

−λ{1− e
−(u1+d1+R+λ)t1}

u1 + d1 +R + λ

}]
(6.21)

The present value of sale revenue (SRL1
1) for the last cycle is given by

SRL1
1 = m0p0e

−γn
∫ h

ntu

{d0 + d1x(t)}e−Rtdt

= m0p0e
−γn
[
u0d1 + u1d0

R(u1 + d1)
(e−Rntu − e−Rh)

−u1(u0 − d0){e−Rntu − e−(u1+d1)(h−ntu)−Rh}
(u1 + d1)(u1 + d1 +R)

]
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and the expected value of sale revenue in this case is given by

E{SRL1
1} =

∞∑
n=0

∫ ntu+t1

ntu

SRL1
1λe

−λhdh

=
m0p0

1− e−(R+λ)tu−γ

[
u0d1 + u1d0

R(u1 + d1)

{
(1− e−λt1)− λ{1− e−(R+λ)t1}

R + λ

}
− d1(u0 − d0)

(u1 + d1)(u1 + d1 +R)

{
(1− eλt1)

−λ{1− e
−(u1+d1+R+λ)t1}

u1 + d1 +R + λ

}]
(6.22)

Also in this case the business cycle ends before the stock is finished. So, the remaining
amount of stock is sold in reduced price. Thus the expected value of revenue earned from
reduce sale (SRL2

1) is given by

E{SRL2
1} = s2

∞∑
n=0

∫ ntu+t1

ntu

x(h)λe−λhdh

=
s2λ(u0 − d0)

(u1 + d1){1− e−(R+λ)tu}

[
1− e−(R+λ)t1

R + λ

−1− e−(u1+d1+R+λ)t1

u1 + d1 +R + λ

]
(6.23)

Case-2 (ntu + t1 ≤ h ≤ ntu + t2)

Figure 6.3: Model structure for last cycle case-2

In this case, a time gap (ntu + t1, t2) is added (see Fig.-6.3) the present value of holding
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cost (HCL2) is given by

HCL2 = c1

[ ∫ ntu+t1

ntu

+

∫ h

ntu+t1

]
x(t)e−Rtdt

=
c1(u0 − d0)

u1 + d1

[
1− eRtu

R
− 1− e−(u1+d1+R)t1

u1 + d1 +R

]
e−Rntu

+c1

[
(Q2 +

d0

d1

)
e−R(ntu+t1) − e−d1(h−ntu+t1)−Rh

d1 +R
− d0{e−R(ntu+t1) − e−Rh}

d1R

]
and the expected value of holding cost in this case is given by

E{HCL2} =
∞∑
n=0

∫ ntu+t2

ntu+t1

HCL2λe
−λhdh

=
c1

1− e−(R+λ)tu

[
c1(u0 − d0)

u1 + d1

{
1− eRt1

R
− (e−λt1 − e−λt2)×

1− e−(u1+d1+R)t1

u1 + d1 +R

}
+
d1Q1 + d0

d1(d1 +R)

{
e−Rt1(e−λt1 − e−λt2)

−λ{e
−(u1+R)t1 − e−d1(t2−t1)−(u1+R)t2}

d1 +R + λ

}]
(6.24)

Present value of sale revenue in this case (SRL1
2) for the last cycle is given by

SRL1
2 = m0p0e

−γn
[ ∫ ntu+t1

ntu

+

∫ h

ntu+t1

]
{d0 + d1x(t)}e−Rtdt

= m0p0e
−γn
[
u0d1 + u1d0

R(u1 + d1)
{e−Rntu − e−R(ntu+t1)}

−d1(u0 − d0)e−Rntu{1− e−(u1+d1+R)t1}
(u1 + d1)(u1 + d1 +R)

+
d0 + d1Q1

d1 +R
{e−R(ntu+t1) − e−d1(h−ntu−t1)−Rh}

]
The expected value of sale revenue in this case is

E{SRL1
2} =

∞∑
n=0

∫ ntu+t2

ntu+t1

SRL1
2λe

−λhdh

=
m0p0

1− e−(Rtu+λtu+γ)

[{
u1d0 + d1u0

R(u1 + d1)
(1− e−Rt1)

−d1(u0 − d0){1− e−(u1+d1+R)t1}
(u1 + d1)(u1 + d1 +R)

+
(d0 + d1Q1)

d1 +R
e−Rt1

}
(e−λt1 − e−λt2)

+
λ(d0 + d1Q1)

(d1 +R)(d1 +R + λ)

{
e−(u1+R)t1 − e−(t2−t1)d1−(u1+R)t2

}]
(6.25)
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According to the time horizon, a situation of reduced sale is also occurs in this case. So the
expected value of earn from reduced sale (SRL2

2) is given by

E{SRL2
2} = s2

∞∑
n=0

∫ ntu+t2

ntu+t1

{Q1 − x(h)}λe−λhdh

=
s2(d1Q1 + d0)

d1{1− e−(R+λ)tu}

[
λ{e−(R+λ)t1 − e−(R+λ)tu}

R + λ

−λ{e
−(u1+d1+R+λ)t1 − e−(u1+d1+R+λ)tu}

d1 +R + λ

]
(6.26)

Case-3 (ntu + t2 ≤ h ≤ ntu + t3)

Figure 6.4: Model structure for last cycle case-3

In this case as the stock is finished so a situation of shortage arises (see Fig.-6.4). So, the
shortage cost in this case is given by

SCL1 = s1

∫ ntu+t3

ntu+t2

{d0 + d1x(t)}e−Rtdt

=
s1d0

R + d1

[
e−R(ntu+t2) − e−(h−ntu−t2)d1−Rh

]
The expected value of shortage cost in this case is given by

E{SCL1} =
∞∑
n=0

∫ ntu+t3

ntu+t2

SCL1λe
−λhdh

=
s1d0

(d1 +R){1− e−(R+λ)tu}

[
(e−λt2 − e−λt3)

−λ{e
−(R+λ)t2 − e−(t3−t2)d1−(R+λ)t3}

d1 +R + λ

]
(6.27)
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Case-4 (ntu + t3 ≤ h ≤ (n+ 1)tu)

Figure 6.5: Model structure for last cycle case-4

In this case there is a need of production to backlog the shortage (see Fig.-6.6), so the
production cost (PCL4) is given by

PCL4 = p0e
−γn
[ ∫ ntu+t1

ntu

+

∫ h

ntu+t3

]
{u0 − u1x(t)}e−Rtdt

= p0e
−γn
[{

(u0d1 + u1d0)(1− e−Rt1)
R(u1 + d1)

+
u1(u0 − d0){1− e−(u1+d1+R)t1}

(u1 + d1)(u1 + d1 +R)

}
×

e−Rntu +
(u0d1 + u1d0){e−R(ntu+t3) − e−Rh}

R(u1 + d1)
−
(
Q2 −

u0 − d0

u1 + d1

)
×

u1{e−R(ntu+t3) − e−(u1+d1)(h−ntu−t3)−Rh}
u1 + d1 +R

]
The expected value of PCL4 is given by

E{PCL4} =
∞∑
n=0

∫ (n+1)tu

ntu+t3

PCL4λe
−λhdh

=

[{
u0d1 + u1d0

R(u1 + d1)
(1− e−Rt1) +

u1(u0 − d0){1− e−(u1+d1+R)t1}
(u1 + d1)(u1 + d1 +R)

}
×

(e−λt3 − e−λtu) +
u0d1 + u1d0

R(u1 + d1)

{
e−Rt3(e−λt3 − e−λtu)

−λ{e
−(R+λ)t3 − e−(R+λ)tu}

R + λ

}
−
(
Q2 −

u0 − d0

u1 + d1

)
u1

u1 + d1 +R
×{

e−Rt3(e−λt3 − e−λtu)− λ{e−(R+λ)t3 − e−(u1+d1)(tu−t3)−(R+λ)tu}
u1 + d1 +R + λ

}]
× p0

1− e−(R+λ)tu−γ
(6.28)
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Now the earned sale revenue (SRL1
4) in this case for the last cycle

SRL1
4 = m0p0e

−γn
[ ∫ ntu+t1

ntu

+

∫ ntu+t2

ntu+t1

+

∫ h

ntu+t3

]
{d0 + d1x(t)}e−Rtdt

= m0p0e
−γn
[
u0d1 + u1d0

R(u1 + d1)
{e−Rntu − e−R(ntu+t1)}

−d1(u0 − d0)e−Rntu{1− e−(u1+d1+R)t1}
(u1 + d1)(u1 + d1 +R)

+
(d0 + d1Q1)e−Rntu{e−Rt1 − e−d1(t2−t1)−Rt2}

d1 +R

+
(u0d1 + u1d0)

R(u1 + d1)
{e−R(ntu+t3) − e−Rh}

+

(
Q2 −

u0 − d0

u1 + d1

)
d1{e−R(ntu+t3) − e−(u1+d1)(h−ntu−t3)−Rh}

u1 + d1 +R

]

So the expected value of sale revenue (SRL1
4) is

E{SRL1
4} =

∞∑
n=0

∫ (n+1)tu

ntu+t3

SRL1
4λe

−λhdh

=
m0p0

1− e−(R+λ)tu−γ

[
u0d1 + u1d0

R(u1 + d1)
(1− e−Rt1)

−d1(u0 − d0){1− e−(u1+d1+R)t1}
(u1 + d1)(u1 + d1 +R)

+
(d0 + d1Q1){e−Rt1 − e−d1(t2−t1)−Rt2}

d1 +R

+
u0d1 + u1d0

R(u1 + d1)

{
e−Rt3(e−λt3 − e−λtu)− λ{e−(R+λ)t3 − e−(R+λ)tu}

R + λ

}
+

(
Q2 −

u0 − d0

u1 + d1

)
d1

u1 + d1 +R

{
e−Rt3(e−λt3

−e−λtu)− λ{e−(R+λ)t3 − e−(u1+d1)(tu−t3)−(R+λ)tu}
u1 + d1 +R + λ

}]
(6.29)
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Shortage is also arises in this case. So, the present value of shortage cost (SCL2) is given by

SCL2 = s1

[ ∫ ntu+t3

ntu+t2

+

∫ h

ntu+t3

]
{d0 − d1x(t)}e−Rtdt

= s1

[
d0e
−Rntu

R + d1

{
e−(d1+R)t2 − e−(d1+R)t3

}
+

(
Q2 +

u0 − d0

u1 + d1

){
{e−R(ntu+t3) − e−(u1+d1)(h−ntu−t3)−Rh}

u1 + d1 +R

}
+

u0 − d0

R(u1 + d1)

{
e−R(ntu+t3) − e−Rh

}]
Thus the expected value of shortage cost (SCL2) in this case for the last cycle is given by

E{SCL2} =
∞∑
n=0

∫ h

ntu+t3

SCL2λe
−λhdh

=
s1

1− e−(R+λ)tu

[
d0(e−λt3 − e−λtu)

R + d1

{
e−(d1+R)t2 − e−(d1+R)t3

}
+

(
Q2 +

u0 − d0

u1 + d1

){
e−Rt3(e−λt3 − e−λtu)

u1 + d1 +R

−λ{e
−(R+λ)t3 − e−(u1+d1)(tu−t3)−(R+λ)tu}

(u1 + d1 +R)(u1 + d1 +R + λ)

}
+

u0 − d0

R(u1 + d1)

×
{
e−Rt3(e−λt3 − e−λtu)− λ{e−(R+λ)t3 − e−(R+λ)tu}

R + λ

}]
(6.30)

Expected value of total profit for last cycle
Thus the expected value of the profit (TP2) for the last cycle is

E{TP2} = E{SRL1
1}+ E{SRL2

1}+ E{SRL1
2}+ E{SRL2

2}+ E{SRL1
4}

−E{SUCL} − E{HCL1} − E{HCL2} − E{PCL1} − E{PCL4}
−E{SCL1} − E{SCL2} (6.31)

where the expected value of the parameters SRL1
1, SRL2

1, SRL1
2, SRL2

2, SRL1
4, SUCL,

HCL1, HCL2, PCL1, PCL4, SCL1, and SCL2 for different cases are given by the
expressions (6.22), (6.23), (6.25), (6.26), (6.29), (6.19), (6.20), (6.24), (6.21), (6.28), (6.27)
and (6.30) respectively.

6.3.1.1 Expected value of total profit for Model-A

Therefore the expected value of total profit (TP) over the whole business period is given by

E{TP} = E{TP1}+ E{TP2} (6.32)
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where the expected value of TP1 and TP2 are given by 6.15 and 6.31 respectively.

6.3.2 Model-B: Model with deterministic production cost and without
shortages

Formulation for first n full cycles

In this model, production starts with maximum rate at the beginning of each cycle and
stopped at t = (j − 1)tu + t1 where,(j = 1, 2, · · · , n) when the stock reaches the maximum
level. The stock level becomes zero at the end of the cycle i.e. at t = jtu. So, the leading
differential equation describing different inventory situation, is given by

dx(t)

dt
=

{
u0 − d0 − (u1 + d1)x(t) for, (j − 1)tu ≤ t ≤ (j − 1)tu + t1
−d0 − d1x(t) for, (j − 1)tu + t1 ≤ t ≤ jtu

(6.33)

with the boundary conditions

x(t) =


0 for, t = (j − 1)tu
Q1 for, t = (j − 1)tu + t1
0 for, t = jtu, where, j = 1, 2, · · · , n.

(6.34)

Using the boundary conditions given by (6.2), the solution of the differential equation (6.1)
is given by

x(t)



for, (j − 1)tu ≤ t ≤ (j − 1)tu + t1
u0 − d0

u1 + d1

[
1− e−(u1+d1){t−(j−1)tu}

]
for, (j − 1)tu + t1 ≤ t ≤ jtu(

Q1 +
d0

d1

)
e−d1{t−(j−1)tu−t1} − d0

d1

(6.35)

where,

Q1 =
u0 − d0

u1 + d1

[
1− e−(u1+d1)t1

]
tu = t1 +

1

d1

log

[
d1Q1 + d0

d0

]
Holding Cost

According to the model stock level becomes zero at the end of each cycle [i.e. at t = tu].
Therefore, the expression for the holding cost in j-th cycle (HCj) can be obtained from the
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equation (6.8) replacing t2 by tu. Thus the expected value of holding cost in n full cycle is
given by

E{HC} =
∞∑
n=0

∫ (n+1)tu

ntu

( n∑
j=1

HCj

)
λe−λhdh

=
c1(1− e−λtu)

1− e−(R+λ)tu

[
u0 − d0

u1 + d1

{
1− e−Rt1

R
− 1− e−(u1+d1+R)t1

u1 + d1 +R

}
+{

ed1t1(Q1 + d0
d1

)

d1 +R
{e−(R+d1)t1 − e−(R+d1)tu} − d0(eRt1 − eRtu)

d1R

}]
(6.36)

Production Cost
The production runs for same duration [(j − 1)tu ≤ t ≤ (j − 1)tu + t1] as in the model-
A and the expression for inventory level is also same for this time gap. So present value
of production cost for j-th cycle, PCj for each j = 1, 2, · · · , n and the expected value of
total production cost (E{PC}) for n full cycle are given by the equations (6.10), (6.11)
respectively.

Sale Revenue
The present value of sell revenue (SRj) in j-th full cycle where, j = 1, 2, · · · , n is given by

SRj = m0p0e
−(j−1)γ

[ ∫ (j−1)tu+t1

(j−1)tu

+

∫ jtu

(j−1)tu+t1

]
{d0 + d1x(t)}e−Rtdt

= m0p0e
−(j−1)γ[SR1j + SR2j]

where,

SR1j =

∫ (j−1)tu+t1

(j−1)tu

{d0 + d1x(t)}e−Rtdt

=

[
(u0d1 + u1d0)(1− e−Rt1)

R(u1 + d1)
− d1(u0 − d0){1− e−(u1+d1+R)t1}

(u1 + d1)(u1 + d1 +R)

]
e−R(j−1)tu

SR2j =

∫ jtu

(j−1)tu+t1

{d0 + d1x(t)}e−Rtdt

=

[
(d0 + d1Q1)

e−Rt1 − e−d1(tu−t1)−Rt1

d1 +R

]
e−R(j−1)tu

Therefore the expected value of total sale revenue (SR) for n full cycle is given by

E{SR} =
∞∑
n=0

∫ (n+1)tu

ntu

m0p0

n∑
j=1

e−(j−1)γ[SR1j + SR2j]λe
−λhdh

=

[
(u0d1 + u1d0)(1− e−Rt1)

R(u1 + d1)
+
d1(u0 − d0){1− e−(u1+d1+R)t1}

(u1 + d1)(u1 + d1 +R)

+
d0 + d1Q1

d1 +R
{e−Rt1 − e−d1(tu−t1)−Rtu}

]
m0p0e

−λtu

1− e−(Rtu+λtu+γ)
(6.37)
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Set-up cost
The set-up cost and its expected value E{SUC} is also same as the model-A. So E{SUC}
is given by equation (6.13).
Total Profit
Thus the expected value of total profit (TP1) for n full cycles is given by

E{TP1} = E{SR} − E{HC} − E{PC} − E{SUC} (6.38)

where the expected value of the parameters SR, HC, PC and SUC are given by the equa-
tions (6.37), (6.36), (6.11) and (6.13) respectively.

Formulation for last cycle

The leading differential equation describing the inventory level x(t) in the last cycle (ntu ≤
t ≤ (n+ 1)tu), are given by

dx(t)

dt
=

{
u0 − d0 − (u1 + d1)x(t) for, ntu ≤ t ≤ ntu + t1
−d0 − d1x(t) for, ntu + t1 ≤ t ≤ (n+ 1)tu

(6.39)

with the boundary conditions

x(t) =


0 for, t = ntu
Q1 for, t = ntu + t1
0 for, t = (n+ 1)tu

(6.40)

Using the boundary conditions (6.40) the solution of the differential equation (6.39) is given
by

x(t) =


u0 − d0

u1 + d1

[1− e−(u1+d1)(t−ntu)] for, ntu ≤ t ≤ ntu + t1[
Q1 +

d0

d1

]
e−d1(t−ntu−t1) − d0

d1

for, ntu + t1 ≤ t ≤ (n+ 1)tu

(6.41)

Also,

Q1 =
u0 − d0

u1 + d1

[
1− e−(u1+d1)t1

]
Now the following two cases arises-
Case-1: (ntu ≤ t ≤ ntu + t1)
This case is same as the Case-1 of model-A. So the expressions for the expected values of
sale revenue for normal sale and reduce sale (SRL1

1 and SRL2
1), holding cost (HCL1),

set-up cost (SUCL) and purchasing cost (PCL1) are given by equations (6.22), (6.23),
(6.20), (6.19) and (6.21) respectively.
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Case-2: (ntu + t1 ≤ t ≤ (n+ 1)tu)
In this case also the calculation and expressions for different parameters and their respective
expected values becomes same as case-2 of model-A if t2 is replaced by tu in the expressions
of the parameters of case-2 of model-A. Thus the expected values of sale revenue earned
from normal and reduced sale (SRL1

2 and SRL2
2) and holding cost (HCL2) are given by

E{SRL1
2} =

m0p0

1− e−(Rtu+λtu+γ)

[{
u1d0 + d1u0

R(u1 + d1)
(1− e−Rt1) +

(d0 + d1Q1)

d1 +R
e−Rt1

−d1(u0 − d0){1− e−(u1+d1+R)t1}
(u1 + d1)(u1 + d1 +R)

}
(e−λt1 − e−λtu)

+
λ(d0 + d1Q1)

(d1 +R)(d1 +R + λ)

{
e−(u1+R)t1 − e−(tu−t1)d1−(u1+R)tu

}]
(6.42)

E{SRL2
2} =

s2(d1Q1 + d0)

d1{1− e−(R+λ)tu}

[
λ{e−(R+λ)t1 − e−(R+λ)tu}

R + λ

−λ{e
−(u1+d1+R+λ)t1 − e−(u1+d1+R+λ)tu}

d1 +R + λ

]
(6.43)

E{HCL2} =
c1

1− e−(R+λ)tu

[
c1(u0 − d0)

u1 + d1

{
1− eRt1

R
− (e−λt1 − e−λtu)×

1− e−(u1+d1+R)t1

u1 + d1 +R

}
+
d1Q1 + d0

d1(d1 +R)

{
e−Rt1(e−λt1 − e−λtu)

−λ{e
−(u1+R)t1 − e−d1(tu−t1)−(u1+R)tu}

d1 +R + λ

}]
(6.44)

Therefore, the expected value of profit (TP2) for the last cycle is given by

E{TP2} = E{SRL1
1}+ E{SRL2

1}+ E{SRL1
2}+ E{SRL2

2}
−E{HCL1} − E{PCL1} − E{HCL2} − E{SURL} (6.45)

where, the expected values of sale revenue earned from normal sale (SRL1
1, SRL1

2) and
reduce sale (SRL2

1, SRL2
2), holding costs (HCL1, HCL2), purchasing cost (PCL1) and

set-up cost (SUCL) are given by equations (6.22), (6.42), (6.23), (6.43), (6.20), (6.44),
(6.21) and (6.19) respectively.

Total expected profit for Model-B

Thus the expected value of total profit (TP) over the whole time horizon is given by

E{TP} = E{TP1}+ E{TP2} (6.46)

where, E{TP1} and E{TP2} are given by(6.38) and (6.45) respectively.
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6.3.3 Model-C1 (or, Model-C2): Model with shortages (or, without
shortages) in which the unit production cost is random.

The only difference of Models-C1, -C2 from Model-A is that the production cost is random
for the Models-C1, -C2 where it is crisp for Model-A. The unit production cost p0 is random
which follows uniform distribution with known mean mp0 and corresponding probability
density function

φ(t) =


1

p2 − p1

for, p1 ≤ t ≤ p2

0 otherwise
(6.47)

where, mp0 = p1+p2
2

.
The expressions for the Models -C1, -C2 can be obtained from the expressions of Model-A
and Model-B respectively by replacing p0 by mp0 .

6.3.4 Model-D1 (or, Model-D2): Model with (or, without) shortages
where unit production cost is fuzzy in nature

In these models, the planning horizon is stochastic and the unit production cost p0 is fuzzy in
nature. The fuzzyness of the models are removed and reduced to its equivalent crisp model
using the method proposed by Maiti and Maiti [170]. According to this method, one can
maximize the crisp variable z such that the possibility measure of the event E{TP} ≥ z
exceeds some predefined level (α) according to the decision maker choice in an optimistic
sense and in this view the models are reduces to

Maximize z
subject to Pos{E{TP} ≥ z} ≥ α.
where, TP is the total profit of the models and Pos{E{TP} ≥ z} is calculated using the
following formula.

Pos(ă ∗ b̆) = [sup{min(µă(x), µb̆(y))}, x, yεR, x ∗ y]

where ă and b̆ are two fuzzy quantities having membership functions µă(x) and µb̆(x)
respectively, the abbreviation Pos refers to possibility and ∗ represents any of the relations
<, >, ≤, ≥.

6.3.5 Model-E1 (or, Model-E2): Model with (or, without) shortages in
which unit production cost is fuzzy-random

In Model-E1 and -E2, the unit production cost p0 is considered as fuzzy-random, i.e. p0

takes fuzzy values following some discrete probability distribution. Here it is considered
that the fuzzy values of p0 are give by the triangular fuzzy numbers p01, p02, · · · , p0m with
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corresponding probabilities Prob.{p0 = p0j} = prj, j = 1, 2, · · · ,m. If the j-th triangular
fuzzy numbers p0j is constructed as p0j = (p1

0j, p
2
0j, p

3
0j) where j = 1, 2, · · · ,m then

according to Liu & Liu [154], the expected value [c.f. 2.8] of the fuzzy-random variable p0

is given by

E{p0} =
m∑
j=1

prj
(1− ρ)p1

0j + p2
0j + ρp3

0j

2
(6.48)

The required mathematical expressions for the different model parameters and total expected
profit (E{TP}) of model-E1 and model-E2 can be obtained replacing p0 by E{p0} in the
corresponding expressions of model-A and model-B respectively. Note that, here ρ = 1

2
.

6.4 Solution Methodology
The main aim of the models are to maximize the expected value of total profit. A gradient
based optimization technique- Generalised Reduced Gradient method (GRG) [c.f.2.2.2] is
used to obtain the optimum results for all of the models through Lingo 12.0 software using
the inputs given below.

6.5 Numerical Experiment
A numerical result can establish the logical view of a model. To illustrate the above
production-inventory models numerically the following inputs are considered.

6.5.1 Input data
d0 = 20, d1 = 0.2, Q2 = 10, R = 0.09, λ = 0.01, c1 = 0.2, γ = 0.05, m0 = 2.3, c1

3 =
20, c2

3 = 5, δ = 0.1, s1 = 0.5, s2 = 5.5,
Different type of unit production cost(p0) is considered as follows:

Table 6.1: Values of different type of unit production cost (p0)

Type Constant Random Fuzzy(TNF ∗) Fuzzy-random
Value p0 = 4 p1 = 4, p2 = 4.4, (3.5, 4.0, 4.6) p01 = (0, 0.5, 1), pr1 = 0.5

E[p0] = 4.2 α = 0.7 p02 = (1, 2, 2.5), pr2 = 0.25

p03 = (2, 2.7, 3.3), pr3 = 0.25

∗The term ’TNF’ refers to triangular fuzzy number.

u0, u1 are the decision variables for all of the models.
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6.5.2 Optimum results
Using the above mentioned methodology, obtained optimum results for different models are
presented in Table-6.2.

Table 6.2: Optimum results for all of the different models

Type of p0 Model u0 u1 t1 t2 t3 tu Profit
crisp model-A 49.43 0.87 0.80 1.53 2.05 3.61 695.75

model-B 59.11 0.19 0.35 - - 0.95 722.15
Random model-C1 65.22 0.31 1.09 2.70 3.22 3.76 748.87

model-C2 69.73 0.23 0.35 - - 0.97 765.25
Fuzzy model-D1 44.33 0.79 1.02 1.75 2.77 3.98 814.15

model-D2 47.23 0.89 0.63 - - 1.20 862.55
Fuzzy-random model-E1 46.31 0.72 0.91 1.66 2.19 3.69 716.83

model-E2 52.21 0.14 0.42 - - 1.01 760.89

6.6 Discussion
In Table-6.2, the maximized profit for each of the models are presented. Models-A, -C1,
-D1,-E1 are developed with shortages and the models-B, -C2, -D2, -E2 are developed
without shortages. In any business plan allowing shortages, penalty for shortages always
lower down the profit. So, the models without shortages are more profitable than the models
with shortages. Also the values of u0 for the models without shortages are greater than the
models with shortages. This is also a cause of less profit for the models with shortages than
the models without shortages.

Table 6.3: Percentage of change of objective value for percentage of change of p0 for
Model-A

change of p0(%) -7.5 -5 -2.5 0 2.5 3.75 5
change of E{TP}(%) -8.46 -5.64 -2.8 0 2.82 4.23 5.65

Table-6.3 presents a sensitivity analysis of changes in objective value with respect to the
change in unit production cost for model-A. According to Table-6.3, the objective value is
proportional to the unit production cost and the increment in unit production cost forces
objective value to change more rapidly.

Figure-6.6 is drawn with different values of profit due to different values of possibility
measure for Models-D1, -D2. From this figure, it can be point out that there is a linear
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Figure 6.6: Possibility (α) / expected total profit

relation between profit and possibility measure. So, increment in possibility degree increases
the profit.

6.7 conclusion
In each production-inventory firm, control in production is desirable as each concern does
not wants undesirable shortage as it invites loss of goodwill. Therefore, the production in a
firm should be controlled. But, to the best of our knowledge, there is no suitable production
policy to control production in an uncertain environment in the exiting literature. Moreover,
normally production rate is slashed down as the inventory level goes up but according to the
modern marketing policy, demand goes up along with the larger displayed stock. For the
first time, this investigation outlines a production-inventory policy in the above mentioned
contradicting situation in deterministic, random, fuzzy and fuzzy-random environments with
production as a decision variable. This study can also be extended under the consideration
of trade credit, price discount, rework etc. Hence there is great research scope for the future
researchers.
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Inventory Models with Fuzzy Logic
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Chapter 7

A Supply Chain Model with fuzzy logic
under Random planning Horizon via
Genetic Algorithm

7.1 Introduction

Supply chain modeling is a process which optimizes the whole supply chain profit or cost
by co-operative management of materials and information between supply chain members,
which cannot be reached by the supply chain members individually. In decentralized and
uncoordinated SCM, chain members are inclined to make decisions by solely considering
their individual interests. Such decisions may conflict to each other, as viewed from the
standpoint of the whole supply chain. Co-coordinating supply chain members through
well-designed mechanisms, such as cost discount, quantity discount [253], etc. get some
operational advantages in the study of supply chain management [28, 88]. Matching supply
with demand [135, 255], limitation on the capacity of the suppliers and
uncertainty [201, 277] are the most common features of a real life oriented SCMs [270].
Jeuland and Shugan [123] for instance, applied quantity discounts for marketing channel
coordination, assuming that demand is a decreasing function of the buyer’s sales price. On
the other hand, Hsieh and Wu [111] examined capacity allocation, ordering, and pricing
decisions in a supply chain with uncertain demand and supply. Also various SCMs have
been proposed to improve supply chain performances [7, 252, 254, 256]. SCMs in fuzzy
environment [263] becomes more difficult to control and improve due to vague and
subjective information and the qualitative measures are often needed to be translated into
quantitative measures. Therefore modeling with fuzzy set theory is a useful performance
monitoring tool to be incorporated.

Fuzzy inference technique has been introduced in SCMs to monitor and control supply
chain variables, optimizing the supply chain process and meeting customers’
requirements [4]. Kannan et al. [128] presented an integrated approach, of fuzzy multi
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attribute utility theory and multi-objective programming, for rating and selecting the best
green suppliers according to economic and environmental criteria and the allocating the
optimum order quantities among them. Kumar et al. [141] proposed a supply chain model
based on fuzzy logic using four input single output Mamdani fuzzy inference system to
handle the various attributes associated with supplier evaluation process.

Classical inventory models and SCMs are usually developed over infinite planning
horizon [149, 159]. This is an unrealistic assumption on the real world situations.
According to Gurnani [100] and Chung and Kim [60], the assumption of an infinite
planning horizon is not realistic due to several reasons such as variation of inventory costs,
changes in product specifications and designs, technological changes, etc. Moreover, for
seasonal products like fruits, vegetables, warm garments, etc., business period is not
infinite. Actually, every year a seasonal product does not end at a particular time. Over the
years, a seasonal product does have different time periods. There is an inherent uncertainty
in these time horizons. This uncertainty can be represented randomly with a distribution.
Recently, Moon and Lee [184] presented an EOQ model under inflation and discounting
with a random product life cycle.

As a problem solving tool, GAs are now-a-days more useful than the traditional direct
and gradient-based optimization techniques, mixed-integer linear programming method [?]
etc. The primary reasons of their success are their broad applicability, easy to use and
global perspective . GAs [58, 90] are adaptive computational procedures modeled on the
mechanics of natural genetic systems. They exploit the historical information to speculate
on new offspring with expected improved performance. Since a GA works simultaneously
on a set of solutions, it has very little chance to get struck to local optimum. Here, the
resolution of the possible search space is increased by operating on potential solutions and
not on the solutions themselves. Further, this search space need not be continuous.
Recently, GAs have been applied in different areas like inventory [96, 181] numerical
optimization [178], supply chain [127], neural network, traveling salesman, scheduling, etc.

The present supply chain framework differs from the previous studies as it involves
cost discount and assumes fuzzy inference / fuzzy logic (FL) rules at two levels - one
during initial purchase and another at final sale. Till now none has considered
business period as random in a SCM with FL. Moreover, GA has been appropriately
modified and successfully applied along with fuzzy inference criteria. Some interesting
features in the above relations are also pointed out.

In this chapter, a SCM is considered with m suppliers and a wholesaler having n
showrooms at different places for sale in the fuzzy-random environment. This is a single
management SCM with respect to the wholesaler who purchases a single item from a set of
m pre-determined suppliers with limited capacity of supply, stores the units in a warehouse
and supplies those to a set of n- showrooms for sale against known fuzzy demand. The
wholesaler decides the quantity amounts which are to be purchased from different suppliers
based on their given cost discounts following some one parameter fuzzy rule. Quantity to
be supplied to the showrooms by the wholesaler is decided using some two parameter fuzzy
rules based on imprecise demand and price of the commodity. The total system has been
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formulated as a non-linear optimization problem for maximum profit. Here, SCM policies
have been derived for the seasonal products, fashionable items, etc. for which the period of
business are different over the time and follows a normal probability distribution. The
appropriately modified GA has been used in finding the maximum profit incorporating the
fuzzy inference. Here, a method has been presented to formulate fuzzy membership
functions from the available raw data. The model is illustrated by a practical example and
the behavior of profit and required quantity are plotted against selling price (mark-up).

The remainder of this chapter is organized as follows. Section -7.2 presents the basic
notations and assumptions considered to formulate the SCM . Section -7.3 contains the
basic SCM, formulates the profit function and the cost functions of the model. Section -7.4
describes the details about the rules and how fuzzy logic is introduced in this model through
the fuzzy rules. A solution methodology has been proposed in section-7.5 to solve the
model numerically. This section contains some ideas about GA and fuzzy inference module
and their implementation to this problem including algorithms of FL, GA and working
steps for the modal. Section -7.6 contains numerical illustration of a practical problem
including raw data and optimum results. Discussion on the results and conclusion are
presented in sections -7.7 and -7.8 respectively.

7.2 Notations and Assumptions
In the proposed model of SCM, the following notations and assumptions are made:

7.2.1 Notations
Ĥ random planning horizon that follows the normal distribution with mean

mĤ and variance σĤ .
W represents the wholesaler.
Si represents the i− th supplier where, i = 1, 2, · · · ,m.
Rj represents the j − th showrooms where, j = 1, 2, · · · , n.
Qsi amount of quantity purchased by W from i− th supplier.
Csi per unit item selling price of Si to W .
Q total quantity required at W over the whole business period.
Nj number of cycles taken by W to supply items to Rj .
Tj length of replenishment cycle for Rj .
Q1

rj [orQ2
rj ] total quantity required at Rj over Ĥ [or, per cycle].

Dj unit time demand at Rj satisfied by W .
cm mean purchasing cost of the wholesaler.
mrj mark-up used to fixed the selling price of Rj .
srj selling price at Rj .
CAsi supplying capacity of the Si.
SUrj set-up cost per cycle at Rj .
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SUR total set-up cost of the showrooms.
H1
w [or,H1

rj] holding cost at W [or at Rj] per unit item per unit time.
H2
w [or,H2

rj] total holding cost at W [or at Rj].
HR total holding cost of the showrooms.
Tc1

si [or,Tc1
rj] represents the transportation cost per lot from Si to the W [or, from W

to Rj].
TLsi [or, TLrj] represents the lot size, i.e the maximum amount of quantity which is

transported in a single transportation from the Si to W [or, W to Rj]
Tc2

si [or,Tc2
rj] total transportation cost from Si to W [or, from W to Rj].

β, prj two given real numbers where β > 0 and 0 ≤ prj ≤ 1.
TF, SP, PW the total profit, total earn and purchasing cost of the wholesaler res-

pectively.

7.2.2 Assumptions
i) There are m pre-determined suppliers Si, i = 1, 2, ...,m, a wholesaler W with its n

showrooms Rj, j = 1, 2, ..., n in a business of single item.

ii) The suppliers offer fuzzy cost discount depending on the amount of quantity in some
imprecise language to the wholesaler such as
If Qunatity is High Then Cost per unit item is Low, which is handled by a
fuzzy inference module FGL.

iii) The demands faced by the showrooms are imprecise in nature.

iv) The selling prices are different at the different showrooms which are calculated from per
unit item mean purchasing cost imposing different mark-ups for different showrooms.

v) The quantities Q2
rj which have to be supplied by W to Rj in each cycle not only

depends on the respective demand but also depends on the respective per unit quantity
selling price srj (i.e. mrj) at Rj under some fuzzy rules and a fuzzy inference module
FGL1 is used to handle these rules which takes Dj and srj as inputs and gives Q2

rj as
output.

vi) This is a profit maximization supply chain model with respect to wholesaler under a
single management.

vii) Since the quantities are collected only one time at the wholesaler level, so we neglect
the lead time between the supplier and wholesaler.

viii) In the proposed model, the holding cost considered at the showrooms are greater than
holding cost at the wholesaler as the showrooms are situated in the market places.

ix) Inventory shortages are not allowed.
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x) The transportation cost depends on the amount of quantity transported from the suppli-
ers to wholesaler and from wholesaler to showrooms.

xi) To make the model more realistic, it is considered here that suppliers has a limitation on
his/her supplying capacity.

xii) In the present problem the quantities have to be purchased from the suppliers is
unknown. The number of cycles taken by the wholesaler to supply the quantities to the
showrooms for sale are also unknown. In reality it is one of the main factors that what
should be the selling price to get the maximum profit. So here it is considered that the
mark-up, which is to be set by the wholesaler to get exact selling price is also
unknown. The imprecise demand at the showrooms are known but the demand which
originally occurs at the showrooms is unknown.

7.3 Formulation of the SCM

In this supply chain model (Figure-7.1), it is assumed that the imprecise data about selling

Figure 7.1: Model of the problem

price of the suppliers, demand at the showrooms and the mark-up are known previously but
taking the most profitable decision is very difficult. For the optimal decision, the fuzzy
inference procedure is used. The amount Q2

rj depends on Dj and mrj , i.e.
Q2

rj = FGL2(Dj,mrj, j) [c.f. sec.7.4]
The number of replenishment cycles and the length of each cycle, Nj and Tj for the
showroom Rj are unknown. The quantity to be supplied by the wholesaler to the j − th
showroom in each cycle is

Q2
rj =

Q1
rj

Nj
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Where Q1
j is the total quantity required at the showroom Rj over the whole business period,

Ĥ through Nj shipments. Then the total quantity to be purchased by the wholesaler from the
suppliers is

Q =
n∑
j=1

Q1
rj

Now the suppliers give some fuzzy cost discount depending upon the quantity to be
purchased from the corresponding supplier. The fuzzy inference technique is used to
calculate the amount of quantity Qsi which will give maximum cost discount to the
wholesaler and as Csi is the required cost per unit item at the i− th supplier therefore

Csi = FGL1(Qsi, i) [c.f. sec.7.4].
and then we have

Q =
m∑
i=1

Qsi =
n∑
j=1

Q1
rj (7.1)

Thus the total purchasing cost PW to purchase the quantities from the suppliers is given by

PW =
∑m

i=1 QsiCsi (7.2)

The supplying capacity of the i-th supplier is CAsi. Therefore

0 ≤ Qsi ≤ CAsi

As the wholesaler supplies quantities to the j − th showroom in Nj cycles so the holding
cost [c.f. Fig.7.2] at the wholesaler is

H2
w = H1

w.
n∑
j=1

Tj. (Nj − 1 ).(Q1
rj −

1

2
. Nj. Q

2
rj ) (7.3)

The holding cost [c.f. Fig.7.2] for Rj over the business period is given by

H2
rj =

1

2
H1
rj Q

2
rj NjTj, j = 1, 2, .., n (7.4)

The total set-up cost at the showrooms is given by

SUR =
n∑
j=1

SUrj.Nj (7.5)
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Figure 7.2: (a)Stock holding policy of W for Rj . (b)Stock holding policy for Rj .

The transportation cost of the wholesaler in transporting the quantities to the showrooms is
as follows-

If (Q2
rj ≤ TLrj )

Then, Tc2
rj = Tc1

rj, for any j=1,2,..n.
Else if (x.TLrj < Q2

rj < (x+ 1)TLrj )

Then, Tc2
rj = (x+ 1)Tc1

rj, for some positive integer x

Else Tc2
rj =

Q2
rj

TLrj
Tc1

rj

The transportation cost of the wholesaler in purchasing quantities from the suppliers is cal-
culated as follows-

If (Qsi ≤ TLsi )

Then, Tc2
si = Tc1

si, for any i=1,2,..m.
Else if (xTLsi < Qsi < (x+ 1)TLsi )

Then, Tc2
si = (x+ 1)Tc1

si, for some positive integer x

Else Tc2
si =

Qsi

TLsi
Tc1

si

Again as the mean purchasing cost is cm and the mark-up is mrj then the unit selling price
is

srj = mrjcm, where, cm =

∑m
i=1QsiCsi∑m
i=1 Qsi
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Therefore total revenue SP is given by

SP =
n∑
j=1

srjQ
1
rj (7.6)

Thus the problem reduces to

Maximize TF

= SP − PW −H2
w − SUR−

n∑
j=1

H2
rj −

m∑
i=1

Tc2
si −

n∑
j=1

Tc2
rj (7.7)

where the constraints are

0 ≤ Qsi ≤ CAsi, i = 1, 2.....,m (7.8)
m∑
i=1

Qsi =
n∑
j=1

Q1
rj (7.9)

Prob(|Nj.Tj − Ĥ| ≤ β) ≥ prj

which is reduced to [c.f. sec.2.1.3]
mĤ − β − εj.σĤ ≤ Nj.Tj ≤ mĤ + β − εj.σĤ (7.10)

where, prj = F (εj) =
1√
2Π

∫ εj

−∞
e−

t2

2 dt, for, j = 1, 2, · · · , n

Nj ≥ 1 (7.11)

7.4 Supply Chain Model with Fuzzy Logic (SCMFL)

In this investigation the objective is to maximize the TF of SCM using the fuzzy logic. Here
two types of fuzzy inference are used. First one is a single criterion used between the
suppliers and wholesaler and second one is a double criterion used between wholesaler and
showrooms.

The wholesaler knows the fuzzy demand of the item at the location of different
showrooms from past experience. Here three types of fuzzy demands (Low, Medium, High)
are considered. The wholesaler sets the Mark-up to get the selling price of the items which
is also fuzzy in nature (Low, Medium, High). The wholesaler has to decide what amount to
be stocked (Very low, Low, Medium, High, Very high) at the showrooms which depend on
the market demand at different showrooms and the Mark-up which is to be set by the
wholesaler himself. If we denote the membership functions of the fuzzy numbers Very low,
Low, Medium, High, Very high respectively by µṼ L(x), µL̃(x), µM̃(x), µH̃(x) and µṼ H(x),
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then these are taken in the following forms (c.f. Fig.7.3) -

µṼ L(x) =


0 if x ≤ a0

1 if a0 ≤ x ≤ a1
a2 − x
a2 − a1

if a1 ≤ x ≤ a2

0 if x ≥ a2

µL̃(x) =



0 if x ≤ a1
x− a1

a2 − a1

if a1 ≤ x ≤ a2

a2 − x
a3 − a2

if a2 ≤ x ≤ a3

0 if x ≥ a3

Figure 7.3: Representation of Fuzzy numbers for Quantity to be Stock

µM̃(x) =



0 if x ≤ a2
x− a2

a3 − a2

if a2 ≤ x ≤ a3

a4 − x
a4 − a3

if a3 ≤ x ≤ a4

0 if x ≥ a4

µH̃(x) =



0 if x ≤ a3
x− a3

a4 − a3

if a3 ≤ x ≤ a4

a5 − x
a5 − a4

if a4 ≤ x ≤ a5

0 if x ≥ a5

µṼ H(x) =


0 if x ≤ a4
x− a4

a5 − a4

if a4 ≤ x ≤ a5

1 if a5 ≤ x ≤ a6

0 if x ≥ a6

Using these membership functions the following nine fuzzy rules are proposed the demand
and selling price against the stock at showrooms:-

(A) −−



If Mark up is Low and Demand is Low Then Stock is Med
If Mark up is Low and Demand is Med Then Stock is High
If Mark up is Low and Demand is High Then Stock is V.High
If Mark up is Med and Demand is Low Then Stock is Low
If Mark up is Med and Demand is Med Then Stock is Med
If Mark up is Med and Demand is High Then Stock is High
If Mark up is High and Demand is Low Then Stock is V.Low
If Mark up is High and Demand is Med Then Stock is Low
If Mark up is High and Demand is High Then Stock is Med
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[where, the terms Med, V.High and V.Low mean Medium, Very High and Very Low respectively.]
The amount of quantity requires at a showroom is determined by the fuzzy inference pro-

cess [c.f. sec.2.1.5] using the above defined membership functions and the fuzzy rules. Also
we consider the fuzzy numbers µL(x), µM(x), µH(x) to represent the fuzzy quantities Qsi,
Csj , Dj , mrj . The membership function for these fuzzy numbers are defined as

µL̃(x) =


0 if x ≤ a0

1 if a0 ≤ x ≤ a1
a2 − x
a2 − a1

if a1 ≤ x ≤ a2

0 if x ≥ a2

µM̃(x) =



0 if x ≤ a1
x− a1

a2 − a1

if a1 ≤ x ≤ a2

a3 − x
a3 − a2

if a2 ≤ x ≤ a3

0 if x ≥ a3

Figure 7.4: input and output calculation of model parameters

µH̃(x) =


0 if x ≤ a2
x− a2

a3 − a2

if a2 ≤ x ≤ a3

1 if a3 ≤ x ≤ a4

0 if x ≥ a4

Also in this system, every supplier gives some deduction on purchasing cost depending
upon the amount of purchased quantity. The rules proposed by the supplier Si to the
wholesaler are

(B) −−


If PurchasedAmount is High Then cost is Low
If PurchasedAmount is Medium Then cost is Medium
If PurchasedAmount is Low Then cost is High

Thus using the rules and the corresponding membership function, one can find the amount
of quantity to be purchased from the suppliers to get the maximum cost discount and here
these concepts are used through GA process [described in sec.7.5], to get the best result.
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7.5 Solution Methodology: A GA Process for the proposed
model

A genetic algorithm contains three operators- reproduction, crossover and mutation.
Initially, a population is selected and by means of above operators, the better of the
population will remain, because of the survival of the fittest. For the present genetic
algorithm, a number string specifying the discounts given by the wholesaler, cycle lengths
and the number of cycles taken by the wholesalers to supply the quantities to the
showrooms. The fitness function is defined by the profit of the wholesaler. Some
discussions are made by following about the GA operators used in the present model.

Reproduction Operator: The principle object of a reproduction operator for using in
GA is to make a population better than the previous one by replacing the bad solutions by
duplicate copies of good solutions. There are many methods available such as tournament
selection, proportionate selection and ranking selection [90].

In tournament selection, tournament are played between two solutions and the better
solution is chosen and placed in mating pool. Similarly from other two solutions better one
is chosen and placed in the matting pool. To carried out this process in similar manner we
have to take each solution for tournament minimum two times. A best solution will win
both times, thereby making two copies in the new population and in this way the worst
solutions will be eliminated from the new population. It can also be mentioned that
tournament selection revels better or same solutions than the other selection operators. Also
it takes less computational time and has less complexity properties when compared to other
reproduction operators. This is the cause why tournament selection operator is used here.

Algorithm for SBX: This method was developed by Deb and his students [77] which
works with two parent solutions and creates two offsprings. As the name refers, the SBX
operator simulates the working principle of the single point crossover operator on binary
strings. The present crossover operator obeys the interval schemata processing, in the sense
that common interval schemata between the parents are preserved in the offspring. First a
random number ui between 0 and 1 is created. After that from specified probability
distribution function, the ordinate βqi is calculated so that the area under the probability
distribution curve from 0 to βqi is equal to the chosen random number ui.

If xi(1,t) andxi(2,t) are denotes two parent solutions at the t-th generation then their two
offspring xi(1,t+1) , xi

(2,t+1) can be calculated by the following steps.

step-1: Choose a random number ui in [0, 1).

step-2: calculate a number say βqi using the equation

βqi =

 (2ui)
1

DISBX+1 , ui ≤ 0.5

(
1

2(1− ui)
)

1
DISBX+1 , otherwise
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where DISBX is any non-negative real number. A large value of DISBX give a higher
probability for creating ’near-parent’ solutions and small value allows distant solutions to
be selected as offspring.

step-3: compute the offsprings by using the following two equations-

xi
(1,t+1) = 0.5[(1 + βqi)xi

(1,t) + (1− βqi)xi(2,t)]
xi

(2,t+1) = 0.5[(1− βqi)xi(1,t) + (1 + βqi)xi
(2,t)]

Polynomial Mutation: In polynomial mutation the polynomial function is used to
represent the probability distribution. If xi(1,t+1) be the offspring comes out after crossover
and if yi(1,t+1) be the muted copy then yi

(1,t+1) = xi
(1,t+1) + (xi

(U) − xi(L))δ̄i
where xi(U),xi(L) are the variable upper bound and lower bound and the parameter δ̄i is
calculated from the polynomial probability distribution
P (δ) = 0.5(DIMUT + 1)(1− |δ|)DIMUT .

δ̄i =

{
(2ri)

1
DIMUT+1 − 1 , ri < 0.5

1− [2(1− ri)]
1

DIMUT+1 , ri ≥ 0.5

Where ri is a random number in [0, 1] and DIMUT is a positive real number. In this
mutation operator, the shape of the probability distribution is directly controlled by the
external parameter DIMUT and the distribution is not dynamically changed with
generations.

7.5.1 GA parameters
The variable boundaries may be fixed or flexible. The best chromosome obtained by the
proposed GA represents the optimum quantity to be purchased from the suppliers(Qi), the
optimum number of cycles(Nj), the demand(Dj) and selling price(i.e. the mark-up mrj) for
which the profit is maximum.

The different parameters of GA are generation number (MAXGEN), population size
(POPSIZE), probability of cross-over (PXOVER), probability of mutation (PMUT),
random seed (RSEED), distribution index for mutation (DIMU) and the others. As there is
no clear indication as to how large a population should be, here with POPSIZE = no of
variables×10, the expected result is obtained. Here a combination of real and natural
number representation is used to structure a chromosome, where a chromosome is a string
of genes which are the decision variables namely Qsi, Nj , Dj , mrj .

At the initialization step, the GA module initializes the zero-th population by randomly
generating the genes of the chromosomes between the imputed boundaries.

After initializing the population, using the fuzzy inference modules [ FL1(Qsi, i) and
FL2(Dj,mrj, j) ] it calculates Csi, Q1

rj , the other dependent variables, the objective
function value and the constraint values. An algorithm of FL1(Qsi, i)[or FL2(Dj,mrj, j)]
module for Csi and calculation of Q1

rj are given below.

162



7.5. SOLUTION METHODOLOGY: A GA PROCESS FOR THE PROPOSED MODEL

7.5.2 Algorithm for FL1(Qsi, i)[or, FL2(Dj,mrj, j)]
step 1 : Take the value of Qsi (or, mrj , Dj) as input.

step 2 : Calculate the membership values to the fuzzy sets Low, Medium, High of different
variables.

step 3 :Evaluate the rules and find the rule strengths of each rule [c.f. Fig.7.4] by the min operator
min{µ

Ã
(x) , µ

B̃
(y), ....} where µ

Ã
(x) is the membership value for Qsi (or, mrj , Dj).

step 4 : Calculates the membership functions of the different fuzzy numbers Low, Medium, High
(or, V ery low, Low,Medium,High, V ery high ) for the parameterCsi (or, for the parameter
Q1

rj , ) which are represented by the rules with non-zero strength.

step 5 : Apply fuzzy union operator to find the fuzzy output.

step 6 : Apply centroid method to find the difuzzyfied cost Csi(or stock Q1
rj).

Using this algorithm, GA optimizes the proposed model.

7.5.3 Algorithm for proposed GA
Using the above algorithms, GA optimizes the proposed model. An algorithm of the proposed GA
module is

Begin
initialize population
gen = 0
model evaluation for initial population
assign fitness
for (gen = 0 ; gen<maxgen ; gen ++)
{ print the result for current generation
reproduction
crossover
mutation
new population
model evaluation for the new population
assign fitness using fuzzy inference module
gen=gen+1 }
end.

7.5.4 Working steps for the model
step 1 :Collection of post raw data for purchased quantities and costs, selling prices, demands and

stocks at the showrooms.

step 2 :Rearrange those as imprecise with linguistic terms data and formulate the linguistic relations
between them. There may be two types of relations.(i) one input to one output and (ii) two
inputs to one output.
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step 3 :Formulate the model as profit maximization model w.r.t. wholesaler.

step 4 :Solve the model using GA and fuzzy inference module where the variables are
Qsi, Nj , Dj , mrj . Using the input for Qsi, GA gets the value of Csi from FL1(Qsi, i) and
using the inputs Dj , mrj GA gets the value of Q1

rj from FL2(Dj ,mrj , j) [c.f. sec.7.5.2].

step 5 :Analyze the results.

Table 7.1: Raw Data collected from showrooms

mark-up 1.3 1.41 1.43 1.45 1.5 1.3 1.41 1.43 1.45 1.5 1.3 1.41 1.43 1.45 1.5

demand 46 58 60 64 65 66 70 73 74 89 79 79 82 83 92

stock 685 626 692 806 905 778 1005 1252 1028 957 1033 1151 1247 1247 1087

1st mark-up 1.44 1.48 1.49 1.49 1.53 1.44 1.48 1.49 1.49 1.53 1.44 1.48 1.49 1.49 1.53

Show demand 46 58 60 64 65 66 70 73 74 89 79 79 82 83 92

room stock 465 564 615 600 857 685 626 692 806 905 778 1005 1252 1028 957

mark-up 1.48 1.5 1.5 1.5 1.51 1.48 1.5 1.5 1.5 1.51 1.48 1.5 1.5 1.5 1.51

demand 46 58 60 64 65 66 70 73 74 89 79 79 82 83 92

stock 271 347 469 475 399 465 564 615 600 857 685 626 692 806 905

mark-up 1.3 1.41 1.43 1.45 1.5 1.3 1.41 1.43 1.45 1.5 1.3 1.41 1.43 1.45 1.5

demand 59 64 64 85 65 73 73 79 87 77 82 82 85 92 87

stock 578 751 616 945 566 856 1067 1230 1207 1206 1202 1246 1309 1338 1298

2nd mark-up 1.44 1.48 1.49 1.49 1.53 1.44 1.48 1.49 1.49 1.53 1.44 1.48 1.49 1.49 1.53

Show demand 59 64 64 85 65 73 73 79 87 77 82 82 85 92 87

room stock 520 572 616 945 566 578 751 940 940 818 856 1067 1230 1207 1206

mark-up 1.48 1.5 1.5 1.5 1.51 1.48 1.5 1.5 1.5 1.51 1.48 1.5 1.5 1.5 1.51

demand 59 64 64 85 65 73 73 79 87 77 82 82 85 92 87

stock 278 475 532 604 512 520 572 616 945 566 578 751 940 940 818

mark-up 1.3 1.41 1.43 1.45 1.5 1.3 1.41 1.43 1.45 1.5 1.3 1.41 1.43 1.45 1.5

demand 63 69 69 85 70 76 76 80 85 83 70 86 86 92 88

stock 803 803 831 1177 923 1025 1069 1152 1450 1191 1221 1280 1364 1425 1373

3rd mark-up 1.44 1.48 1.49 1.49 1.53 1.44 1.48 1.49 1.49 1.53 1.44 1.48 1.49 1.49 1.53

Show demand 63 69 69 85 70 76 76 80 85 83 70 86 86 92 88

room stock 590 718 754 941 771 803 803 831 1177 923 1025 1069 1152 1450 1191

mark-up 1.48 1.5 1.5 1.5 1.51 1.48 1.5 1.5 1.5 1.51 1.48 1.5 1.5 1.5 1.51

demand 63 69 69 85 70 76 76 80 85 83 70 86 86 92 88

stock 296 539 548 700 581 590 718 754 941 771 803 803 831 1177 923

7.6 Numerical Experiment
A Real Life Example: To illustrate the SCM numerically, we consider a practical example. A
merchant in Jahalda, West Bengal, India makes a business of a food-grain (rice).The merchant collects
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rice from two village suppliers and sales those from three showrooms at Balda, Contai and Egra in
West bengal, India, for a period of 12 months. The raw data regarding the selling price, purchase cost,
demand at the showrooms etc. are collected during 2011-2012 and presented in Tables-7.1 and -7.2.
The collected raw uncertain data for quantity, purchasing price, selling cost (i.e. mark-up), demands
and stocks are rearranged in Tables-7.3 and -7.4 and from these data, some linguistic relations [c.f.
sec.7.4] are derived.

7.6.1 Collected data

Table 7.2: Raw Data collected from suppliers

1st Quantity 910 592 32 362 941 1213 1516 1603 1147 2587 2458 1043 2053 2109 2460

Supplier Cost 17.3 18.2 23.8 18.3 16.9 16.1 15 14.6 16.1 10.6 11.36 12.5 13 12.5 11.36

2nd Quantity 774 92 447 294 960 1554 1400 1085 1085 2377 1506 1733 2334 1993 2331

Supplier Cost 15.22 22.74 15.25 16.02 15.21 13.8 14.51 16.11 14.98 13.8 13.21 13.22 10.31 12.48 12.14

Table 7.3: rearranged data for suppliers and showrooms

scm scm Low Medium High

member variable

1st Quantity 910 592 32 362 941 1213 1516 1603 1147 2587 2458 1043 2053 2109 2460

Supplier Cost 11.36 12.5 13 12.5 11.36 16.1 15 14.6 16.1 10.6 17.3 18.2 23.8 18.3 16.9

2nd Quantity 774 92 447 294 960 1554 1400 1085 1085 2377 1506 1733 2334 1993 2331

Supplier Cost 13.21 13.22 10.31 12.48 12.14 13.8 14.51 16.11 14.98 13.8 15.22 22.74 15.25 16.02 15.21

1st-show mark-up 1.3 1.41 1.43 1.45 1.5 1.44 1.48 1.49 1.49 1.53 1.48 1.5 1.5 1.5 1.51

room demand 46 58 60 64 65 66 70 73 74 89 79 79 82 83 92

2nd-show mark-up 1.3 1.41 1.43 1.45 1.5 1.44 1.48 1.49 1.49 1.53 1.48 1.5 1.5 1.5 1.51

room demand 59 64 64 85 65 73 73 79 87 77 82 82 85 92 87

3rd-show mark-up 1.3 1.41 1.43 1.45 1.5 1.44 1.48 1.49 1.49 1.53 1.48 1.5 1.5 1.5 1.51

room demand 63 69 69 85 70 76 76 80 85 83 70 86 86 92 88

Table 7.4: rearranged data for stocks at showrooms

linguistic Quantity Quantity Quantity

variable at 1st- at 2nd- at 3rd-

showroom showroom showroom

very-low 271 347 469 475 399 278 475 532 604 512 296 539 548 700 581

Low 465 564 615 600 857 520 572 616 945 566 590 718 754 941 771

Medium 685 626 692 806 905 578 751 940 940 818 803 803 831 1177 923

High 778 1005 1252 1028 957 856 1067 1230 1207 1206 1025 1069 1152 1450 1191

Very-high 1033 1151 1247 1247 1087 1202 1246 1309 1338 1298 1221 1289 1364 1425 1373
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Table 7.5: Mean deviations (σ) of fuzzy numbers and the ratio of left spread and right spread
(ξ) of the fuzzy numbers

scm fuzzy very low low medium high very high

members parameters σ ξ σ ξ σ ξ σ ξ σ ξ

1st quantity 260 0.67 263.4 1.42 264.9 0.7

supplier cost 0.99 1.32 0.96 0.78 0.95 1.33

2nd quantity 252.4 0.56 265.9 1.37 256 0.77

supplier cost 0.6 0.75 0.58 1.43 0.97 0.4

1st mark-up 0.04 2.8 0.014 5 0.003 1

show demand 3.79 0.69 3.79 1.44 2.6 1.5

room stock 57.8 0.67 57.3 1.56 75.04 0.47 207.6 1.72 70.3 0.64

2nd mark-up 0.04 2.8 0.014 5 0.003 1

show demand 3.33 0.5 3.47 1.5 2.49 1.33

room stock 55.56 2 61.91 0.45 94.82 0.69 90.02 0.71 358.4 2

3rd mark-up 0.04 2.8 0.014 5 0.003 1

show demand 2.78 0.5 2.83 1.67 2.6 0.67

room stock 56.97 0.62 56.52 1.69 77.87 0.42 81.85 0.59 53.33 0.67

From the above data, triangular fuzzy numbers of the from (a1, a2, a3)[c.f. sec.2.1.6] can be
formulated as below following Chang [46].

For Supplier-1 :
Quantity (Qs1) : Low =(0, 600, 1500) , Medium =(600, 1500, 2134) , High
=(1500, 2134, 3041)
Cost (Cs1) : Low =(9.2, 12.5, 15) , Medium =(12.5, 15, 18.2) , High =(15, 18.2, 20.6)

For Supplier-2 :
Quantity (Qs2) : Low =(0, 500, 1400) , Medium =(500, 1400, 2058) , High
=(1400, 2058, 2911)
Cost (Cs2) : Low =(11, 12.5, 14.5) , Medium =(12.5, 14.5, 15.9) , High =(14.5, 15.9, 19.4)

For Showroom-1:
Mark-up (Mr1) : Low = (1.3,1.44,1.49) , Medium = (1.44,1.49,1.5) , High = (1.49,1.5,1.51)
Demand (D1) : Low = (51,60,73) , Medium = (60,73,82) , High = (73,82,88)
Quantity To Be Supplied (Q1

r1) : Very Low = (266,400,600) , Low = (400,600,728) , Medium
= (600,728,999) , High = (728,999,1157) , Very High = (999,1157,1402)

For Showroom-2:
Mark-up (Mr2) : Low = (1.3,1.44,1.49) , Medium = (1.44,1.49,1.5) , High = (1.49,1.5,1.51)
Demand (D2) : Low = (59,65,77) , Medium = (65,77,85) , High = (77,85,91)
Quantity To Be Supplied (Q1

r2) : Very Low = (300,500,600) , Low = (500,600,824) , Medium
= (600,824,1150) , High = (824,1150,1284) , Very High = (1150,1284,1351)
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For Showroom-3:
Mark-up (Mr3) : Low = (1.3,1.44,1.49) , Medium = (1.44,1.49,1.5) , High = (1.49,1.5,1.51)
Demand (D3) : Low = (65,70,80) , Medium = (70,80,86) , High = (80,86,95)
Quantity To Be Supplied (Q1

r3) : Very Low = (426,550,750) , Low = (550,750,868) , Medium
= (750,868,1150) , High = (868,1150,1342) , Very High = (1150,1342,1438).

7.6.2 Other input data

supplying capacity (CAs1 and CAs2) : 3000 units
Set-up cost at the showrooms : SUr1 = 55, SUr2 = 50, SUr3 = 52
Holding cost at the wholesaler and at the showrooms : H1

w = 0.2,H1
r1 = 0.75,H1

r2 = 0.7,H1
r3

= 0.68
Lot size per unit transportation : TLsi = 200 quintal, TLrj = 50 quintal
Transportation cost per lot from suppliers to wholesaler : Tc1

s1 = 75, Tc1
s2 = 50

Transportation cost per lot from wholesaler to showrooms : Tc1
r1 = 15, Tc1

r2 =18, Tc1
r3 = 20

Range of cycles : 1 ≤ N1 ≤ 12, 1 ≤ N2 ≤ 12, 1 ≤ N3 ≤ 12.
Random Time Horizon :Mean mĤ=12 and variance σĤ=

√
1.5 with β = 0.2.

The probabilities for the random time horizon are pr1 = 0.9032 = pr2 = pr3.
GA parameters : MAXGEN=200, PXOVER=0.8, PMUT=0.2, RSEED=1.2, DIMU=100.

7.6.3 Optimum results

With the above input data, the non-linear optimization problem (7.7)-(7.11) are solved using GA with
FL [c.f. sec.-7.4 and -7.5.2]. The optimum results are obtained and presented for different scenarios.
Here the scenarios are given by linguistic variables and results are calculated by their corresponding
numerical ranges. The scenarios are outlined in Table-7.6, the optimum results are presented in Table-
7.7 and the information given by the merchant about the different parameters is given in Table-7.8.

Table 7.6: Scenarios for the proposed model during computation

Scenarios 1 2 3 4 5 6 7 8 9

Mark-up Low Low Low Medium Medium Medium High High High

(1.3,1.49) (1.3,1.49) (1.3,1.49) (1.44,1.5) (1.44,1.5) (1.44,1.5) (1.49,1.51) (1.49,1.51) (1.49,1.51)

Low Medium High Low Medium High Low Medium High

1st-show

room (51,73) (60,82) (73,88) (51,73) (60,82) (73,88) (51,73) (60,82) (73,88)

Demand 2nd-show

room (59,77) (65,85) (77,91) (59,77) (65,85) (77,91) (59,77) (65,85) (77,91)

3rd-show

room (65,80) (70,86) (80,95) (65,80) (70,86) (80,95) (65,80) (70,86) (80,95)
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Table 7.7: Optimum Results for the proposed Model for Different Scenarios

No. Total Total Total period Total
Scen SCM Quantity Mark Selling of Demand Holding Setup Trans. length Profit
ario Mem. (quan.) up price($) cycle (quan.) Cost($) Cost($) Cost($) (month) ($)

S1 1167 - 16.443 - - - - 450 -
S2 1000 - 16.0554 - - - - 250 -

1 W 2167 - - - - 1850.15 - - - 11276.85
R1 739 1.4879 24.1952 8 70 366.16 440 240 1.32
R2 700 1.4886 24.2103 3 67 866.33 150 270 3.54
R3 728 1.4894 24.2254 8 69 326.21 416 320 1.32
S1 1199 - 16.331 - - - - 450 -
S2 1138 - 15.6215 - - - - 300 -

2 W 2337 - - - - 2177.87 - - 11980
R1 668 1.4867 23.7652 7 63 379.78 385 210 1.515
R2 858 1.49 23.8186 7 78 478.03 350 378 1.6
R3 811 1.49 23.8186 6 74 510.51 312 360 1.85
S1 2222 - 11.5322 - - - - 900 -
S2 542 - 17.1821 - - - - 150 -

3 W 2764 - - - - 2650.32 - - 9647
R1 961 1.49 18.8341 7 88 569 385 315 1.58
R2 880 1.49 18.8341 6 79 579 300 324 1.881
R3 923 1.49 18.8341 7 81 517 364 420 1.648
S1 1189 - 16.3673 - - - - 450 -
S2 1095 - 15.7677 - - - - 300 -

4 W 2284 - - - - 1478 - - 10457.67
R1 735 1.498 23.9725 1 72 281.4 55 225 10.21
R2 711 1.4905 23.9659 10 67 264 500 360 1.061
R3 838 1.4937 24.019 9 79 302 520 400 1.06
S1 1380 - 15.6862 - - - - 525 -
S2 1199 - 15.391 - - - - 300 -

5 W 2579 - - - - 2263 - - 13329.13
R1 803 1.4928 23.2119 6 77 523.17 330 270 1.7377
R2 887 1.4976 23.2855 6 84 546.61 300 324 1.7603
R3 889 1.499 23.3085 6 85 533.5 312 360 1.7645
S1 1400 - 15.6124 - - - - 525 -
S2 1335 - 14.7346 - - - - 350 -

6 W 2735 - - - - 2368.25 - - 13817
R1 888 1.4942 22.6881 6 87 566.95 330 270 1.702
R2 878 1.4989 22.7587 6 86 522.77 300 324 1.701
R3 969 1.4983 22.7498 7 93 490.45 364 420 1.489
S1 1166 - 16.4496 - - - - 450 -
S2 936 - 16.2312 - - - - 250 -

7 W 2102 - - - - 1767.56 - - 11827.64
R1 750 1.4903 24.3691 5 72 585.89 275 225 2.08
R2 806 1.4925 24.4065 9 76 332.54 450 324 1.18
R3 545 1.49 24.6376 10 70 144.5 520 400 0.78
S1 1267 - 16.0914 - - - - 525 -
S2 1141 - 15.6118 - - - - 300 -

8 W 2408 - - - - 1989.74 - - 12285.67
R1 796 1.4911 23.6557 6 75 527.42 330 270 1.77
R2 827 1.4947 23.7129 6 79 511.97 300 324 1.77
R3 785 1.4923 23.6747 3 74 943.71 156 360 3.54
S1 1394 - 15.6353 - - - - 525 -
S2 1200 - 15.3871 - - - - 350 -

9 W 2594 - - - - 2266.21 - - 13579.55
R1 849 1.4932 23.1734 6 81 563.45 330 270 1.77
R2 856 1.5076 23.3983 6 86 505.21 300 324 1.68
R3 887 1.5041 23.3449 7 85 449.49 364 420 1.49
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7.6.4 Practical result(s)

Table 7.8: Result obtained for the model with the inputs given by the merchant

No. Total Total Total period Total
Scen SCM Quantity Mark Selling of Demand Holding Setup Trans. length Profit
ario Mem. (quan.) up price($) cycle (quan.) Cost($) Cost($) Cost($) (month) ($)

S1 762 - 17.88 - - - - 300 -
S2 600 - 17.05 - - - - 150 -

1 W 1362 - - - - 764.77 - - - 8904
R1 390 1.51 26.45 4 55 259.42 110 120 1.77
R2 427 1.51 26.45 3 63 337.12 150 162 2.3
R3 545 1.51 26.45 6 68 247.92 312 240 1.17
S1 1320 - 15.90 - - - - 525 -
S2 1167 - 15.52 - - - - 300 -

2 W 2487 - - - - 2164.54 - - 12809.63
R1 741 1.495 23.50 6 75 457.12 330 270 1.65
R2 824 1.495 23.50 6 78 507.78 300 324 1.71
R3 922 1.495 23.50 5 82 705.2 260 400 2.1
S1 1173 - 16.42 - - - - 450 -
S2 2676 - 12.32 - - - - 700 -

3 W 3849 - - - - 4896.1 - - 10457.17
R1 1237 1.4 19 9 86 741.11 495 405 1.59
R2 1278 1.4 19 9 90 706.2 450 486 1.57
R3 1334 1.4 19 9 93 722.88 468 540 1.59

Figure 7.5: Change in Quantity Stocked by the wholesaler against mark-up
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Figure 7.6: Change profit with respect to mark-up

7.7 Discussion:

Practically when a wholesaler supplies stocks to the showrooms against the fuzzy demands, then it
may happen that the sales of the item decrease due to the high selling price or increase due to the
low selling price and hence the supply of the item is affected. Even the wholesaler previously knows
the fuzzy demand to choose the appropriate data i.e. for exact amount of supply to showrooms,
fuzzy inference has a great utility. The target of the supply chain system is to maximize the profit of
the wholesaler and for that, the related costs- purchasing cost, holding cost, etc. are obviously
minimized. Here fuzzy inference rules are also applied successfully to reduce the purchasing cost of
the wholesaler as the cost of the items charged by the suppliers varies with the amount of the
quantities purchased by the wholesaler.

The Table-7.7 furnishes the optimum results of the mark-up, cycles and demands for the
wholesaler for which his/her profit is maximum. Here optimum results are provided against nine sets
of optimum fuzzy data i.e. for nine scenarios. Here, mark-up is low in the scenarios -1, -2 and -3, but
the demand is low, medium and high in the respective scenarios -1, -2 and -3. Hence, as per
expectation, both total procured amount and profit made by the wholesaler should be increase from
scenarios -1 to -3 and maximum in scenario -3. The Table-7.7 agree with above observation. With
medium mark-up in scenarios -4, -5 and -6 and demand as low, medium and high in the above
scenarios, the behaviors of procured quantity and profit are same as before. These observations are
also observed with the high mark-up in scenarios -7, -8 and -9.

Again, demand is low in scenarios -1,-4 and -7, but in these scenarios, mark-up is low, medium
and high respectively. In our model formulation, mark-up and demand are taken as two independent
parameters. Thus total stock at the wholesaler is lowest in scenario -1 following the rules (A)[c.f.
7.4]. But in scenario -4, stock takes the outer (higher) range of ’low stock’ and in scenario -7, it
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assumes the lower range of ’medium stock’. As a result, the profit along-with the stock level are
maximum in scenario -4. The above observations are observed for scenarios -2, -5 and -8 with
medium demand and mark-up as low, medium and high respectively. Here, profit is maximum in
scenario -5. Stock level in scenario -5 takes the outer range of ’medium stock’ and lower range of
’high stock’ in scenario -8 and thus stock along-with in scenario -5 are higher/more than those in
scenario -8. similarly, for high demand and different types of mark-up, profit and stock are
maximum for medium mark-up (i.e. scenario -6).

From the above findings, it may be calculated that high mark-up or high demand may not fetch
always the maximum profit. It actually depends on the fuzzy data set.

In Table -7.8 three set of result are given which are obtained with known mark-up and demand
given by the merchant. Which is near about the original profit made by the merchant. The difference
arises between the merchants profit and profit obtained through the model depends on rounding off
error, and the no. of cycles taken by the merchant. The difference between original profit and profit
obtained from the model also caused by the total length of the business period. Table -7.8 reveals
that high demand or high mark-up always may not a most profitable business policy.

The curves (Fig.-7.5 and Fig.-7.6) present an overview of the characteristics of the parameters-
total quantity and profit against the mark-up with increment 0.001 with demand fixed at a particular
value (75 units) with its range (Medium).

The normal relation between mark-up and required quantity at the showrooms (i.e. purchased
quantity) is that requirement will decrease as mark-up increases. Fig.-7.5 more or less reflects this
phenomena . In Fig.-7.5 total quantity is constant (3099 units) for mark-up 1.43 to 1.44 as the
membership value of imprecise mark-up to the low fuzzy number is 1.0 and over this range demand
remains constant. The total quantity decreases gradually from 3099 units to 2524 units as mark-up
increases from 1.44 to 1.49 and then sharply decreases up-to 1.5. This is due to the nature of
impreciseness of the mark-up over this range. After that total quantity is constant against mark-up as
the membership value of mark-up again becomes 1.0 to the high fuzzy number.

As the fig.-7.6 drawn with fixed demand, the expected behavior of profit with respect to mark-up
is that increment in mark-up will increase profit. The Fig.-7.7 more or less behaves initially in the
above mentioned way but at end, it does not reflect so. The profit increases for mark-up up-to 1,489
with some small ups and down and is maximum at 1.489. From the fuzzy nature of mark-up, profit
is maximum when mark-up is medium and then it decreases up-to 1.5. After that it increases with
mark-up as mark-up is in high range with membership value 1.0 and the quantity required at the
showrooms become fixed.

7.8 Conclusion
In this study, for the first time, a real life SCM with random planning horizon and fuzzy inference
has been developed and solved by a soft computing method. Here we have developed a methodology
to maximize the profit of a wholesaler who purchases quantities from suppliers and supplies the
quantities to showrooms for sale in fuzzy-random environment. The selling price of the supplier
varies inversely and imprecisely with the ordered quantities following one parameter fuzzy rule.
Similarly, the amount of stock at sale depots varies inversely and directly with the selling price (i.e.
mark-up) and demand respectively following two parameter fuzzy rules connecting mark-up,
demand and stock. The whole planning horizon is taken as random with normal distribution. This
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has been expressed as a chance-constraint. A real coded genetic algorithm with fuzzy inference has
been developed and used for solution. Examples imply that the proposed model outperforms
conventional ones and is capable of developing a proper schedule to get the maximum profit. This
study also gives the perfect quantity distribution by which one gets the maximum cost discount from
the suppliers in limited capacity environment and makes maximum profit through proper distribution
of stock in showrooms. This study can be useful for the inventory practitioners doing business of
seasonal products such as warm garments, fruits, etc. Though the present model has been formulated
under a single management system, but it can also be formulated under different management
systems as a multi-objective problem treating the supplier, wholesaler and the retailers (against the
showrooms) as different partners. The methodology described here can also be applied to different
supply chain processes.
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Chapter 8

A Deteriorating Multi-item Inventory
Model with Price Discount and Variable
Demands Via Fuzzy logic Under
Resource Constraints 1

8.1 Introduction
In the existing literature of inventory, most of the models are developed under infinite time

horizon. As per Gurnani [100] , the life of a particular item is not infinite due to the change of
design, technological development, variation of inventory costs, customers’ changing taste, etc and
this is very much true for the seasonal products in developing countries where preserving facilities
are not available in plenty. For these seasonal products, even though the planning horizon is assumed
as finite, in every season it fluctuates depending on some extraneous factors such as climatic
conditions, etc. This time period may be assumed to be random with a probability distribution. In
the literature Maiti et al. [169], Roy et al. [212] have solved some inventory problems with random
planning horizon having exponential distribution. Also Moon and Lee [184] have presented an EOQ
model under inflation and discounting with a random product life cycle.

In an inventory system, deterioration is an usual phenomenon. Mandal and Phaujder [174]
presented an inventory model with deteriorating items. Roy et al. [213] have done a research work
of deteriorating items with stock dependent demand over random planning horizon. Also Bhunia
and Maiti [21], Mahapatra and Maiti [162] presented some inventory models for deteriorating items
with time dependent demand and imprecise production time respectively.

In the present competitive market, the demand depends on the stock directly and also inversely on
the selling price. Recently Widyadana et al. [259] presented a deteriorating inventory problem with
constant demand via a simplified approach. Also Giri et al. [89], Mandal and Maiti [176] and others
considered the demand as an indexed stock (i.e. D = dqβ , d and β are constants) dependent. But
there are few research works with fuzzy demand depending on stock and selling price following

1This model has been published as a research paper in the journal Computer and Industrial Engineering
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fuzzy inference. Recently, some inventory models with rework for the defective products [Jamal et
al. [122], Cardenas-Barron [30–33], Sarker et al. [224], Cardenes-Barron et al. [34]] have been
presented in the literature.

Human knowledge is often represented imprecisely, vaguely and approximately. In our real life,
some vague terms in the form of ’words’ such as high, medium, low etc are used. The target of fuzzy
inference process is to form it into natural language expressions of the type,

IF premise (antecedent) THEN conclusion (consequent).
There are two types of fuzzy inference systems: Mamdani- type [Mamdani and Assilina [173]] and
Sugeno-type [Ban et.al. [11]]. These two types differ in the way by which output is determined.
Mamdani’s effort was based on Bellman and Zadeh’s [15] paper developing fuzzy algorithms for
complex systems and decision processes. The main difference between Mamdani and Sugeno is that
Sugeno output membership functions are either linear or constant where the Mamdani output is a
fuzzy set. Since performance or satisfaction level of a perfect order cannot be judged in terms of
discrete values, a Mamdani-type inference system is selected here for evaluating and aggregating the
fuzzy rules.

Among the recently used optimization techniques, Genetic Algorithm (GA) is the most popular
one. Some advantages can be pointed out for acceptability of this method.

• GAs work with a population of solutions instead of a single solution and for this it gives more
globalized solution.

• GAs do not require any auxiliary information except the objective function values. Also there are
some classical direct search methods which work under the assumption that the function to be
optimized is unimodal. GAs do not impose any such restriction.

• GAs use probabilistic guide lines for search where in most of the classical methods, fixed
transition rules are used to move from one solution to another.
Some research works [Zydallis [279]] using GA process are available in the literature.

In-spite of several development in the area of supply-chain models, there are still some gaps in the
literature.

i) There are very few supply-chain models for deteriorating items with fuzzy inference expressed
verbally using ’words’.

ii) Till now, none has used three types of price discount (AUD, IQD, AUD in IQD) in a supply-
chain model connecting through fuzzy inferences and sharing the part of the commission with
customers.

iii) No supply-chain is available with MRP and commission on this following fuzzy rules.

iv) Use of random planning horizon is very limited and none has used it in connection with fuzzy
inferences.

v) Ga is not yet developed connecting random planning horizon, fuzzy logic and price discount.
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vi) For the first time, surprise function, possibility for resource constraints are used in a supply-chain
model.

In this chapter an inventory model for some seasonal products is presented with a wholesaler and its
m showrooms under a random planning horizon. The wholesaler purchases a number of items from
a set of predetermined suppliers and supplies the items to the showrooms for sale in certain number
of cycles to achieve the maximum profit. The suppliers offer some ranges of commission on MRP to
the wholesaler and it is presented in three ways, in the forms of AUD, IQD or IQD in AUD. The
wholesaler shares a part of this commission with his/her customers. Demands of the items at the
open market depends on the discount given on MRPs of the items by some defined verbal fuzzy
rules. Items considered here deteriorate at some fixed rates. Moreover the wholesaler has resource
constraints in purchasing and storing the items due to limited budget and storage capacity. The
model is formulated with a fuzzy space constraint in the form of possibility [ Liu and Liu [154] ] and
a crisp budget constraint in the form of surprise function. In seasonal business, the business periods
are uncertain in stochastic sense. So the time horizons considered in this model are random with
normal distribution and are evaluated by chance-constraint method. The fuzzy relations are
defuzzified following Mamdani technique. The profit function formulated with respect to the
wholesaler is maximized using a real coded Genetic algorithm. The model is illustrated with
numerical examples. Some raw data regarding the model parameters (such as demand, selling price
etc.) in a developing country are collected and represented in the from of fuzzy number and an
inventory policy is developed. The novelty of this investigation is that for the first time, a real-life
supply chain / inventory model has been formulated and solved with price discount under random
planning horizon and fuzzy inference concerning price and demand taking some imprecise and crisp
resource constraints into account.

The rest of this discussion is organized as follows. Section-8.2 contains the notations and
assumptions made for the proposed model. The development of the model is given in section-8.3. In
section-8.4, there are some fuzzy rules considered for the problem. Section-8.5 contains the solution
procedure using GA in favor of the proposed model. A numerical experiment is performed in
section-8.6 and a real life application is presented in section-8.7. Discussion and conclusion are
made in the sections-8.8 and -8.9 respectively.

8.2 Notations and Assumptions

8.2.1 Notations
Ĥ random planning horizon follows the normal distribution with mean

mĤ and variance σĤ .
W represents the wholesaler.
i [or, j] index used for i− th item [or, for j − th showroom].
Rj represents the j − th showroom of the wholesaler W where,

j = 1, 2, · · · ,m.
Qi amount of i− th item purchased from the suppliers over the whole

business period.
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pwi purchasing cost of per unit of i− th item.
QRij amount of i− th item required at Rj in each cycle.
Nj number of cycles taken by W to supply items to Rj .
Tj length of each cycle for Rj .
Qijk status of the total amount of i-th item required to stock for Rj by the

wholesaler in k-th cycle where, k = 1, 2, · · · , Nj .
Dij per unit time demand of i-th item faced at Rj .
IWijt [or, Iij ] inventory position of the required stock of i-th item for [or, of] the

j-th showroom at time t at the wholesaler [or, at j-th showroom] in
any cycle.

Qwil a certain amount of i-th item, which is used to define the ranges of
commission offered by the suppliers where, l is a positive integer.

srij selling price of per unit i-th item for Rj .
mij percentage of discount on srij .
hrij [or, hwi] per unit item holding cost at Rj [or, W ] of i-th item.
HWijk holding cost for the i− th for the stock of j − th showroom in

k − th cycle.
HRij [or, THWi] total holding cost at Rj [or, W ] of the i− th item.
surj [or, Tsurj ] per cycle [or, total] set-up cost at Rj .
trij [or, T trij ] per lot [or, total] transportation cost in transporting i− th item to Rj

from W .
Lrij lot size, i.e the maximum amount of i− th item which can be trans-

ported to Rj from W at once.
cwil[or, cwi∞] percentage of commission on i− th item in l − th range [or, last

range] of commission.
cwi final percentage of commission obtained by the wholesaler.
Pi per unit item printed price (MRP) of i-th item.
ãi = (a1i, a2i, a3i) per unit i-th item fuzzy space required at the wholesaler.
S̃ = (s1, s2, s3) total fuzzy space available at the wholesaler.
B̃ = (B1, B2, B3) fuzzy budget amount of W over Ĥ .
θrij [or, θwi] percentage of rate of deterioration of the i− th item at Rj [or,W ].
β, prj two given real numbers where β > 0, 0 ≤ prj ≤ 1.
εj a real number whose standard normal value is prj .
PC, TC respectively represent total purchasing cost and total cost of the

wholesaler.
TE, TP respectively represent total earn and total profit of the wholesaler.

8.2.2 Assumptions
i) The wholesaler, W maximizes his profit with its m showrooms Rj , j = 1, 2, · · · ,m, in a busi-

ness of n deteriorating items over a random planning horizon, Ĥ .

ii) The demand of i− th item faced at Rj over the whole business period is imprecise in nature and
depends on selling price under some fuzzy rules.

iii) Since the suppliers supply items under their own responsibility and by own transportation
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arrangement so the transportation cost is considered only for the transportation from wholesaler
to showrooms which depends on the amount of items.

iv) In the proposed model it is considered that the wholesaler has limited space to store the items
and also has a budget over the total time horizon which are fuzzy in nature.

v) Restriction on the budget amount is introduced in the profit function as surprise function.

vi) Some positive real no.s β, A1, A2, A3 are considered to express the space constraint by possi-
bility.

8.3 Formulation of The Model
The presented model is formulated as a single management problem of a wholesaler with m
showrooms at different places over a random time horizon. After giving mij percent discount over
the MRP of the i-th item at the j-th showroom to the customer, the selling price is

srij = Pi.(1−
mij

100
) where , i = 1, 2, · · · , n , j = 1, 2, · · · ,m (8.1)

8.3.1 Quantity at Showrooms
Let Iij be the inventory position at the j-th showroom of i-th item and let θrij be the rate of deterio-
ration of the i-th item at j-th showroom. Then

dIij
dt

= −(Dij + θrij .Iij) where , i = 1, 2, · · · , n, j = 1, 2, · · · ,m (8.2)

with the boundary conditions,

for, t = 0, Iij = QRij and

for, t = Tj , Iij = 0

Solving this differential equation (8.2)using the corresponding boundary conditions the total quantity
of i-th item required at the j-th showroom is obtained as

QRij =
Dij(e

θrij − 1)

θrij
where , i = 1, 2, · · · , n , j = 1, 2, · · · ,m

8.3.2 Holding Cost at Showrooms
If HRij be the total holding cost at the j-th showroom for the i-th item then according to figure-8.1,

HRij = hrij .(
1

2
.Nj .QRij .Tj) for, i = 1, 2, · · · , n, j = 1, 2, · · · ,m (8.3)
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Figure 8.1: Inventory policy at the j-th showroom.

8.3.3 Set-up Cost at Showrooms
Let surj be the set-up cost per cycle at the j-th showroom then the total set-up cost Tsurj is

Tsurj = Nj .surj for, j = 1, 2, · · · ,m (8.4)

8.3.4 Transportation Cost at Showrooms
Let trij be the transportation cost per lot size for the j-th showroom of the i-th item. Then, as Lrij is
the lot size for transportation of the i-th item to the j-th showroom then,

if x.Lrij < QRij ≤ (x+ 1).Lrij , for some non-negative integer x,
then the total transportation cost,

Ttrij = (x+ 1).trij , for each i = 1, 2, · · · , n , j = 1, 2, · · · ,m. (8.5)

8.3.5 Model for the Wholesaler’s Stock
Let θwi be the rate of deterioration at the wholesaler and Qijk stock for j-th showroom at the
wholesaler in k-th cycle where, k = 1, 2, 3, · · · , Nj − 1 and for the Nj-th cycle the stock is given by
QijNj

= QRij
As IWij t

is the inventory position at time t in any cycle for the stock of i−th item of j−th retailer
at the wholesaler then the corresponding differential equation is

dIWij t

dt
= −θwiIWij t

for, (k − 1)Tj ≤ t ≤ kTj , k = 1, 2, · · · , (Nj − 1)

The policy of holding inventory and stock deduction policy at the wholesaler is depicted in figure-8.2.
Thus according to figure-8.2,

IWij t
= Qijk − QRij for t = (k − 1)Tj

= Qij(k+1)
for t = kTj k = 1, 2, · · · , (Nj − 1)
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Figure 8.2: Representation of Inventory Policy of Wholesaler against different Showrooms.

Solving these differential equations the following results are obtained.

Qij1
= QRij

eNj .θwi.Tj − 1

eθwi.Tj − 1

and the other stocks are given by

Qijk = Qij1
e−(k−1)θwi.Tj −QRij

e−(k−1)θwiTj − 1

1− eθwiTj
, k = 2, 3, · · · , (Nj − 1)

and QijNj
= QRij , i = 1, 2, · · · , n, j = 1, 2, · · · ,m

Therefore the total amount of i− th item Qi to be purchased by the wholesaler is given by

Qi =

m∑
j=1

Qij1
, for i = 1, 2, · · · , n (8.6)

8.3.6 Holding Cost at the Wholesaler
Let hwi be the per unit time and per unit of i − th item holding cost at the wholesaler. Then the
holding cost for the i− th item for the stock at j − th showroom in k − th cycle HWijk

is given by

HWijk
= hwi[Qij(k+1)

Tj +
1

2
Tj{Qijk −QRij −Qij(k+1)

}]

for, k = 1, 2, · · · , (Nj − 1)

Therefore the total holding cost for the i-th item is

THWi = hwi

m∑
j=1

Tj

[
1

2

Nj−1∑
k=1

{Qijk+1
+Qijk} −

Nj−1∑
k=1

QRij

]
(8.7)

8.3.7 Commission for the Wholesaler
The percentage of commission cwi obtained by the wholesaler depends on the amount of i− th item
supplied by the suppliers under AUD, IQD and IQD in AUD which are respectively given by the
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following.
Commission with AUD: Qwil represents an amount of i− th item such that,

cwi =


cwi1 if 0 < Qi < Qwi1
cwi2 if Qwi1 ≤ Qi < Qwi2
..............
cwil if Qwi(l−1) ≤ Qi < Qwil
cwi∞ if Qwil ≤ Qi <∞

where cwil is the percentage amount of i − th item in the l − th interval with the restriction mij ≤
cwi1 ≤ cwi2 ≤ ..... ≤ cwil ≤ cwi∞ for each l = 1, 2, ..., i = 1, 2, ..., n and j = 1, 2, ....,m.

Commission with IQD: Under incremental quantity discount (IQD) the commission process
is given by the following

cwi =


cwi1 if 0 < Qi < Qwi1
[cwi1Qwi1 + cwi2(Qi −Qwi1)]/Qi if Qwi1 ≤ Qi < Qwi2
..............
[cwi1Qwi1 + ...+ cwil(Qi −Qwi(l−1))]/Qi if Qwi(l−1) ≤ Qi < Qwil
[cwi1Qwi1 + ....+ cwi∞(Qi −Qwil)]/Qi if Qwil ≤ Qi

here mij ≤ cwi1 ≤ cwi2 ≤ ..... ≤ cwil ≤ cwi∞ for each l = 1, 2, ..., i = 1, 2, ..., n and j =
1, 2, ....,m.
Commission with IQD in AUD: The commission percentage cwi under nested discount (IQD
within AUD) scheme is taken as:

cwi =



cwi1 if 0 < Qi < Qwi1
cwi2 if Qi = Qwi1

cwi2.(1 +
Qi

δ1

Qwi2
) if Qwi1 < Qi < Qwi2

................

cwil.(1 +
Qi

δl−1

Qwil
) if Qwil−1 < Qi < Qwil

cwi∞ if Qwil ≤ Qi <∞

where 0 ≤ cwi1 ≤ cwi2 , 0 ≤ cwi2.(1 + Qi
δ1

Qwi2
) ≤ cwi3 ,......, 0 ≤ cwil−1.(1 + Qi

δl−2

Qwil−1
) ≤ cwil

and cwil.(1 + Qi
δl−1

Qwil
) ≤ cwi∞, where l is a positive integer.

Qwi1, Qwi2, ..., Qwi∞ are the amounts at which new discount is permitted and 0 < δ1, δ2, .., δl−1 <
1.

8.3.8 Space constraint for the Wholesaler
Let ãi = (a1i, a2i, a3i) be the fuzzy space required for per unit of i − th item and S̃ = (s1, s2, s3)
is the total fuzzy space available at the wholesaler. Then the space constraint is

n∑
i=1

ãiQi ≤ S̃
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The membership functions are defined by

µãi(x) =



0 if x ≤ a1i
x− a1i
a2i − a1i

if a1i ≤ x ≤ a2i

a3i − x
a3i − a2i

if a2i ≤ x ≤ a3i

0 if x ≥ a3i

µ
S̃

(x) =



0 if x ≤ s1
x− s1

s2 − s1
if s1 ≤ x ≤ s2

s3 − x
s3 − s2

if s2 ≤ x ≤ s3

0 if x ≥ s3

Then for some positive real number η the

Pos

( n∑
i=1

ãi.Qi ≤ S̃

)
> η iff

s3 −A1

s3 − s2 +A2 −A1
> η (8.8)

where, A1 =

n∑
i=1

a1iQi, A2 =

n∑
i=1

a2iQi, A3 =

n∑
i=1

a3iQi

8.3.9 Budget constraint for the Wholesaler
If pwi be the purchasing cost per unit of i− th item of the wholesaler then

pwi = Pi(1−
cwi
100

), for i = 1, 2, · · · , n

Then the purchasing cost (PC) to purchase Qi (given by8.6) amount of i− th item of the wholesaler
is given by

PC =
n∑
i=1

pwiQi (8.9)

As B̃ = (B1, B2, B3) is the fuzzy budget amount of the wholesaler then

0 ≤ µ
B̃

(PC) ≤ 1

Thus the surprise function is given by

S(PC) =


0 if B1 ≤ PC ≤ B2
PC −B2

B3 − PC
if B2 < PC < B3

∞ if PC ≥ B3

(8.10)

8.3.10 Chance Constraint for Random Time Horizon
Here the time horizon Ĥ is considered as random but the total time horizon is partitioned into Nj

cycle with length Tj for the j − th showroom. Therefore the corresponding Chance Constraint for
the j − th showroom is given by

Prob(|Nj .Tj − Ĥ| ≤ β) ≥ prj where, j = 1, 2, · · · ,m
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which can be reduced to [c.f. 2.1.3],

mĤ − β − εjσĤ ≤ NjTj ≤ mĤ + β − εj .σĤ (8.11)

where prj = F (εj) =
1√
2Π

∫ εj

−∞
e−

t2

2 dt for, j = 1, 2, · · · ,m

is the cumulative probability P [t ≤ εj ] of standard normal variate available in standard statistical
table for different values of εj .

8.3.11 Maximization Problem w.r.t. the Wholesaler
For selling items in the demand rate Dij per unit time per unit of i− th item in Nj cycles with cycle
length Tj at the j − th showroom, the total earn TE is given by

TE =
n∑
i=1

m∑
j=1

DijNjTjsrij (8.12)

where srij is given by the equation (8.1) and the total cost TC is given by

TC =

n∑
i=1

THWi +

n∑
i=1

m∑
j=1

HRij +

n∑
i=1

m∑
j=1

Ttrij + PC +

m∑
j=1

Tsurj (8.13)

where HRij , Tsurj , Ttrij , THWi and PC are given by the expressions (8.3), (8.4), (8.5), (8.7) and
(8.9) respectively. Thus if TP be the total profit of the wholesaler then the problem is

maximize TP = TE − TC − S(PC) (8.14)

whereTE, TC and S(PC) are given by (8.12), (8.13) and (8.10) respectively. Subject to the
constraints

s3 −A1

s3 − s2 +A2 −A1
> η (8.15)

mĤ − β − εjσĤ ≤ NjTj ≤ mĤ + β − εjσĤ (8.16)

8.4 Fuzzy Inference Rules
The demand of the i-th item faced by the j-th showroom depends on the selling price under the
following fuzzy rules-

IF (Selling Price is High) THEN (Customers’ Demand is Low).
IF (Selling Price is Medium) THEN (Customers’ Demand is Medium).
IF (Selling Price is Low) THEN (Customers’ Demand is High).

where Low, Medium and High represented by triangular fuzzy numbers of the form (a1, a2, a3).
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8.5 Solution Methodology: A Routine Framework for GA

The constrained single objective non-linear problem is evaluated numerically using Genetic
Algorithm (GA). The discussion about the Genetic Algorithm process and algorithms are given in
the sections-2.2.4 and -7.5.
At the beginning of the GA module, the different parameters of GA i.e. generation number
(MAXGEN), population size (POPSIZE), probability of cross-over (PXOVER), probability of
mutation (PMUT), random seed (RSEED), distribution index for SBX (DISBX) and for mutation
(DIMUT) and the others input data have to be supplied. As there is no clear indication as to how
large a population should be, here with POPSIZE = no of variables × 15, the expected result is
obtained. Here a combination of real and natural number representation is used to structure a
chromosome, where a chromosome is a string of genes which are specified by the decision variables
of the problem namely- percentage of commission (mij), length of each cycle (Tj), and the no. of
cycles taken by the wholesaler to supply the items to i-th retailer (Nj). The variable boundaries may
be fixed or flexible. The fitness function is the profit function (TP ) and the constraints are defined
by the wholesaler given by the equations 8.14, 8.10, 8.11 respectively.

8.6 Numerical Experiment

A supply chain model with respect to a wholesaler with its two showrooms in a business of two items
is considered with following data.

8.6.1 Input Data

Crisp Data
pri = 50, θwi = 0.02, hwi = 0.1. surj = 300, εj = 1.3.

hrij = 0.2, θrij = 0.01, trij = 50, Lrij = 500, where, i = 1, 2, j = 1, 2.
eta = 0.9, β = 0.01, mH = 12, σH = 0.9.

Commission with AUD: Qwil = 5000.l, where l = 1, 2, 3, 4.

cwi =


30 if 0 < Qi < Qwi1
40 if Qwi1 ≤ Qi < Qwi2
50 if Qwi2 ≤ Qi < Qwi3
55 if Qwi3 ≤ Qi < Qwi4
60 if Qwi4 ≤ Qi <∞
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Commission with IQD: Qwil = 5000.l, where l = 1, 2, 3.

cwi =



30 if 0 < Qi < Qwi1

30Qwi1 + 40(Qi −Qwi1)

Qi
if Qwi1 ≤ Qi < Qwi2

30Qwi1 + 40(Qwi2 −Qwi1) + 60(Qi −Qwi2)

Qi
if Qwi2 ≤ Qi < Qwi3

30Qwi1 + 40(Qwi2 −Qwi1) + 60(Qi −Qwi2) + 80(Qi −Qwi3)

Qi
if Qwi3 ≤ Qi <∞

Commission with IQD in AUD: Qwil = 5000.l, where l = 1, 2, 3, 4.

cwi =



30 if 0 < Qi < Qwi1
40 if Qi = Qwi1

40(1 +
Qi

0.5

Qwi3
) if Qwi1 < Qi < Qwi3

45 if Qi = Qwi3

45(
1 +Qi

0.7

Qwi4
) if Qwi3 < Qi < Qwi4

60 if Qwi4 ≤ Qi <∞

Fuzzy Data

Selling Price:
Low = (25, 32.5, 40), Med = (32.5, 40, 47.5), High = (40, 47.5, 50).

Demand:
Low = (0, 400, 600), Med = (400, 600, 800), High = (600, 800, 1400).

Unit Fuzzy Space : ã1 , ã2 = (8, 10, 12).

Total Fuzzy Space : S̃ = (100000, 200000, 300000).

Total Fuzzy Budget : B̃ = (600000, 700000, 800000).

GA Parameters : POPSIZE = 80 MAXGEN = 200, PXOV ER = 0.8, PMUT = 0.2,
RSEED = 1.2, DISBX = 2, DIMUT = 100.

The variables are ranges as mij-(0.0 to 0.5), Tj-(1 to 12) and Nj-(1 to 12).

8.6.2 Optimum Results
The expression (8.14) is evaluated using GA for different discounts policies with the above input data
and two sets of near-optimum solutions are presented in the Table-8.1. The total profit (8.14) is also
evaluated allowing a fixed discount on MRP and given in Table-8.2.
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Table 8.1: Near-optimum Results for Different Discount Process

disc sol scm am- ount comm- ission deteri- oration Selling price Dem- and no cycle total total total

ount set mem (per cent) of len fuzzy purch profit

pro ber 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd cycle gth space asing

cess item item item item item item item item item item (m) required cost

W 13780 10489 50 50 640.6 487.5 - - - - - - (19416.3

1 R1 1579.8 1352 10.08 7.07 69.2 60 44.96 46.47 332.3 284.3 2 4.65 242702.9, 606757 171440

AUD R2 4990.1 3649.2 46.63 22.42 237.5 173.7 26.69 38.79 1047.6 766.1 2 4.65 291243.5)

W 5703.6 11571 40 50 457.2 923.3 - - - - - - (138197.2,

2 R1 295.2 262.9 7.08 3.9 6.6 18 46.46 48.05 284.4 253.3 9 1.03 172746.5, 460384 185018

R2 323.7 1035.2 6.56 25.8 22.75 73.44 46.72 37.10 276.6 884.5 8 1.16 207295.8)

W 13907 10678 42 36.6 852.75 654.53 - - - - - - (196680.6,

1 R1 2590.4 2473 23.8 22.9 114 109.2 38.1 38.57 823.4 786 3 3.1 245850.7, 741701 142709

IQD R2 1761.1 868.1 19.2 6.49 85.3 42.2 40.43 46.76 558.9 275.5 3 3.1 295020.9)

W 11823 11400 38.85 38.1 845.5 800.1 - - - - - - (185780.8,

2 R1 939.7 1719.8 13.7 21.7 37.3 69.1 43.16 39.13 399.3 730.7 4 2.33 232226, 714451.9 130605

R2 1443.7 744.1 22.5 13.5 68.7 35.8 38.8 43.2 768.8 396.2 5 1.86 278671.2)

W 11823 11400 40.3 40.3 845.7 800.1 - - - - - - (185780.8,

IQD 1 R1 939.6 1719.8 13.7 21.7 37.6 68.7 43.2 39.1 399.2 39.1 4 2.33 232226, 693341 151716

in R2 1443.7 744.1 22.5 13.5 68.5 31.7 38.8 43.2 768.8 396.2 5 1.86 27871.2)

AUD W 10257 6217 40.3 40.2 544.3 373.2 - - - - - - (131792.1,

2 R1 475.6 591.2 2.6 9.02 21.9 27.2 48.7 45.5 253.3 591.2 5 1.86 164740.1, 492182 148391

R2 3667.3 1443.9 22.5 8.31 162.2 63.9 38.7 45.8 771.2 303.6 2 4.65 197688.2)

Table 8.2: Near-optimum Results for fixed Discount

scm am- ount comm- ission deteri- oration Selling price Dem- and no cycle total total total

mem (per cent) of len fuzzy purch profit

ber 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd cycle gth space asing

item item item item item item item item item item (m) required cost

W 12688 8817 7 30 30 658.8 - - - - - - (172048,

R1 720.4 1338.5 8.47 19.37 4.4 8.4 45.77 40.32 306.1 568.7 4 2.35 215060, 752709 20018

R2 4573.9 1463.1 29.3 8.5 218.8 70.2 35.35 45.73 960.1 307.1 2 4.65 258071)

8.7 Practical Implications and Application

A merchant in West Bengal, India sells food-grains- rice and wheat from two showrooms and allows
AUD discounts to the customers. For a period of 12 months. From customers’ point of view, following
data regarding different system parameters- selling price , demand are collected.
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8.7.1 Collected Data

Table 8.3: Data collected for selling price, Demand of Rice and Wheat

Low Medium High

s1j 15 22.1 20.8 20.7 22 20 23.8 25.1 23.2 25 23 26.2 28.1 28 26.8

Rice D11 398 481 354 200 480 800 542 639 668 548 738 871 766 600 854

D12 344 232 223 304 445 250 397 434 486 546 424 752 756 571 640

s2j 7 7.5 6.8 7.5 5.5 8.5 9.5 7.8 7.9 8.6 9 9.4 10 9.4 9

wheat D21 270 161 166 218 206 299 263 235 212 302 250 416 440 352 338

D22 310 421 435 153 347 668 494 477 632 573 850 655 715 652 705

Table 8.4: Data collected for per unit item fuzzy space, total fuzzy budget, total fuzzy space.

ã1 3.7 5.2 3.5 4.1 4

ã2 4.7 6.2 4.5 5.1 5

B̃ 352753 258594 449999 305613 252702

S̃ 117286 96085 92562 108949 103532

Using these data and using the method mentioned in section-2.1.6, ratio of left spread and right spread
(ξ) and the deviation(σ) of the fuzzy numbers from mode are calculated and the fuzzy numbers are
computed as follows.

Table 8.5: values of σ and ξ for different fuzzy numbers

Rice Wheat

selling - - selling - - ã1 ã2 B̃ S̃

price D11 D12 price D21 D22

Low σ 1.02 66.59 57.8 0.41 28.65 63.43

ξ 0.75 0.71 1.5 0.71 1.56 0.69

Medium σ 1.02 65.51 60.2 0.41 28.58 61.9 0.29 0.29 49744 6672

ξ 0.72 1.52 0.64 1.55 0.64 1.65 0.49 1.55 0.49 1.61

High σ 1.03 66.56 89.4 0.27 47 38.65

ξ 0.72 0.65 0.68 1.51 0.6 1.42
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For Rice

Selling Price: Low = (18, 21, 24), Med = (21, 24, 27), High = (24, 27, 30).

Demand:
D11 : Low = (239, 400, 627), Med = (400, 627, 777), High = (627, 777, 1000).
D12 : Low = (100, 300, 434), Med = (300, 434, 644), High = (434, 644, 962).

Per Unit Fuzzy Space: ã1 = (3, 4, 4.7).

For Wheat

Selling Price: Low = (6, 7, 8.4), Med = (7, 8.4, 9.3), High = (8.4, 9.3, 9.9).

Demand:
D21 : Low = (100, 200, 264), Med = (200, 264, 364), High = (264, 364, 530).
D22 : Low = (200, 350, 568), Med = (350, 568, 700), High = (568, 700, 793).

Per Unit Fuzzy Space : ã2 = (4, 5, 5.7).

Total Fuzzy Space : S̃ = (79797, 103202, 117773).

Total Fuzzy Budget : B̃ = (222994, 311497, 490720).

8.7.2 Other Inputs

Variable ranges: 0 ≤ mij ≤ 40, 1 ≤ Nj ≤ 12, 1 ≤ Tj ≤ 12 where i = 1, 2., j = 1, 2.
Commission with AUD:

Qwil = 5000.l, where l = 1, 2.

cwi =


20 if 0 < Qi < Qwi1
30 if Qwi1 ≤ Qi < Qwi2
40 if Qwi2 ≤ Qi <∞

pr1 = 30, pr2 = 10, θwi = 0.02, hwi = 0.1. surj = 300, εj = 0.1. hrij =
0.2, θrij = 0.01, trij = 50, Lrij = 500, where, i = 1, 2, j = 1, 2.
eta = 0.1, β = 0.01, mH = 12, σH = 0.9.

The result obtained using the above collected is given in Table-8.6.
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Table 8.6: Result obtained from collected data

scm amount comm sel. demand No. of cycle profit

mem (unit) (%) price($) (unit) cycle length

W 11694 8874 40 30 - - - - - -

R1 1326 694 12.2 12.4 26.34 8.76 439 230 4 2.98 44851.5

R2 2766 2743 19.65 12.09 24.1 8.79 451 447 2 5.96

8.8 Discussion
Results of Table-8.1 reveal that the system with AUD gives the maximum profit, than the systems with
IQD in AUD and IQD. Comparing the results of Tables-8.1 and -8.2, as per expectation, the system
with fixed discount (equal to the initial value of the AUD, IQD and IQD in AUD systems ) fetches
maximum profit, more than other systems. Some results of maximum profit, optimum quantities for
first and second items and random time period are graphically presented for different values of normal
variate εj and for the commission shared with the customers mij in Figs- 8.3, 8.4, 8.5, 8.6, 8.7 and
8.8 respectively. As the total time period is random, the fig-8.6 depicts that when εj = 0, the time
period is 12, equal to the mean value of the given normal distribution and decreases gradually with
the increase of εj . This is as per the usual expectation. The Figs- 8.3, 8.4, 8.5 give respectively the
variations of the maximum total profit and the optimum amounts for the first and second items.

Figure 8.3: Profit / Random Variate

In the present model, the wholesaler gets a commission from the suppliers on the items’ MRPs and
shares a part of this with the customers. In Fig-8.7 and Fig-8.8, the commission cwi and total profit
of the wholesaler are respectively plotted against the commission offered to the customers mij . Here,
the market demand depends on the selling price of the commodities i.e. on the commission enjoyed
by the customer by some fuzzy rules. From Fig-8.8, it is seen that wholesaler’s commission remains
constant when customers’ commission gradually increases from 1 to 5. This is for the following
reason.

As the selling price is a fuzzy quantity and depends on the commission offered to customers by
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Figure 8.4: Total Amount of 1st item / Random Variate

Figure 8.5: Total Amount of 2nd item / Random Variate

the relation (8.1), so during the evaluation of fuzzy rules for demand, values of the commission i.e.
mij within 1 to 5 generates the values of srij within 47.5 to 50 units with membership value 1
corresponding to high selling price and so the demand for the value of mij within 1 to 5 remains
constant which again leads to constant total procured quantity and thus the wholesaler receives the
constant commission from suppliers for the same quantity. The corresponding part of this explanation
on total profit is given in Fig-8.8. Here, though purchasing price remains constant, the selling price
gradually goes down by the relation (8.1) and hence the profit reduces linearly for mij within 1 to
5, when the value of mij gradually increases beyond 5, the selling price srij decreases gradually
and hence customers’ demand goes up. For higher demand, quantity of procured quantities are more
and hence the wholesaler enjoys the higher commission on MRP and as a result, the total profit also
increases. These phenomena are reflected in Fig-8.7 and -8.8.

From a real-life practical case study, data are collected from different surveys and corresponding
triangular fuzzy numbers are formed. With these numbers and fuzzy rules, the optimum profit is
calculated with AUD discount. In this case, demands at the showrooms are low-medium, for both
cases and at the 2nd showroom these demands are medium-high and low-medium for 1st and 2nd
items respectively.
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Figure 8.6: Total Time for R1 / Random Variate

Figure 8.7: Commission achieved by W / Commission given to the end customers

8.9 Conclusion
In this research, a realistic supply-chain/inventory model is depicted for a wholesaler with
showrooms at different places selling multi-seasonal products and allowing different systems of
discount on MRP, in which selling price and market demand are connected by fuzzy logic. Here, the
time period of business is random having a distribution with mean and standard deviation. For the
first time, randomness of the time horizon has been introduced in the from of a chance constraint and
implemented in a supply chain/inventory problem. This analysis will help the practitioners of
seasonal products such as fashionable goods, warm cloths, medicines, etc. A methodology is
presented to formulate the fuzzy data from some practical real-life survey data and this to solve the
model following fuzzy rules and discounts The formulation and analysis presented here are quite
general and can be extended to include different fuzzy logic relations connecting different
parameters such as demand, price and exhibited quantity, etc. fully or partially backlogged
shortages, fuzzy time period, etc.
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Figure 8.8: Profit / Commission given to the end customers
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Chapter 9

An EPQ Model for Deteriorating items
under Random Planning Horizon with
some Linguistic Relations between
Demand, Selling Price and Trade Credit,
Ordered Quantity1

9.1 Introduction
The concept of EPQ model with production center and sale counter together is to determine the
optimum produced quantity against the customers’ demand so that total cost involved in the system
is minimum. In this process, normally the production firm pays the supplier for the raw materials as
and when these are purchased. Now-a-days, with the advent of multi-national in the markets of
developing countries like India, Nepal, China, etc, competition between the traders / suppliers is
very stiff and they take up different promotional ventures / tools to push the sale. In real practice, a
supplier provides forward financing to the retailers i.e. offers credit period for payment to attract
more customers. In this systems, relaxed period for payment is given to the firm management if the
outstanding dues are paid within a given credit period. Here credit period is treated as a promotional
tool as it is one kind of price discount because paying later circuitously reduces the purchasing cost
and motivates the firms to increase the ordered quantity and to go for more production.

Goyal [92] firstly explored an EPQ model under the conditions of permissible delay in payment.
Chung et al. [62] derived the optimal pricing and ordering policy for an integrated inventory model
when trade credit is linked to order quantity. Then Chen and Ouyang [52] considered permissible
delay in payment in a fuzzy inventory model for deteriorating items. Chen et al. [54] developed an
EPQ model for deteriorating items with up-stream full credit and down-stream partial credit. These
models are developed under the assumption that suppliers offers a credit period to the wholesaler.
This policy is named as single level credit system where in two level credit system, retailer gets a

1This model has been published as a research paper in the journal of Mathematics and Informatics
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part of credit achieved by the wholesaler. Ho [109] presented integrated inventory model with price
and credit linked demand under two level trade credit system. In the last two decades, the inventory
models with trade credit have been widely studied by several researchers. Recently Das et al. [72]
developed an integrated production inventory model under interactive fuzzy trade credit policy.

Deterioration of units is one of the most crucial factor in inventory problems for deteriorating
items. Over the years, there are some investigations on inventory control / supply chain of
deteriorating items with permissible delay in payment. Aggarwal and Jaggi [2] and Chu et al. [59]
presented the ordering policies for deteriorating item with trade credit. Jamal et al. [120] allowed
shortages in the model of Aggarwal and Jaggi. Chang and Dye [42] allowed the partial backlogged
shortages with time dependent variation in deterioration rate in Jamal et al. model. A finite time
horizon with deterioration and monetary time-value was developed by Chang et al. [43]. Ouyang et
al. [194] developed two inventory models for deteriorating items with permissible delay in payment.
Some notable research papers of deteriorating items incorporating various types of assumptions are
due to Bhunia et al. [23], Sana [219], etc. Most of the above inventory models are developed with
constant deterioration. Recently Sarkar et al. [228] developed an integrated inventory model with
variable lead time, defective items and delay in payment.

In the existing literature, most of the inventory models are generally developed with the
assumption of infinite planning horizon.Jaggi and Khanna [117] highlights on a Supply chain model
for deteriorating items with stock-dependent consumption rate and shortages under inflation and
permissible delay in payment. Gurnani [99] pointed out that an infinite planning horizon is of rare
occurrence because with the passage of time, the inventory cost is likely to vary disproportionately,
product specifications may be changed, etc. Here it is assumed that for a long period in future, all the
assumptions of the model such as nature of demand, types of production, inventory cost, etc. will
remain valid. But there are many real-life situations where this assumption is not valid, i.e. the time
periods of seasonal / fashionable products are normally finite and these are of single period only.
Moreover, the demands of customers change with time, production process improves with the
improvement of technology over time, etc.

In decision making problems like inventory control systems being connected with the available
data / possible values of the system parameters can not be always specified exactly i.e.
deterministically. There are several reasons for that like lack of input information, multiple sources
of data, fluctuating nature of parameter values, noise in data, bad statistical analysis, etc. For
example, it is well known that demand of a commodity depends on its price. Now-a-days, in the
volatile market, the price changes very often and thus it is almost impossible to give an exact
mathematical relation between price and demand. Similar is the case with order quantity and credit
period though it is a fact that offered credit period varies with order amount. But, in the society,
these imprecise information / relations have been fairly communicated through human words such as
high, low, large, medium, small etc. Commonly these relations are expressed as IF premise
(antecedent) THEN conclusion (Consequent). These type of fuzzy relations are handled by fuzzy
inference technique. The commonly used fuzzy inference techniques are- Mamdani type [173] and
Takagi-Sugeno type. These two methods are differ in the way by which the output is calculated.
There are several research papers using fuzzy logic in different areas of investigation. Ban et al. [11]
discussed the stability of a simplest Takagi-Sugeno fuzzy control system. Recently Chakraborty et
al. [38] used Mamdani fuzzy inference technique to solved an inventory model of deteriorating
seasonal products with different price discounts.
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Among the optimization techniques for the models with fuzzy logic, the evolutionary techniques
are more useful. In the literature, There are several evolutionary methods such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), etc. Maiti and
Maiti [168] used simulated annealing (SA) and contractive mapping GA to solve a production
inventory model. Gupta et al. [98] used rank based selection process in a real coded GA for solving
an inventory model with interval valued inventory cost. Recently Chakraborty et al. [38] developed a
real coded GA to solve an inventory model of deteriorating multi-items with price discount and
variable demand defined by fuzzy inference under resource constraints.

To derive the relations between fuzzy parameters (such as demand and selling price) and to get the
membership function of their different fuzzy values it requires one’s sufficient experience about the
market. Normally, these values are expressed verbally by human languages and due to the
complexity of human language, it is difficult to derive the image idea from the above market data.
Again ideas about a fact vary from man to man. Chang [46] presented a methodology of
construction membership function for group opinion aggregation based on a gradation process.

In spite of the above developments, there are some inventory control problems yet to be
investigated such as till now, none has developed inventory models with trade credit defined with the
help of fuzzy inference which is more realistic.

The present model defers from the others for incorporating the following new ideas.

1. Normally, in the inventory models of trade credit, amount of trade credit is given deterministically
through a numerical value. A relation is presented by a mathematical expression in crisp way.
In practice, often this relation is expressed by ”words” linguistically. Here, for the first time,
linguistic relations between (price, demand) and (ordered quantity, credit period) are considered.

2. A new method of payment of dues of retailer to supplier is presented and a lemma is presented
which assures the validity of the new method. A comparative study has been done with the
conventional method.

3. The business period of the seasonal products are finite and varies every year. Thus the time period
of these products are assumed as random having a probability distribution.

4. The construction of membership function (MF) from the market / business data is very important
for the model with fuzzy inferences. Here, a methodology is presented for the construction of MF
from the marketing experts opinions.

5. GA is very appropriate for the models with fuzzy logic. Here a GA has been developed for this
purpose.

In this chapter an EPQ model is considered in which the business starts with shortage. The
manufacturer purchases raw material from the raw material supplier with delay in payment. The
trade credit offered by the raw material supplier depends on the amount of raw material purchased
through some fuzzy rules. After the end of offered credit period, the raw material supplier charges a
high rate of interest on the unpaid amount. So, at the end of credit period, the cash in hand is paid to
the supplier. Two methods are considered for the payment of the dues. Conventionally, dues are
cleared at the end of time period. The proposed new one is clear the dues when the gross earn
becomes equal to the rest unpaid amount with interest. The total raw material, required in a cycle
and the produced quantities both are stored upto a certain time and their deterioration are taken into
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account. It is also assumed that it requires δ (> 1) amount of raw material to produce a single
finished unit. An environment protection cost is added with the production cost in order to reduce
the carbon emission during production. Also some accessory costs due to production like laborer
cost, wear & tear cost are considered. The per unit item selling price is fixed by imposing a mark-up
on per unit item raw material cost and per unit time demand depends on the selling price. Also the
time horizon is taken as random which follows the random distribution with known mean and
standard deviation. Randomness of the cycle is removed using chance constraint technique. The
whole problem is formulated to maximize the profit of the manufacturer and a real coded GA
developed for this purpose. The model is illustrated numerically. For practical implication, raw data
for the model parameters are collected from a manufacturing firm in India and these are represented
as fuzzy numbers by constructing their membership functions. With these data, optimum inventory
policy is derived for maximum profit with fuzzy selling price, demand, trade credit and ordering
quantity. The difference between the conventional and new methods of clearing dues in graphically
presented. Some useful relations between model parameters are also graphically depicted. The rest
of the chapter arranged in the following manner.

The notations and assumptions for this model is given in section -9.2. The formulation of the
model and the effect of trade credit on it are represented in the sections -9.3, -9.4 and -9.5
respectively. The fuzzy relations used in the model are given in the section -9.6. Section -9.7 contain
some discussion about GA process and the optimum results with sensitivity analysis are made in
section -9.8. Some discussion about the model and the conclusion are made in sections -9.9, -9.10
respectively.

9.2 Notations and Assumptions

In the proposed model, the following notations and assumptions are used.

9.2.1 Notations

T length of each cycle.
t1 / t2 / t3 time from beginning of the cycle when production starts / the shortage

is fully back-logged / production end.
M length of credit period in each cycle.
Ĥ random time horizon which follows normal distribution with mean mĤ

and the standard deviation σĤ .
K per unit time rate of production.
D per unit time demand.
Qr (or, Qp) total purchased raw material (or, quantity produced) in a cycle.
Q1 (or, Q2) total amount of shortage (or, total amount of stock) in each cycle.
q(t) inventory position at any time t.
(r0) or RC (per unit item) or total raw material cost in a cycle.
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r1 laborer cost.
r2 wear & tear cost and α is a given real numbers with 0 ≤ α ≤ 1.
r3 environment protection cost.
p3( or, SC) per unit item (or, total) shortage cost.
hc1( or, HC) per unit item per unit time (or, total) holding cost.
S per unit item selling price.
ms mark-up imposed upon the per unit item raw material cost to fix up

selling price (S).
N (≥ 1) number of cycles.
ie(or, ip) percentage of interest earn (or, interest payed).
θr (or, θp) rate of deterioration of raw material (or, produced quantity).
x time from the starting of a cycle when the total due raw material

cost(DRC) is paid to the raw material supplier.
REm/REx/RET amount of revenue earned upto time t ≤M / t ≤ x / t ≤ T in a cycle.
IEm/IEx/IET amount of revenue earned upto time t ≤M / t ≤ x / t ≤ T in a cycle.
IPx (or, IPT ) interest have to pay on DRC at the time t = x (or, t = T ).
δ (> 1) rate of usefulness of raw material to produce finished goods.

9.2.2 Assumptions
i) In the proposed model it is considered that Demand depends on the selling price (i.e. mark-up)

and the length of credit period depends on total amount of raw material purchased following
some fuzzy rules.

ii) It is also considered in the model that the manufacturer does not gives any penalty for shortage
and the shortage amount is fully back-logged.

iii) It is assumed that x > M .

9.3 Formulation of the Model
In this model the business horizon Ĥ is considered as random which follows the normal distribution
with parameters (mĤ , σĤ) and in deterministic form the whole planning horizon is divided into N
cycles each of length T . Therefore, the chance constraint is given by

Prob(|NT − Ĥ| ≤ β) ≥ pr (9.1)

And according to the chance constraint method (section-3) it can be reduced as

mĤ − β − εσĤ ≤ NT ≤ mĤ + β − εσĤ (9.2)

where, pr = F (ε) =
1√
2Π

∫ ε

−∞
e−

t2

2 dt

In this business plain every cycle starts with shortage and ends with ending of stock. The
manufacturer starts production at time t = t1 from the starting of each cycle and at first shortage is
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Figure 9.1: Business planning

fully back-logged (in time t = t2) so the corresponding differential equation for each cycle is

dq(t)

dt
=

{
K −D − θpq(t) for, t2 ≤ t ≤ t3
−D − θpq(t) for, t3 ≤ t ≤ T

(9.3)

where, q(t) =


0 for, t = t2
Q2 for, t = t3
0 for, t = T

Also the total raw material (Qr) decreases due to deterioration (at a rate θr) and for production (at a
rate δ.K), so the corresponding differential equation is

dq(t)

dt
= −θrq(t)− δ.K, t2 ≤ t ≤ t3 (9.4)

where, q(t) =

{
Qr for, t = t1
0 for, t = t3

Now every cycle contains the following time intervals

9.3.1 Shortage Period [0 ≤ t ≤ t2]
As from the starting of each cycle the shortage continuously increases up-to t = t1 at demand rate
and the production starts at t = t1, so the total amount of shortage,

Q1 = t1.D

The shortage is fully back-logged with in the time t = t2 in a rate (K −D) so,

Q1 = (t2 − t1)(K −D).

therefore, t2 = t1 +
Q1

(K −D)

9.3.2 Period from end of Shortage to end of Production [t2 ≤ t ≤ t3]
In this case the corresponding differential equation is

dq(t)

dt
= K −D − θp.q(t)
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Now using the conditions of equation (9.3), the inventory position in this time interval and the total
amount of stock are reduced as follows

q(t) =
(K −D)

θp
[1− eθp(t−t2)] (9.5)

and Q2 =
(K −D)

θp
[1− eθp(t3−t2)] where, t2 ≤ t ≤ t3

therefore, t3 = t2 +
1

θp
log

(
K −D

K −D − θp.Q2

)
Solving the differential equation (9.4) and using the corresponding boundary conditions, the required
amount of required raw material in a cycle is reduced as

Qr =
δ.K

θr
[eθr(t3−t1) − 1]

Also the total produced amount is

Qp =
K

θr
log

(
1 +

Qrθr
δ.K

)

9.3.3 Period from end of Production to end of Cycle[t3 ≤ t ≤ T ]
In this case the differential equation is

dq(t)

dt
= −D − θpq(t)

and from this differential equation the following expressions for the inventory position for this time
interval and the length of the cycle are reduced using the conditions of equation (9.3)

q(t) = Q2.e
θp(t−t3) − D

θp
[1− eθp(t−t3)] (9.6)

T = t3 +
1

θp
log

(
1 +

θp.Q2

D

)
The costs arises in the model are given by the following-

9.3.4 Holding Cost
The manufacturer holds quantities from t = t2 to t = T in every cycle. So using the expressions
given by (9.5) and (9.6) the equation for total holding cost in cycle is reduced as follows

HC = hc1

[ ∫ t3

t2

q(t)dt +

∫ T

t3

q(t)dt

]
=

hc1

θp
[(K −D){(t3 − t2)− (1− e−θp(t3−t2))}+ (Q2 +

D

θp
){1− e−θp(T−t3)}

−D(T − t3)] (9.7)
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Figure 9.2: j-th cycle

9.3.5 Costs due to Production
There are many accessories cost exists rather than raw material cost (RC) . Some of them namely-
laborer cost, wear and tear cost and environment protection cost are considered in the proposed model
under the name other cost (OC), where per unit laborer cost is inversely proportional to the rate
of production, per unit wear and tear cost proportional to the rate of production and per unit item
environment protection cost proportion to the rate of production up-to a certain degree α where 0 ≤
α ≤ 1. Thus the total raw material in a cycle,

RC = Qr. r0 (9.8)

where r0 is the per unit item raw material cost. The other cost is

OC = (r1.k
−1 + r2.k + r3.k

α)Qp where, 0 ≤ α ≤ 1 (9.9)

9.3.6 Shortage Cost
As the total shortage amount is Q1 and p3 is per unit item shortage cost therefore per cycle shortage
cost

SC = Q1. p3 (9.10)

9.3.7 Set-up Cost
The set-up cost is considered in two part, 1st one is constant and the 2nd one is proportion to the total
quantity produced with a degree γ . Thus per cycle set-up cost is

SUC = su1 + su2.Q
γ where, 0 < γ < 1 (9.11)

9.3.8 Selling Price
A mark-up is imposed upon the per unit item raw material cost to fix the selling price. Therefore the
selling price

S = ms. r0 (9.12)

200
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9.4 Credit Period ( Case 1: t1 ≤ M ≤ T )
The raw material supplier takes interest on due payment in a rate ip% from the producer after given
some time gap of length M (credit period) from purchase and the producer earns some interest on
earned revenue at a rate ie%. So, in any cycle the revenue earned by the producer in between t = t1
to t = M is

REm = S.K(t2 − t1) + S.D(M − t2)

and the earned interest on REm

IEm = ie.S

∫ t2

t1

K(t2 − t)dt + ie.S

∫ M

t2

D(M − t)dt

=
ie.S

2
[K(t2 − t1)2 + D(M − t2)2]

Therefore after end credit period the due raw material cost(DRC) is

DRC = RC − (REm + IEm)

= p1.K.(t3 − t1) −
[
S.K.(t2 − t1)

{
1 +

ie.(t2 − t1)

2

}
+ S.D.(M − t2)×{

1 +
ie.(t2 − t1)

2

}]
(9.13)

9.4.1 A New Strategy of Due Payment
As the raw material supplier offers a strategy of payment by which the buyer can pay DRC [given
by (9.13)] at instant when earn is equal to DRC. Here x is the time from the starting of a cycle when
Producer pays total DRC therefore, earned revenue(REx), earned interest (IEx) and interest have to
pay (IPx) in between the time range t = M to t = x are

REx = S.D(x−M)

IEx = ie.S.D
(x−M)2

2
IPx = ip.DRC.(x−M)

Now according to the strategy of payment

REx + IEx = DRC + IPx

From this relation the following quadratic equation is reduced.

A.(x−M)2 + B.(x−M) + C = 0 (9.14)

where, A =
ie.S.D

2
, B = (S.D − ip.DRC), C = −DRC (9.15)

before finding the roots of the above quadratic equation a lemma relating to the problem circumstances
with the problem variables is proved below.
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Lemma

If ie, ip, DRC, S and D all are positive with ip > ie then the positive root of the quadratic equation

A.x2 + B.x + C = 0 where, A =
ie.S.D

2
, B = (S.D − ip.DRC), C = −DRC

is x =
−B +

√
B2 − 4AC

2A

Poof: Now,
√
B2 − 4AC = (S.D − ip.DRC)2 − 4.

ie.S.D

2
.(−DRC)

= {S.D − (ip − ie)(DRC)}2 + (DRC)2(2ip − ie)ie

As ip > ie > 0 therefore, B2 − 4AC > 0.
Also it is given that DRC > 0 therefore C < 0. Again since ie, S, D > 0 therefore A > 0. Hence√
B2 − 4AC > |B| and for any value of B (positive or negative) −B −

√
B2 − 4AC < 0 and

−B +
√
B2 − 4AC > 0 Hence the lemma.

As x > M , using the expressions (9.15) and the above lemma the solution of the equation (9.14) is

x = M +
−B +

√
B2 − 4AC

2A
(9.16)

After Full Payment of DRC [x ≤ t ≤ T ]

After payment of dRC earned revenue(RET ) and earned interest (IET ) on it are given by

RET = S.D.(T − x) (9.17)

IET = ie.S.D

∫ T

x
(T − t)dt

=
ie.S.D.(T − x)2

2
(9.18)

where, x is given by equation (9.16).

Objective Function

The whole time horizon is divided into N cycles of equal length, so the total profit(TP) is given by

TP = N(RET + IET − HC − OC − SC − SUC) (9.19)

Where RET , IET , HC, OC, SC and SUC are given by the equations (9.17), (9.18), (9.7), (9.9),
(9.10) and (9.11) respectively.
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9.4.2 Old Strategy of Due Payment
In this case payment of due raw material cost is paid at the end of cycle. Therefore, the interest have
to pay (IPT ) on DRC for the time range M to T is given by

IPT = ipDRC(T −M), where DRC is given by equation (9.13) (9.20)

Since the producer doesn’t pay any amount of cash during the time gap t=M to t=T, so he gets some
interest on the earned revenue. Thus the total earn in the time gap M to T (RET ) and interest earned
(IET ) in this time gap is given by,

RET = s.D(T −M) and (9.21)

IET = ie.s.D
(T −M)2

2
(9.22)

Objective Function

Thus the profit function in this case is given by

TP = N(RET + IET − DRC − IPT − HC − OC − SC − SUC) (9.23)

Where RET , IET , DRC, IPT , HC, OC, SC and SUC are given by the equations (9.21), (9.22),
(9.13), (9.20), (9.7), (9.9), (9.10) and (9.11) respectively.

9.5 Credit Period (Case-2: T ≤ M ≤ T + t1)
In this case it is considered that the raw material supplier offers that manufacturer may place the
payment at time before the placement of next order without any extra charge. As the manufacturer
can earn interest on unpaid raw material cost as much as possible, so the earned revenue (REm) and
earned interest on REm are given by the following.

REm = SK(t2 − t1) + SD(T − t2) (9.24)

IEm = ieS

{∫ t2

t1

K(t2 − t)dt+

∫ T

t2

D(T − t)dt+K(t2 − t1)(M − t2)

+D(T − t2)(M − T )

}
= ieS

[
1

2
{K(t2 − t1)2 +D(T − t2)2}+K(t2 − t1)(M − t2)

+D(T − t2)(M − T )

]
(9.25)

9.5.1 Objective Function
Thus in this case the total profit(TP)

TP = N(REm + IEm −RC −HC − SC −OC − SUC) (9.26)

Where REm, IEm, HC, RC, OC, SC and SUC are given by the equations (9.24), (9.25), (9.7),
(9.8), (9.9), (9.10) and (9.11) respectively.
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9.6 Fuzzy Rules used in the Model
The linguistic values considered for the problem variables selling price (S) and demand (D) are
Low, Medium and High. Also the The linguistic values considered for the problem variables raw
material (Qr) and credit period (M ) are Small, Medium and Large. All the linguistic values
Low (or, Small), Medium, High (or, Large) are handled by taking them as triangular fuzzy
number of the from (l,m, u).

The model parameter demand (D) depends on the selling price (S) by the following fuzzy rules-
R-1: If (S is Low ) Then (D is High).
R-2: If (S is Medium) Then (D is Medium).
R-3: If (S is High) Then (D is Low).

Also the length of credit period (M ) is depend on the purchased amount of raw material (Qr) by
the following fuzzy rules-
R-4: If (Qr is Small ) Then (M is Small).
R-5: If (Qr is Medium) Then (M is Medium).
R-6: If (Qr is Large) Then (M is Large).

9.7 Solution Methodology: A Routine Framework for GA
The problem considered in this discussion is solved using heuristic search method Genetic
Algorithm (GA). A brief discussion about GA are given in the sections-2.2.4 and -7.5. At the
beginning of the GA module, the different parameters of GA i.e. generation number (MAXGEN),
population size (POPSIZE), probability of cross-over (PXOVER), probability of mutation (PMUT),
random seed (RSEED), distribution index for SBX (DISBX) and for mutation (DIMUT) and the
others have to be supplied. As there is no clear indication as to how large a population should be,
here with POPSIZE = no of variables× 10, the expected result is obtained. Here a combination
of real and natural number representation is used to structure a chromosome, where a chromosome is
a string of genes which are specified by the decision variables of the problem namely- length of the
shortage period (t1), mark-up (ms) to fix up the selling price, Production rate (K), maximum
amount of stock (Q2) and the no. of cycles taken by the manufacturer (N ). The variable boundaries
may be fixed or flexible. The fitness function is the profit function (TP ) defined by the
manufacturer. An overall process of GA is given by the following algorithm.
Algorithm for the proposed GA

Step 1: Population initialization:-Initializes the zero-th population.

Step 2: Run function Model (see Appendix-1)- Calculates the values of different model parameters
for 0-th population.

Step 3: Set gen=0.

Step 4: Check if (gen < Maxgen), then{
Run Selection operator→ Run Crossover operator → Run Mutation operator.

Create new population→ Run Function Model.
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if (all the constraints are satisfied) then,

{ print the result for the current generation.

set, gen = gen+1.

repeat step 4 }.

else repeat step 4
}

.
else Stop.

9.8 Numerical Experiment: Illustration with practical
Data

A rice mill, Mahabir Rice Mill Company in Midnapore, West Bengal, India produces rice from raw
paddy and sale to the retailers. Here, both the raw paddy and produced rice deteriorate and normally
season oriented. The data from the said mill are collected and given below. For the construction of
fuzzy MF, the opinions of experts / business managers in this field are taken into account.

9.8.1 Input Data

Crisp Data: ωr = 0.01, ωp = 0.005, δ = 1.1, r0 = 10, p3 = 2, hc1 = 0.15, r1 = 0.5, r2 =
0.005, r3 = 0.5, su1 = 5, su2 = 2.5, γ = 0.01, α = 0.4, ie = 0.08, ip = 0.12, β = 0.01, mh =
48, σ = 0.16, ε = 1.3.
Raw and Fuzzy Data: The raw data are collected from the market ( expert’s opinion ) considering
that the demand depends on selling price and credit period depends on total purchased amount of
raw material. The data regarding the parameters (selling price, demand etc.) are given by the
Table-9.1 and arranged maintaining the relations. The triangular fuzzy numbers Low (or, Small),
Medium, High (or, Large) which are constructed from the collected raw data are given in the
Table-9.1 and the membership functions are depicted in the Figures-9.3, -9.4.

GA Parameters: POPSIZE=50 MAXGEN=200, PXOVER=0.8, PMUT=0.2, RSEED=1.2,
DISBX=2, DIMUT=100, t1-(0.0 to 4), ms-(1.6 to 2.3), K-(120 to 240), Q2-(0 to 500) and N -(1 to
24).
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Figure 9.3: Membership functions of Selling price and Demand

Table 9.1: Collected raw data and the corresponding fuzzy numbers

name of name of
linguistic raw data from which fuzzy fuzzy range of fuzzy

fuzzy number is made number number
variable

Selling Price 14.1 14.6 6.3 13.7 18.9 Low (8, 14, 17)
Demand 147 154 97 122 146 High (90, 130, 150)

Selling Price 22.8 16 17.3 17.3 16.2 Medium (14, 17, 20)
demand 79 104 57 104 71 Medium (50, 90, 130)

Selling Price 17.7 18.7 19.9 19 28.2 High (17, 20, 25)
demand 50 81 64 33 50 Low (0, 50, 90)

Total Quantity 627 571 1034 403 271 Small (0, 550, 895)
Credit period 8 8 9.6 5.1 1.9 Small (0, 7, 10)
Total Quantity 1187 168 882 871 1014 Medium (550, 895, 1421)
Credit Period 10.4 10.6 8.7 9.6 15.8 Medium (7, 10, 13)
Total Quantity 520 1692 1350 1386 1677 Large (895, 1421, 2166)
Credit Period 22.8 11.9 13 12 10.9 Large (10, 13, 20)
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9.8. NUMERICAL EXPERIMENT: ILLUSTRATION WITH PRACTICAL DATA

Figure 9.4: Membership functions of Total purchased raw material and Credit period

9.8.2 Optimum Result

Table 9.2: Result Obtained using new methodology for the collected data

problem case-1 case-2 case-3 case-4 problem case-1 case-2 case-3 case-4
variable variable
ms 1.9 1.857 1.884 1.752 Qr 559 635 738 1051

t1 3.186 1.79 2.032 5.414 Qd 498 563 652 929

t2 4.835 2.781 2.719 5.414 Qp 500 568 661 935

t3 6.458 5.222 5.092 7.78 RC 5592 6353 7383 10507
($)

T 9.56 9.557 11.95 11.95 SC 332 211 222 540
($)

M 4.379 5.126 6.345 12.789 HC 58 131 263 160
($)

x 5.396 5.48 6.579 – OC 647 770 1064 1510
($)

N 5 5 4 4 SUC 35 37 39 44
($)

D 52 59 55 78 RDP 934 376 236 -
($)

K 153 165 216 217 RET 4122 4464 5524 16285
($) (REM )

Q1 166 106 111 270 IET 687 728 1187 7863
($) (IEM )

Q2 163 258 381 328 profit 18686 20221 20498 45548
($)
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Table 9.3: Result obtained using old methodology for the collected data

problem case-1 case-2 case-3 case-4 problem case-1 case-2 case-3 case-4
variable variable

ms 1.9 1.857 1.884 1.752 Qd 498 563 652 929

t1 3.186 1.79 2.032 5.414 Qp 500 568 661 935

t2 4.835 2.781 2.719 5.414 RC 5592 6353 7383 10507
($)

t3 6.458 5.222 5.092 7.78 SC 332 211 222 540
($)

T 9.56 9.558 11.95 11.95 HC 58 131 263 160
($)

M 4.379 5.127 6.345 12.789 OC 647 770 1064 1510
($)

N 5 5 4 4 SUC 35 37 39 44
($)

D 52 59 55 78 RDP 934 376 236 -
($)

K 153 165 216 217 IPT 581 200 159 –
($)

Q1 166 106 111 270 RET 5129 4851 5765 16285
($) (REM )

Q2 163 258 381 328 IET 1063 860 1293 7863
($) (IEM )

Qr 559 635 738 1051 profit 18030 19931 20302 45548
($)

9.9 Discussion
In the numerical experiment, some real life data are collected from a firm and presented in Table-
9.1. Following the method in section-2.1.6, the membership functions for the different parameters are
drawn and presented in Figs. -9.3, -9.4. From these data it can be easily verified that the relations
between demand is inversely proportional to selling price and purchased amount of raw material is
proportional to credit period which support the rules given in section-9.6.

Optimum results given in Table-9.2 obtained using the new methodology of payment gives more
profit than the results given in Table-9.3 obtained using the old payment policy in all cases. Also
larger credit period gives more profit and from the results given in the Tables -9.2 and -9.3, it can be
seen that the profit increases in the cases (t1 ≤ M ≤ t2, t2 ≤ M ≤ t3, t3 ≤ M ≤ T andT ≤
M ≤ T + t1 ) in an ascending order of the time intervals of M. This is as per expectation. For new
method of payment, it is considered that the time of payment of due cost (x) is always greater than
the credit period (M). As a result increment in M reduces the gap between the time of payment for
the new method (x) and the old method (T). Also the difference of profit in these results decreases as
the credit period M becomes larger which is reflected in Fig.9.5(a).
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Figure 9.5: (a): Length of credit period(M) / Difference Between Profit obtained using old
method(PT) and new method(PX), (b): Length of credit period / Total raw material amount.

From Tables-9.2 and -9.3 it can be seen that the purchased raw material amount (Qr) increases with
credit period (M). This is the effect of fuzzy relations (R4−R6) which is also reflected in Fig.9.5(b).
In this figure the curve of Qr remains unchanged for each value of the M less than 7 as each value of
credit period less than 7 takes a membership value 1 (c.f. Fig. 9.4), to the fuzzy number ”Small” and
therefore the rule strength of the rule R4 (c.f. section-9.7) becomes 1. For this the purchased amount
of raw material (Qr) gets a constant value. Then for the next values of credit period (> 7) the amount
of raw material increases as per expectation.

Figs.9.6(a) and 9.6(b) depict the variation in profit and demand with respect to the change in mark-
up because the selling price is fixed by imposing a mark-up to a fixed number [given by (9.12)], so the
change in selling price will make a same impression as the change in mark-up. Here, with the values
of selling price S(i.e.ms), the demand (D) changes inversely as per the relations (R1 −R3). This is
also depicted in Fig.9.6(a). In this figure, demand decreases as selling price (i.e. mark-up) increases
and when selling price takes the value 21 (i.e. ms = 2.1), the demand becomes constant as value
of the fuzzy membership function for mark-up becomes 1 to the fuzzy number ”High” (according to
Fig.9.3 mark-up takes a constant membership value 1 in the range 2 - 2.5). This is also reflected in
the Fig.9.6(b).

In the optimum results, profit decreases as mark-up increases. Normally, profit linearly related to
mark-up and demand. It increases with the increase of selling price (i.e. mark-up) and / or demand.
Here, with the fuzzy rules (R1 − R3), demand decreases with selling price (i.e. mark-up). Thus
selling price increases the profit and at the same time, decreases the demand which, in turn decreases
the profit. On the profit, there is mixed effect due to selling price (i.e. mark-up) and demand. From
Fig.9.6(a), it is seen that the effect of demand on profit dominates over the effect of mark-up (selling
price) and for this reason, as mark-up (selling price) increases, profit decreases along with demand
and for the value of ms=2.1 (S=21), as demand becomes constant, there is only effect of mark-up
(selling price) on profit and as a result, profit increases with mark-up.
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Figure 9.6: (a): Mark-up(ms) / Profit, (b): Mark-up / Demand.

9.10 Conclusion
In this investigation, a practical problem for the inventory control system with trade credit is
considered with some fuzzy relations between the decision variables and solved. For the first time.
the membership functions for the parameters of the fuzzy relations, are formulated from some
collected practical data and using fuzzy inference at two stage, optimum profits are determined and
presented in Tabular and graphical form. A new method for repayment of dues is presented and
compared with the conventional method. Here, fuzzy relations with single input and output have
been used. Other forms of fuzzy relations can also be used. The model can be extended to include
the promotional cost, profit sharing etc. among the supply chain partners.
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Chapter 10

Summary and Future Extension

10.1 Summary of the Thesis
In this thesis, total seven virgin inventory /production-inventory models, of which one is in crisp,
three in random / fuzzy-random and three in fuzzy environments are formulated and solved.

• The models are formulated with linguistic relations, in-control and out-control states, advanced
payment, trade credit policy, inflation of money and many more criteria which are visible in
recent management system.

• The models are developed for different types of demands like stock dependent demand, time
dependent demand, price dependent demand, credit period dependent dynamic demand and
fuzzy demand.

• The models are transformed to deterministic ones by using method of Fuzzy Inference, Possi-
bility, Necessity, Credibility measures, method of chance constraint, etc.

• For the solution of single and multi-objective models with/without constraints, different opti-
mization techniques such as Genetic Algorithm (GA), Multi-objective GA (MOGA), General-
ized Reduced Gradient method (GRG) etc. are developed / modified and used. The appropri-
ate solution methods are developed for different models.

• The models are illustrated with appropriate numerical examples and the optimum results are
presented numerically and graphically. Moreover, the obtained results are discussed as
managerial insights.

• In practice, all available past data / experts’ opinions are deterministic. An appropriate method
is presented in the thesis to formulate fuzzy membership functions from available crisp data /
experts’ opinions.

• Several inventory / production-inventory models for seasonal products with random business
periods, imprecise resource constraints, conditional trade credit, etc. have been developed and
solved.
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10.2 Future Extension
• Each model presented in the thesis can be extended to include realistic features of inventory /

production-inventory systems. The presented models can also be formulated in other types of
uncertain environments, such as: rough, fuzzy-rough, rough-fuzzy, bi-random, bi-fuzzy, etc.

• In the inventory models only some specific types of resource constraints are used as random,
fuzzy etc. The limited resource can also be taken as intuitionstic fuzzy, type-2 fuzzy, etc.

• There are various optimization techniques such as Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), Geometric Programming (GP), etc which are not applied to the
models in this dissertation. So, these methods can be developed for the present models, if
possible and applied for optimal solutions.

• For the models with fuzzy inferences, only Mamdani’s method has been used. Other inference
methods (such as, Sugeno type) can also be used to handle fuzzy relations by changing the
models appropriately.

• Here, one method for formation of fuzzy membership function from raw crisp data has been
presented. Other appropriate methods can also be developed for this purpose.

• In the thesis, two supply-chain models are developed with two level trade credit period. For
the supplier-wholesaler-retailer supply chain, three level trad credit period can be conceived
and applied.

Therefore, there is a huge scope to extend the research works presented in this thesis.
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a b s t r a c t

An inventory model of deteriorating seasonal products with Maximum Retail Price (MRP) for a whole-

saler having showrooms at different places under a single management system is considered under ran-

dom business periods with fuzzy resource constraints. The wholesaler replenishes the products

instantaneously and earns commissions on MRP which vary with the ordered quantities following All

Unit Discount (AUD), Incremental Quantity Discount (IQD) or IQD in AUD policy. Demand at showrooms

are imprecise and related to selling prices by ‘verbal words’ following fuzzy logic. The wholesaler shares a

part of commission with customers. The business periods follows normal distribution and converted to

deterministic ones through chance constraint technique. The fuzzy space and budget constraints and

fuzzy relations are defuzzified using possibility measures, surprise function and Mumdani fuzzy infer-

ence technique. The model is formulated as profit maximization for the wholesaler and solved using a

real coded Genetic Algorithm (GA) and illustrated through some numerical examples and some sensitiv-

ity analysis. A real-life problem of a developing country is presented, solved using the above mentioned

procedures and an appropriate inventory policy is suggested.

Ó 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the existing literature of inventory, most of the models are

developed under infinite time horizon. As per Gurnani (1985), the

life of a particular item is not infinite due to the change of design,

technological development, variation of inventory costs, customers’

changing taste, etc. and this is verymuch true for the seasonal prod-

ucts in developing countries where preserving facilities are not

available in plenty. For these seasonal products, even though the

planning horizon is assumed as finite, in every season it fluctuates

depending on some extraneous factors such as climatic conditions.

This time period may be assumed to be random with a probability

distribution. In the literatureMaiti, Maiti, andMaiti (2006) and Roy,

Pal, and Maiti (2009) have solved some inventory problems with

random planning horizon having exponential distribution. Also

Moon and Lee (2000) have presented an EOQmodel under inflation

and discounting with a random product life cycle.

In an inventory system, deterioration is an usual phenomenon.

Mandal and Phaujdar (1989) presented an inventory model with

deteriorating items. Roy, Maiti, Kar, and Maiti (2009) have done a

research work of deteriorating items with stock dependent

demand over random planning horizon. Also Bhunia and Maiti

(1997) and Mahapatra and Maiti (2006) presented some inventory

models for deteriorating items with time dependent demand and

imprecise production time respectively.

In the present competitive market, the demand depends on the

stock directly and also inversely on the selling price. Recently Wid-

yadana, Cardenas-Barron, and Wee (2011) presented a deteriorat-

ing inventory problem with constant demand via a simplified

approach. Also Giri, Pal, Goswami, and Chaudhuri (1996), Mandal

and Maiti (2000) and others considered the demand as an indexed

stock (i.e. D = dqb, d and b are constants) dependent. But there are

few research works with fuzzy demand depending on stock and

selling price following fuzzy inference. Recently, some inventory

models with rework for the defective products (Jamal, Sarker, &

Mondal, 2004; Cardenas-Barron, 2007, 2008, 2009a, 2009b; Sarker,

Jamal, & Mondal, 2008; Cardenas-Barron, Trevino-Garza, & Wee,

2012) have been presented in the literature.

Human knowledge is often represented imprecisely, vaguely

and approximately. In our real life, some vague terms in the form

of ‘words’ such as high, medium, and low, are used. The target of

fuzzy inference process is to form it into natural language expres-

sions of the type,

IF premise ðantecedentÞ THEN conclusion ðconsequentÞ:

There are two types of fuzzy inference systems: Mamdani-type

(Mamdani & Assilina, 1975) and Sugeno-type (Ban, Gao, Huang, &

Yin, 2007). These two types differ in the way by which output is

determined. Mamdani’s effort was based on Bellman and Zadeh’s
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Abstract. In this paper, an environment friendly Economic Production Quantity (EPQ) 
model of a single item is considered in which the business in each cycle starts with shortage 
and ends with the end of stock. The whole problem is formulated to maximize profit of the 
manufacturer with random business period and the randomness is removed by chance 
constrained method. This model involves selling price dependent demand and purchased 
raw material dependent credit period which are described by two sets of linguistic relations 
under fuzzy logic. In addition, a new method of payment of due raw material cost (DRC) 
(DRC is paid as soon as it can possible) is prescribed with supported lemma and a 
comparative study has been done between the new method of payment and the old method 
of payment (DRC is paid at the end of cycle). The model is optimized by a real coded 
genetic algorithm (GA) developed for this purpose with tournament selection, arithmetic 
crossover and polynomial mutation. The model is illustrated with different sets of 
numerical examples for different scenarios. A practical application has also been 
demonstrated with real world data. Some sensitivity analysis are presented graphically.  

Keywords:  Fuzzy logic; genetic algorithm; construction of membership function; delay in 
payment; chance constrained technique 

AMS Mathematics Subject Classification (2010): 90B05 

1. Introduction 
The concept of EPQ model with production center and sale counter together is to determine 
the optimum produced quantity against the customers’ demand so that total cost involved 
in the system is minimum. In this process, normally the production firm pays the supplier 
for the raw materials as and when these are purchased. Now-a-days, with the advent of 
multi-national in the markets of developing countries like India, Nepal, China, etc, 
competition between the traders / suppliers is very stiff and they take up different 
promotional ventures / tools to push the sale. In real practice, a supplier provides forward 
financing to the retailers i.e. offers credit period for payment to attract more customers. In 
this systems, relaxed period for payment is given to the firm management if the outstanding 
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