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1 Introduction

1.1 Abstract

The dissertation contains several recent studies on production policies and inventory con-

trols, which is entitled as ”MODELLING OF SOME PROBLEMS ON PRODUCTION

PLANNING AND INVENTORY MANAGEMENT”. The major issues of recent research

is the products nature live when it can be deteriorated, when it can be used fully, when

deterioration rate is random or when the products have fixed lifetime. These problems are

solved by this research studies. Along with the product’s nature, the optimal buffer inven-

tory, replenishment rate, imperfect production and inspection errors during the shipment

of production system from in-control-state to out-of-control state are efficiently studied

by this research studies. The dissertation consists of six different studies on products pro-

duced by production system. The first model describes about two-warehouse inventory

model with increasing demand where the deterioration rate is assumed as time-varying.

The second model extends the idea of first model with probabilistic deterioration with

inflation. The third model develops the optimal replenishment rate with variable deteri-

oration where the products have fixed-lifetime. The fourth model extends the previous

idea of deterioration with flexible setup cost. The fifth model develops the preventive

maintenance and buffer inventory policy in a deteriorating production system. The sixth

model considers an imperfects production system with inspection error when the system

moves from in-control state to out-of-control state.

1.2 Literature review

The main aim of any company is to meet demand on time and for this purpose the com-

pany has to keep inventory in their own warehouse (OW). As we all know, the capacity of

any warehouse is limited. In many practical situations there exist various factors (like price
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discounts for bulk purchases or if the items are seasonal product) under consideration that

induce the decision maker of the inventory system to order more goods than can be stored

in his warehouse. In this case, company will either rent (RW) other warehouse or rebuild a

new warehouse. They usually choose RW because it is more economical for any manufac-

turing system. The company generally wants more profit with the help of production of

different types of items which may keep in OW or RW. They use inventory management to

get more profit. The basic two-warehouse inventory model was first introduced by Hartley

(1976). In this direction, Sarma (1983) developed the inventory model with two levels

of storage and optimum release rule. Murdeshwas and Sathe (1985) extended the model

of Sarma (1983) with the production of non-perishable items. By considering constant

demand, Sarma (1987) developed an inventory model with deterioration, shortage and

two levels of storage. An EOQ models with two levels of storage was discussed by Dave

(1988). By considering different stage production system, many researchers considered

inventory models for deteriorating items. The term, deterioration is defined as damage,

spoilage, dryness of an item. Research, in the field of deterioration began with the work

of Whitin (1957) where he considered fashion goods deterioration at the end of a pre-

scribed storage period. Deteriorating items with linear trend in demand was formulated

by Chakraborty and Choudhuri (1997). Many researchers like Giri and Chaudhuri (1997),

Hariga (1996), Khanra and Choudhuri (2003), Ghosh and Chaudhuri (2006) and others

discussed about deterioration and different types of demand. Cárdenas -Barrón (2007)

discussed a technical note on optimal manufacturing batch size with rework process at

single-stage production system. Cárdenas -Barrón (2008) developed a simple derivation

on optimal manufacturing batch size with rework in a single-stage production system.

Furthermore, Cárdenas-Barrón (2009a) investigated the economic production quantity

with rework process at a single stage manufacturing system with planned backorders.

Sarkar (2012b) investigated an EOQ (Economic Order Quantity) model with delay-in-

payments and time-varying deterioration rate. Pakkala and Acharya (1992) formulated a
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two-warehouse inventory model for deteriorating items with finite replenishment rate and

shortage. Goswami and Chaudhuri (1992) found out a two-warehouse inventory model

with linear trend in demand and shortage. Benkherouf (1997) proposed two-warehouse

model with deterioration and continuously release pattern. Cárdenas -Barrón(2009b) an-

alyzed a model on optimal batch sizing in a multi-stage production system with rework

consideration.

Classical inventory model considers the demand rate as either constant, time- dependent

or stock dependent demand instead of constant demand. However it is observed that

the demand rate of electronic goods (e.g., hard disk, RAM, processer, mobile, etc.), new

brand of consumer goods comes to the market, seasonal products (fruits, e.g., mango,

orange, etc.,) increases linearly at the beginning up to a certain moment as time increases

and then stabilizes to a constant rate until the end of the inventory cycle. To represent

such type of demand pattern the term ramp-type is used. Wu et al. (2001) discussed an

inventory model for deteriorating items with a ramp-type demand under stock-dependent

consumption rate. A similar type model with partial backlogging was considered by Skouri

et al. (2009). Several researchers have examined the inflationary effect on the inventory

policy. Jaggi et al. (2006) considered a deteriorating inventory model under inflation

induced demand over a finite planning horizon. Sarkar et al. (2012b, 2012c) developed

two inventory models for imperfect production with inflation and time value of money.

Wee (1997) formulated an optimal replenishment policy for deteriorating items with a

linear price-function of demand.

A Supply chain management (SCM) involves the movement and storage of raw materi-

als and finished goods from point of origin to point of consumption. SCM obtains its

importance in global market and network economy as organizations rely increasingly on

effective supply chains or networks. Recently, Cárdenas -Barrón and Treviño-Garza(2014)

developed an excellent model for an optimal solution to a three echelon supply chain net-

work. Chung et al. (2014) discussed an inventory model with non-instantaneous receipt
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and exponentially deteriorating items for an integrated three layer supply chain system

under two levels of trade credit policy. Taleizadeh and Cárdenas -Barrón (2013) devel-

oped a met heuristic algorithm for supply chain management problems. Yan et al. (2011)

extended the SCM model with a constant deterioration rate from Kim and Ha’s (2002)

model. Widyadana and Wee (2011) developed an EPQ model for deteriorating items with

preventive maintenance policy and random machine breakdown. Teng et al. (2011) ex-

tended an EOQ model for buyer-distributor-vendor supply chain with backlogging without

derivatives. Chung and Cárdenas -Barrón (2012) found out a complete solution procedure

for the EOQ and EPQ inventory models with linear and fixed backorder costs. In real life

situation, due to long run process, the manufacturing system shifts from in-control to out-

of-control state, and then the manufacturing system produces perfect as well as imperfect

(defective) quality items. This defective items may be reworked at a cost or sold at reduce

price. Jamal et al. (2004) developed an inventory model with optimum batch quantity in

a single-stage system in which rework was done by addressing two different operational

policies to minimize the total system cost. A production-inventory model to determine

the optimal product reliability and production rate that achieves the biggest total in-

tegrated profit for an imperfect manufacturing process was developed by Sana (2010a).

Sana (2010b) presented an EPL (Economic Production Lotsize) model in an imperfect

production system in which the manufacturing process may shift from an in-control state

to an out-of-control state at any random time. Many researchers have investigated pro-

duction models with unreliable machines. Rosenblatt and Lee (1986) initially studied the

effects of process deterioration on the traditional (EMQ) model. In their model, they

considered that the elapsed time to the out-of-control state is exponentially distributed

and concluded that the presence of defective products generates smaller lot sizes than

that of the classical (EPQ) inventory model. Porteus (1986) discussed an imperfect pro-

duction process with significant relationship between quality and lot size and evaluated

an optimal investment in process-quality improvement and setup cost reduction. Harriga
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and Ben-Daya (1998) extended Rosenblatt and Lee’s (1986) model by assuming a more

generalized assumption that an elapsed time, until process shift, is arbitrarily distributed,

and provided distribution-based and distribution-free bounds on the optimal cost.

Full inspection policy results higher inspection cost and higher expected total cost. To

reduce the inspection cost, Wang (2005) developed an inspection policy, where inspection

was performed at the end of the production run. Using the same concept, Wang and

Meng (2009) developed another model with online inspection policy of products. Hu and

Zong (2009) proposed an extended product inspection policy for a deteriorating produc-

tion system, where the product inspections are performed in the middle of a production

cycle. There are many situations where the organization may have more than one objec-

tive functions to optimize. To solve this type of problem, Duffuaa and El-Ga’aly (2013)

developed a multi-objective inventory model using 100% error-free inspection as a means

of product control. Sarkar (2016) considered a supply chain coordination model with

three-stage inspection to ensure perfect quality products where the products has special

features as fixed lifetime.

5



Notation

H total planning horizon

n number of production cycles during the entire horizon H

d demand rate of product (units per unit time)

p constant production rate, where p > d

TC total system cost during planning horizon

ψ probabilistic deterioration rate

δ(t) backlogging rate

s selling-price per unit

Co ordering cost per order

Ch unit inventory holding cost per unit time

Cp purchasing cost per unit purchase/production cost per unit product

Cb backorder cost per unit backorder

Cl lost sell cost per unit

Cd deterioration cost

Sc shortage cost

Mc preventive maintenance cost

Cw warranty cost

Cs salvaged cost
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Cr rework cost

Cm variable cost (labor cost, energy cost)

µ parameter of the ramp-type demand function (break point)

I(t) on-hand inventory level at time t

t1 length of time in which the inventory level falls to zero

T production run time/ length of each ordering cycle

Q order quantity per cycle (units)/production lot size per batch-cycle (units)

α(t) time-dependent deterioration rate

α constant deterioration rate

q delivery lot size (units)

N number of deliveries per production-batch, N ≥ 1

R reliability parameter

S total shortage amount

So initial setup cost for a production batch

S1 variable setup cost for production batch

Ab area under the buyer’s inventory level

As area under the supplier’s inventory level

HCs holding cost for the supplier

HCb holding cost for the buyer
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Vc unit variable cost for order handling and receiving

tp production time duration for the supplier

tn non-production time duration for the supplier

td duration between the two successive deliveries

X time after which the production process shifts in-control to out-of-control state

(random variable)

m1 probability of Type I error (random variable)

m2 probability of Type II error (random variable)

τ preventive maintenance time (random variable)

g(x) probability density function of X

G(x) distribution function of X

G(x) survival function of X, i.e., G(x) = 1−G(x)

g(m1) probability density function of m1

g(m2) probability density function of m2

g(τ) probability density function of τ

θ1 percentage of defective items when the production process is in the in-control

state

θ2 percentage of defective items when the production process is in the out-of-control

state.

Mc material cost
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r system restoration cost

η system inspection cost

Ic product inspection cost

B buffer inventory

CA cost of falsely accepted defective item

CR cost of falsely rejected non-defective item
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2 Chapter 1

A two-warehouse inventory model with increasing demand and time varying

deterioration

Abstract

In this chapter, an inventory model of two-warehouse is considered with quadratically

increasing demand and time varying deterioration. Comparing to the existing literature,

the model is derived with finite replenishment rate and unequal length of the time cycle.

The associated cost of the system is minimized. A numerical example, the graphical

representation and sensitivity analysis are provided to illustrate the model.

2.1 Notation and assumptions

To derive the model, following notation, and assumptions are used.

Notation

f(t) a + bt + ct2 (a, b, c > 0) with 0 < f(t) < p, Here a is initial rate of demand, b is

the rate with which the demand rate increases. The rate of change in the demand

itself increases at a rate c

α(t) 1
1+R1−t= deteriorating rate of inventory items in OW, where R1 is the maximum life

time of an item in OW i.e., R1 is always greater than or equal to t, thus, α(t) > 0

β(t) 1
1+R2−t=deteriorating rate of inventory items in RW, where R2 is the maximum life

time of an item in RW i.e., R2 is always greater than or equal to t, thus, β(t) > 0

ω the storage capacity of OW

P1 a class of production cycle when only OW is used

P2 a class of production cycle when both OW and RW are used
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ti0 the time at the beginning of the ith production cycle belonging to P2

ti1 the time at which the inventory in OW first reaches ω units

ti2 the time at the end of production of the ith production cycle

ti3 the time at which all inventory units in RW are exhausted within the ith production

cycle

Ii1 inventory level in OW at time t, t ∈ [ti0, ti1]

Ii2 inventory level in RW at time t, t ∈ [ti1, ti2]

Ii3 inventory level in RW at time t, t ∈ [ti2, ti3]

Ii4 inventory level in OW at time t, t ∈ [ti3, ti+1,0]

Ii5 inventory level in OW at time t, t ∈ [ti1, ti3]

C1 setup cost per production run

C2 cost of deteriorated unit

Di the quantity of deteriorated items during the ith production cycle

COW carrying cost per inventory unit per unit time in OW

CRW carrying cost per inventory unit per unit time in RW

TC total system cost during H

Assumptions

(1) Demand is increasing quadratically with respect to time as f(t) = a+ bt+ ct2,

a, b, c > 0 and the production rate (p) is greater than the demand. Hence, there is

no shortage.
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(2) The OW has limited capacity of ω units and the RW has unlimited capacity.

(3) The inventory cost (including holding cost and deteriorating cost) in RW is higher

than that of OW.

(4) Inventory decreases due to demand and deterioration.

(5) Deterioration rate is considered as time-dependent and the deteriorated units can

not be repaired or replaced.

(6) The RW is located near the OW such that the transportation cost between them is

negligible.

(7) Maximum life time (R1) of an item in OW is greater than the maximum life time

(R2) of an item in RW i.e. after R1 time, the items in OW are deteriorated and

after R2 time, the items in RW are deteriorated.

(8) The lead time is considered as negligible.

2.2 Model formulation

The inventory level in a production system with quadratic demand for deteriorating items

is depicted in Fig.1 in which Fig.1a shows the inventory level during a production cycle

when both OW and RW are used and Fig.1b shows when only OW is used. Any arbitrary

production cycle i belonging to P2 starts from ti0 and ends at ti+1,0. Over the period

[ti0, ti+1,0], we can identify the points ti0, ti1, ti2, ti3 and ti+1,0. Production, demand

and deterioration starts simultaneously at ti0. During the period [ti0, ti1] produced items

accumulate from 0 up to ω units in OW. RW is used after time ti1 when production

quantity exceeds ω units. The inventory level in RW begins to decrease at ti2 and finally

reaches at 0 unit at ti3 due to demand and deterioration. The inventory level in OW

comes to decrease at ti1 and falls below ω units up to time ti3 only for deterioration and
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Figure 1: Inventory level versus time horizon for two warehouse and one warehouse system.

the remaining quantity in OW is fully exhausted at ti+1,0 . Any arbitrary production cycle

j belonging to P1, starts from tj0 and ends at tj+1,0. Here, we can identify a point tj1,

the time at the end of production. During [tj0, tj1] the inventory level in OW gradually

decreases but it is always less than ω units. During [tj1, tj+1,0], the stocks in OW gradually

decreases due to demand and deterioration as well as it is exhausted at tj+1,0.

The governing differential equations stating the inventory levels within the ith cycle are

given as follows:

dIi1(t)

dt
+ α(t)Ii1(t) = p− f(t); ti0 ≤ t ≤ ti1,

dIi2(t)

dt
+ β(t)Ii2(t) = p− f(t); ti1 ≤ t ≤ ti2,

dIi3(t)

dt
+ β(t)Ii3(t) = −f(t); ti2 ≤ t ≤ ti3,

dIi4(t)

dt
+ α(t)Ii4(t) = −f(t); ti3 ≤ t ≤ ti+1,0,
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dIi5(t)

dt
+ α(t)Ii5(t) = 0; ti1 ≤ t ≤ ti3,

Solving the above differential equations, we obtained the different inventories levels in the

different time intervals. Then, the different inventory levels in OW and RW are separately

derived. Total quantity of deteriorating items Di during the production cycle i is found

out here. The total system cost within the planning horizon H, consisting of setup cost,

carrying cost and deteriorating cost can be expressed as follows

TC = nC1 + CRW
∑
i

IRW,i + COW
∑
i

IOW,i + COW
∑
j

IOW,j + C2

∑
i

Di + C2

∑
j

Dj

We have expressed the relations between different time intervals by satisfying boundary

conditions. The values of ti1, ti2, ti3 has obtained by giving the values of ti0 and ti+1,0.

Once the values of t10, t20, t30...... tn−1,0 are determined, the value of tn0 is obtained.

Therefore, the decision is to obtain the optimal values of the decision variables so that TC

is minimum. Since, n is an integer and the optimization of TC is a desecrate optimization

as well as the expression of TC is highly non-linear, an algorithm is proposed to find the

optimal solution. A numerical example and sensitivity analysis are used to illustrate the

model.

2.3 Conclusions

In this study, an effort has been made to develop a two-warehouse inventory model with

quadratically increasing demand and time varying deterioration. Since the deterioration

depends on preserving facility available in a warehouse, the different warehouses may have

different deterioration rates. The model is formulated by considering time-dependent

deterioration rate for different warehouses. We assume that the inventory cost (including

holding cost and deteriorating cost) in RW is higher than that in OW. The cost of the

whole system is derived analytically. The cost function is highly nonlinear, thus it cannot
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be solved analytically. Therefore, the total cost of the whole system is minimized by a

proposed solution. Most of researchers developed their works completely ignoring the time

variation of either demand or deterioration. Time varying demand and deterioration, by

considering two warehouse models, has not yet been considered. Therefore, our model

has a new managerial insight that helps a manufacturing system/industry to reduce the

total system cost at the optimum level.
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3 Chapter 2

Mitigation of high-tech products with probabilistic deterioration and inflations

Abstract

This model describes probabilistic deterioration rate with ramp-type demand pattern

under stock-dependent consumption rate. Proposed model assumes partially back order

where the back order rate follows a negative exponential with the waiting time. The

effects of inflation and time value of money are incorporated into the model. The purpose

of this study is to develop an optimal replenishment policy so that the total profit per

unit time is maximum.

3.1 Assumptions

To derive the model, following assumptions are made:

1. The model is considered for a single item.

2. Deterioration rate φ is probabilistic and there is no replacement or repair of deteri-

orated units during the period under consideration.

3. The demand rate d(t) is assumed to be a ramp-type function of time, i.e.,

d(t) = d0[t− (t− µ)H(t− µ)], d0 > 0

where H(t− µ) is the Heaviside’s function as follows:

H(t− µ) =

 1 if t ≥ µ

0 if t < µ

.

4. S(t) is the selling rate at time t, and it is influenced by the demand rate and the
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on-hand inventory according to relation

S(t) =

 d(t) + γI(t), I(t) > 0

d(t), I(t) ≤ 0

where γ is positive constant and I(t) is the on-hand inventory level at time t.

5. Shortages are allowed and partially backlogged at a rate δ(t), which is a decreasing

function of time with 0 ≤ δ(t) ≤ 1, δ(0) = 1 and limt→∞ δ(t) = 0. The cases with

δ(t) = 1 (or) 0 for all t correspond to complete backlogging (or complete lost sales)

models.

6. The effects of inflation and time-value of money is considered.

7. Lead time is considered as negligible.

3.2 Model formulation

The model considers an inventory model for deteriorating items with ramp-type demand

and stock-dependent selling rate. The replenishment at the beginning of the cycle brings

the inventory level up to Imax. The inventory level decreases during the time interval

[0, t1] due to demand and deterioration of items, and falls to zero at t = t1. Thereafter

shortages occur during the period (t1, T ), which are partially backlogged. The inventory

level, I(t), 0 ≤ t ≤ T satisfies the following differential equations

dI(t)

dt
+ ψI(t) = −S(t), 0 ≤ t ≤ t1, I(0) = Imax

dI(t)

dt
= −S(t)δ(T − t), t1 ≤ t ≤ T, I(t1) = 0

The solutions of these differential equations depend on the selling rate. There are

two cases considering in this model: (a) t1 ≤ µ, (b) t1 ≥ µ .
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Model 1: t1 ≤ µ In this case, the selling rate S(t) is

S(t) =


d0t+ γI(t), 0 ≤ t ≤ t1

d0t, t1 ≤ t ≤ µ

d0µ, µ ≤ t ≤ T

So, the inventory level satisfies the following differential equations

dI(t)

dt
+ ψI(t) = −[d0t+ γI(t)], 0 ≤ t ≤ t1 with I(0) = Imax

dI(t)

dt
= −d0tδ(T − t), t1 ≤ t ≤ µ with I(t1) = 0

dI(t)

dt
= −d0µδ(T − t), µ ≤ t ≤ T with − I(T ) = S

Using the boundary conditions, Imax and S can be found. Thus, the order quantity Q is

Q = Imax + S =
d0

(ψ + γ)2

[
(ψ + γ)t1e

(ψ+γ)t1 − e(ψ+γ)t1 + 1
]
+

d0µ

σeσT

[
eσT − eσµ

]
− d0

σ2eσT

[
eσt1(σt1 − 1)− eσµ(σµ− 1)

]
Therefore, the total profit per unit time under the effect of inflation and time-value of

money is

= Z1(t1) =
1

T
[RV − (OC + PC +HC +BC + LC)]

=
d0

T

[
(γs− Ch)

(ψ + γ)2

{
[(ψ + γ)t1 − 1][e(ψ+γ+ρ)t1 − 1]

(ψ + γ + ρ)eρt1
− (ψ + γ) [1− (1 + ρt1)e

−ρt1 ]

ρ2
+

[1− e−ρt1 ]

ρ

}

+ s

{
1− e−ρt1 [1 + ρt1]

ρ2
+
e(σ−ρ)t1 − e(σ−ρ)µ + (σ − ρ)[µe(σ−ρ)T − t1e

(σ−ρ)t1 ]

eσT (σ − ρ)2

}
− Co[1− e−ρT ]

d0ρ

− Cl

{
(ρ− σ)[µe(σ−ρ)T − t1e

(σ−ρ)t1 ] + [e(σ−ρ)µ − e(σ−ρ)t1 ]

eσT (σ − ρ)2
+
e−ρt1 [1 + ρt1]− ρµe−ρT − e−ρµ

ρ2

}

− CpQ[1− e−ρT ]

d0ρ
− Cbµ

σ2eσT

{
σ[eµ(σ−ρ) − eT (σ−ρ)]

ρ− σ
+

[σt1 − 1]e(σ−ρ)t1 − [µσ − 1]e(σ−ρ)µ

(ρ− σ)µ

+
σ[e(σ−ρ)t1 − e(σ−ρ)µ]

µ(σ − ρ)2
+

(1− σt1)[e
(σ−ρ)t1 − e−ρT eσt1 ] + [e−ρT − e−ρµ]eσµ

ρµ

}]
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Similarly, for Model 2: t1 ≥ µ , we obtained the total profit per unit time under the

effect of inflation and time-value of money as

= Z2(t1) =
1

T
[SR− (OC + PC +HC +BC + LC)]

=
d0

T

[
s

{
1− e−ρµ − ρµe−ρt1

ρ2
+
µe−σT [e(σ−ρ)T − e(σ−ρ)t1 ]

(σ − ρ)

}
+ Clµ

{
e(σ−ρ)T − e(σ−ρ)t1

eσT (σ − ρ)

− e−ρt1 − e−ρT

ρ

}
− Cbµ

σeσT

{
eσt1 [e−ρT − e−ρt1 ]

ρ
+
e(σ−ρ)T − e(σ−ρ)t1

(σ − ρ)

}
+
γs− Ch
(ψ + γ)2{

ρµ(ψ + γ)e−ρt1 − [1− e−ρµ](γ + ψ − ρ)

ρ2
+
µ(ψ + γ)[e(ψ+γ)t1 − e−ρt1 ]− e(ψ+γ)µ + e−ρµ

(γ + ψ + ρ)

}

− [1− e−ρT ]

d0ρ
(C0 + CpQ)

]

Finally, necessary and sufficient conditions of the existence and uniqueness of the optimal

solution are derived, which maximize the total profit. Some numerical examples along

with graphical representations are provided to illustrate the proposed model. Sensitivity

analysis of the optimal solution with respect to key parameters of the model has been

carried out and the implications are discussed.

3.3 Conclusions

In this marketing environment, when a new brand of consumer goods are launched, the

demand of goods increases quickly to a certain moment and after sometime it stabilizes.

Finally, it becomes almost constant. Keeping in mind this type of demand pattern, we

consider the demand as a ramp-type function of time. To make the research a more

realistic one, four different types of continuous probabilistic deterioration functions are

considered in numerical example. We found that the associated profit function is maxi-

mized at the optimal values of decision variables. We provide a solution procedure to find

the optimal solution. Some numerical examples, graphical representations, special cases,

and sensitivity analysis are given to illustrate the model. There are several extensions

of this work that could constitute future research related in this field. This model can
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be extended in several ways, like multi-item inventory models, reliability of the items,

variable deterioration, etc. The research can also be extended to consider fuzzy demand

case.
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4 Chapter 3

Optimal replenishment policy with variable deterioration for fixed-lifetime

products

Abstract

Although numerous researchers have developed different inventory models for deteriorat-

ing items, very few of them have taken the maximum lifetime of a deteriorating item into

consideration. This model illustrate a mathematical model to obtain an optimal replen-

ishment policy for deteriorating items with maximum lifetime, ramp-type demand, and

shortages. Holding cost and deterioration function both are linear function of time which

are treated as constants in most of the deteriorating inventory model. A simple solution

procedure is provided to obtain the optimal solutions.

4.1 Assumptions

To derive the model, following assumptions are used.

Assumptions

1. The model is considered for a single type of item.

2. The deterioration rate is assumed as α(t) = 1
1+ρ−t , where ρ > t and ρ is the maximum

lifetime of products at which the total on-hand inventory deteriorates. When t

increases, α(t) increases and Limt→ρα(t) → 1.

3. The demand rate d(t) is assumed to be a ramp-type function of time, i.e.,

d(t) = d0[t− (t− µ)H(t− µ)], d0 > 0

where H(t− µ) is the Heaviside’s function as follows:

H(t− µ) =

 1 if t ≥ µ

0 if t < µ
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.

4. Holding cost is linear function of time i.e., Ch(t) = h0 + h1t, where h0, h1 > 0.

5. Shortages are allowed and fully backlogged.

6. Lead time is assumed as negligible and the replenishment rate is infinite.

4.2 Model formulation

The model considers an inventory model for deteriorating items with ramp-type demand

and stock-dependent selling rate. The replenishment at the beginning of the cycle brings

the inventory level up to Imax. The inventory level decreases during the time interval

[0, t1] due to combined effects of the demand, deterioration, and falls to zero at t = t1.

Shortages occur during the period (t1, T ), which are fully backlogged.

During the replenishment cycle [0, T ], the inventory level, I(t), satisfies the following

differential equations

dI(t)

dt
= −d(t)− α(t)I(t), 0 ≤ t ≤ t1, with I(0) = Imax

dI(t)

dt
= −d(t), t1 ≤ t ≤ T, with I(t1) = 0

To solve the above differential equations, two cases are considered as (a) µ ≥ t1, (b)

µ ≤ t1.

For Model 1 when µ ≥ t1, the demand rate d(t) is

d(t) =


d0t, 0 ≤ t ≤ t1

d0t, t1 ≤ t ≤ µ

d0µ, µ ≤ t ≤ T

Inventory levels satisfies

dI(t)

dt
= −d0t− α(t)I(t), 0 ≤ t ≤ t1 with I(0) = Imax
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dI(t)

dt
= −d0t, t1 ≤ t ≤ µ with I(t1) = 0

dI(t)

dt
= −d0µ, µ ≤ t ≤ T with − I(T ) = S

Then, average total cost per unit time under this condition is

TC1(t1) =
1

T
[OC + PC +HC +DC + SC]

=
d0

T

[
Co
d0

+ h0

{
(1 + ρ)3

2
ln

(
1 + ρ

1 + ρ− t1

)
+
t1
12

[
2t21 − 3t1(1 + ρ)− 6(1 + ρ)2

]}

+

{
(1 + ρ)4

6
ln

(
1 + ρ

1 + ρ− t1

)
+

1

36

[
3t41 − 6t1(1 + ρ)3 − 3t21(1 + ρ)2

− 2t31(1 + ρ)

]}
h1 + (Cp + Cd)(1 + ρ)

[
(1 + ρ) ln

(
1 + ρ

1 + ρ− t1

)
− t1

]

+ Cp

(
µT − µ2

2
− t21

2

)
− Cdt

2
1

2
+ Csµ

(
µ2

6
+
t31
3µ
− µT

2
− Tt21

2µ
+
T 2

2

)]

Similarly, for Model 2 when µ ≤ t1, the average total cost per unit time is

TC2(t1) =
1

T
[OC + PC +HC +DC + SC]

=
d0

T

{
Co
d0

+ h0

[
1

4
(1 + ρ)(1 + ρ− µ)2 − 1

4
(1 + ρ)3 +

µ

12

[
3t21 − µ2 − 6t1(1 + ρ)

]]

+
(1 + ρ)2

6
[h1(1 + ρ) + 3h0]

[
µ ln

(
1 + ρ− µ

1 + ρ− t1

)
+ (1 + ρ) ln

(
1 + ρ

1 + ρ− µ

)]

+
h1µ

36

[
(3µ− 6t1)(1 + ρ)2 + (µ2 − 18ρ− 3t21)(1 + ρ)− 6(1 + ρ3)− µ3 + 4t31

]
+ (Cp + Cd)(1 + ρ)

[
µ

{
ln

(
1 + ρ− µ

1 + ρ− t1

)
− 1

}
− (1 + ρ) ln

(
1 + ρ− µ

1 + ρ

)]

+ Cpµ(T − t1)− Cd

[
µ2

2
+ µ(t1 − µ)

] }
+
Csµ

2
(T − t1)

2

}

Solution procedure is given, which can ensure the existence of a unique t1 to minimize

the average total cost for the model. Numerical examples, the graphical representation

and sensitivity analysis are provided to illustrate the model.
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4.3 Conclusions

In modern marketing environment, a practical problem is to control the deterioration

of items. Some products (e.g., fruits, vegetables, pharmaceutical, volatile liquids, and

others) not only deteriorate continuously due to evaporation, obsolescence, spoilage, etc.,

but also it deteriorates with increase in time (i.e., a deteriorating item has its maximum

lifetime). In existing literature, very few researcher considered maximum lifetime of de-

teriorating items in their model. In this regard, this study considered an inventory model

for products with maximum lifetime, time-varying deterioration rate, and ramp-type de-

mand. A simple solution procedure was given and existence and uniqueness of the optimal

solutions were obtained analytically. This model minimized the associated cost function

at the optimal values of the decision variable. Finally, the sensitivity analysis on the

optimal solution with respect to key parameters were studied to illustrate the model and

some managerial insights were provided.
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5 Chapter 4

Flexible setup cost and deterioration of products in a supply chain model

Abstract

Product reliability is of significant importance in today’s technological world. People rely

more and more upon the sustained functioning of machinery and complex equipments

for purposes such as health, economic welfare, safety, to name just a few. Thus in a

business arena it is critical to assess the reliability of new product. In this model, a two

echelon supply chain model with variable setup cost and deterioration cost is analyzed. We

assume that the setup cost is directly proportional and the deterioration rate is inversely

proportional to reliability. We use algebraical procedure to obtain the optimal closed-form

solution of our model. The objective is to minimize the total cost of the entire system by

considering reliability as the decision variable.

Decision variables

q delivery lot size (units)

N number of deliveries per production-batch, N ≥ 1

R reliability parameter

5.1 Assumptions

We consider the following assumptions to develop the model.

1. Single type of item is produced by the production-inventory system.

2. Setup cost S0 and deterioration cost Cd depend on the reliability parameter R.

3. Information regarding the inventory position and demand of the buyer are given to

the supplier.
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4. Production rate is greater than demand, i.e., p > d.

5. Handling and transportation costs are paid by the buyer.

6. Shortage and backlogging are not considered.

5.2 Model formulation

A single-setup-multiple-delivery (SSMD) production is considered in this article. The

quantity ordered by the buyer is manufactured at a time and the manufactured products

are delivered after a fixed time interval over multiple deliveries in an equal amount. The

splitting of the ordered quantity into multiple lots is consistent with JIT implementation.

The average total cost of the production-inventory model is developed for the buyer’s and

the supplier’s which is then minimized. Without any loss of generality, we consider that

the products ordered arrives at the exact time when the items from the previous delivery

has just been depleted. Here, total time span T is divided into two components: t1, the

production time duration for the supplier and t2, the non-production time duration for

the supplier. t3 is considered as the time duration between the two successive deliveries.

Firstly, separate calculations for buyer’s and the supplier’s inventory cost are carried out.

Inventory cost for the buyer

becomes

TCb =

(
d

Nq
+

σ

2NR

)
(Co +NK + VcNq) +

q

2

[
HCb +

σCd
R

]
Inventory cost for the supplier

TCs =
1

T

(
So + ρR +HCsAs +

σCd
R

As

)
Integrated inventory cost for the entire SCM

The total average cost for the entire SCM is TC(q,N,R) = TCb + TCs

TC(q,N,R) =

(
d

Nq
+

σ

2NR

)
[Co + (So + ρR) +NK + VcNq] +

q

2

(
HCb +

σCd
R

)
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+
(
HCs +

σCd
R

){
(2−N)d

p
+N − 1

}
Minimum order quantity

The required ordered quantity that makes the SSMD policy superior to single-delivery

policy is obtained from the savings.

SV (q,N,R) =

(
d

q
+

σ

2R

)
{Co + (So + ρR)}

(
1− 1

N

)

+
q

2

(
HCs +

σCd
R

)
(N − 1)

(
d

p
− 1

)
When N and R are fixed, TC can be written in the symbolic form as

TC(q) = x1q +
x2

q
+ x3 =

x1

q

(
q −

√
x2

x1

)2

+ 2
√
x1x2 + x3

When q and R are fixed, TC can be written in the symbolic form as

TC(N) = x4N +
x5

N
+ x6

When q and N are fixed, TC can be written in the form as

TC(R) = x7R +
x8

R
+ x9

Then minimum values of q, N , and R are obtained by using algebraic method, which

minimizes the cost functions TC(q), TC(N) and TC(R) respectively.

Optimal interval of the lot size

By assumptions of N , the number of deliveries per production batch-cycle, must be

greater than or equal to 1 and from the expression for optimum q, N attains its upper

bound at N = 1, i.e.,

q ≤

√√√√ 2pdR(Co + So + ρR +K)

R{pHCb + dHCs}+ σ{Cd(d+ p) + Vcp}

As N , the number of deliveries per production batch-cycle increases, the corresponding

lot size value q decreases hence, from the equation of optimum lot size, one can obtained

q ≥

√√√√ 2pdR(Co + So + ρR +NK)

{HCbR + σ(Cd + Vc)}{2d+N(p− d)}N
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The total cost TC, the delivery lot size q, the number of deliveries per production batch

N , and the reliability parameter R are obtained in this model. If the value of N is not

an integer, then one can choose N in such a way, which gives min{TC(N+), TC(N−)}

for the model where N+ and N− represent the closest integers larger or smaller than the

optimal N∗. Optimal minimal cost, given by TC, is obtained by substituting the values

of N∗, q∗ and R∗ in TC(q∗, N∗, R∗).

Numerical examples, the graphical representation and sensitivity analysis are provided to

illustrate the model. This model is compared with that of Sarkar (2013) by using the

same parametric values.

5.3 Conclusions

In this proposed model, we discussed the effect of the reliability parameter on the

setup cost and the deterioration rate. With the help of an algebraical procedure we

minimized the cost for the entire SCM model and obtained a closed-form solution. The

main contribution of the model was to obtain the minimum cost with integer number of

deliveries, optimal lot size, and the reliability parameter using algebraical procedure. The

proposed procedure for the computation of the total cost of the SCM can be easily done

without any tedious calculation.
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6 Chapter 5

Optimal buffer inventory and inspection errors in an imperfect production

system with preventive maintenance

Abstract

This model considers an imperfect production system with preventive maintenance to ob-

tain the optimal buffer inventory and inspection policy for sold products with free minimal

repair warranty. The production system is subject to a random movement from an in-

control to an out-of-control state, where some proportion of defective items are produced

by the production system during both the in-control and out-of-control states. Online

inspection is continuing after a time variable during the production process. Another

offline human-based inspection policy is considered at the end of the production cycle to

identify the defective items. Defective items found by the inspector are salvaged at some

fixed cost before being shipped and the non-inspected items are passed to the customer

with free minimal repair warranty. During human-based inspection, some misclassifica-

tions may arise from the inspector’s side. Thus, two types of inspection errors (Type I

and Type II) are considered to make the model more realistic rather than the existing

models. A numerical example along with graphical representations are provided to illus-

trate the proposed model. Sensitivity analysis of the optimal solution with respect to

major parameters of the system has been carried out and the implications are discussed.

6.1 Problem definition, and assumptions

This section contains problem definition and several assumptions.

Problem definition

The main focus of this model is to produce a single-type of items in a single-stage pro-

duction system. During production, the machinery system may shift in-control to out-

of-control state at any random time, which may follow any specific distribution. In both
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in-control and out-of-control state, the machinery system produces defective items, but

the production rate of defective items in in-control state is less than that of out-of-control

state. As production processes are prone to fail at the end of a production run, on-line

inspection is considered after some time of the production and another human-based in-

spection policy is considered at the end of the production process to detect the defective

items. Product inspection starts from (pλt)th item until the end of the production lot,

and the defective items by the inspector are salvaged at some fixed cost in a parallel

system before shipped. The human-based inspection is considered to assure the quality of

products, even though the inspection are with errors. The non-inspected items are sold

with free minimal warranty. After the end of production run time, the preventive main-

tenance starts and continues up to a certain time, which follows a specific distribution.

Shortages occur, when the buffer inventory goes to zero, but the preventive maintenance

of machine is not completed. The management system uses two types of inspections, but

as they finds inspection errors by human inspection, thus that outcomes is not used for

the rework or warranty, but they use some funds for this human based inspection, thus

this cost is incorporated within the system cost.

Decision variables in this study are

B buffer inventory (units) and

λ non-inspected fraction in a batch (0 ≤ λ ≤ 1)

Assumptions

The following assumptions are considered to develop this model.

1. At any time, production system, for single-type of products, may shifts in-control

state to out-of-control state until the end of the production-run.

2. Production rate of defective items in out-of-control state is grater than in-control

state.
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3. Online inspection is started after some time of production to detect defective units

and human-based inspection policy is considered to identify the defective items,

where human inspectors are not properly skilled, thus, two types of inspection errors

(Type I and Type II) are considered during product inspection.

4. The free minimal repair warranty (FRW) policy is adopted for non-inspected defec-

tive items.

5. After the preventive maintenance, it is grunted that the probability of a breakdown

of the manufacturing system during the production run time t is zero.

6. At the beginning of any preventive maintenance, the buffer is not subjected to

deterioration or obsolescence.

7. Shortages are allowed and are fully backlogged.

6.2 Model formulation

In this model, it is assumed that at the initial stage, the production system is in in-control

state and after a random time X it moves to an out-of-control state. In this system, three

cases may arise: Case I when X ≥ t, Case II when λt < X < t and Case III when

X ≤ λt.

Total post-sale warranty and salvage cost within the time interval [0, t] is obtained as

Cd =


Wcθ1pλt+ Vcθ1p(t− λt), if X ≥ t

Wcθ1pλt+Wcθ1p(X − λt) + Vcθ2p(t−X), if λt < X < t

Wcθ1pX +Wcθ2p(λt−X) + Vcθ2p(t− λt), if X ≤ λt

We obtain the expected value of Cd as

E[Cd] = Wcθ2pλt+ Vcθ2pt(1− λ)− (θ2 − θ1)p

[
Wc

∫ λt

0
G(x)dx+ Vc

∫ t

λt
G(x)dx

]
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Inspection errors

During inspection, an inspector may commit two types of inspection errors (Type I and

Type II). Due to Type I error, some non-defective items are classified as defective i.e.,

(1−θ1)m1 in in-control state and (1−θ2)m1 in out-of-control state. Again due to Type II

error, some defective items are classified as non-defective i.e., θ1m2 in in-control state and

θ2m2 in out-of-control state. Therefore, the inspector rejects some non-defective items

and accepts some defective items due to these two types of inspection errors. Three cases

occur during inspection: Case I when X ≥ t, Case II when λt < X < t and Case III

when X ≤ λt.

Total miscalculation cost due to two types of inspection errors within the time interval

[λt, t] is

Ci =



Crp(t− λt)(1− θ1)m1 + Caθ1p(t− λt)(1−m2), if X ≥ t

p(X − λt)[Cr(1− θ1)m1 + Caθ1(1−m2)]

+p(t−X)[Cr(1− θ2)m1 + Caθ2(1−m2)], if λt < X < t

p(t− λt)[Ca(1− θ2)m1 + Crθ2(1−m2)] if X ≤ λt

The expected misclassification cost, due to two types of inspection errors within the time

interval [λt, t] is as

E[Ci] = p(1− λ)t {Caθ2(1− E[m2]) + Cr(1− θ2)E[m1]}

+ p(θ1 − θ2) {Ca(1− E[m2])− CrE[m1]}
∫ t

λt
G(x)dx

Here, the production system runs for a time-period t before preventive maintenance occur.

Within the period [0, t], the buffer inventory S builds up at a rate p− d i.e., S = (p− d)t.

After the time period t, preventive maintenance starts and continues upto time τ , which

is a random variable that follows a probability density function f(τ). The number of

shortage units per preventive maintenance cycle is

Y (τ) =

 0 if τ ≤ S
α
,

α
(
τ − S

α

)
if τ ≥ S

α
.
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The expected number of unit shortages is

E[Y (τ)] = α
∫ ∞
S/α

(
τ − S

α

)
f(τ)dτ

Total expected cost per unit item is

ETC(S, λ) =
K

S

(
1− α

p

)
+ Cm +

HcS

2α
+
Mc

S

(
1− α

p

)∫ ∞
0

τf(τ)dτ +
Scα

S

(
1− α

p

)
∫ ∞
S/α

(
τ − S

α

)
f(τ)dτ − (θ2 − θ1)(p− d)

S

[
Wc

∫ λS
p−d

0
G(x)dx

]
+Wcθ2λ

− (θ2 − θ1)(p− d)

S
{Vc + Ca(1− E[m2])− CrE[m1]}

∫ S
p−d

λS
p−d

G(x)dx

+ (1− λ) {Ic + Vcθ2 + Caθ2(1− E[m2]) + Cr(1− θ2)E[m1]}

Our objective is to find the optimal value of S and λ such that the corresponding expected

total cost per unit item TC(S, λ) is minimum.

Optimal inspection policy λ∗ is obtained. Here, it is proved that the optimal buffer

inventory S∗, which minimizes C(S, λ), is exists and it is unique.

Convexity of ETC(S, λ) at the optimal S∗ and λ∗, is also proved by using Hessian matrix.

It has shown that (S∗, λ∗) is the global minimum solution. A numerical example along

with graphical representations are provided to illustrate the proposed model. Sensitivity

analysis of the optimal solution with respect to major parameters of the system has been

carried out and the implications are discussed.

6.3 Conclusions

This model focused on a deteriorating production process with preventive maintenance

and inspection errors. Further, it was considered that during long-run production, the

production system moves to an out-of-control state after some time. The probability of

defective items being produced in in-control state is smaller than in the out-of-control

state. On-line inspection and a human-based inspection were considered to detect the

33



defective items. During inspection, two types of inspection errors were carried out, where

human based inspection is not error-free. Inspected items are immediately salvaged at a

cost in a parallel system before they were released for sale. Non-inspected items were sold

at the market with post-sale warranty. During the maintenance period, there was a buffer

inventory, which fulfilled the demand during maintenance. The optimal buffer inventory

and optimal non-inspected fraction batch were obtained to minimize the total expected

cost per unit product. A solution methodology was provided to find the optimal solution.

Finally, numerical example and sensitivity analysis of the optimal solution with respect

to key parameters were studied to illustrate the model and some managerial insights were

provided. This model can be extended by considering the production rate and demand

for products as random variables. During the production run time, machine breakdown

can be considered in future.

34



7 Chapter 6

Optimal production run time and inspection errors in an imperfect production

system with warranty

Abstract

This model considers an imperfect production system to obtain the optimal production

run time and inspection policy. Contrary to the existing literature this model considerers

that product inspection performs at any arbitrary time of the production cycle and after

the inspection, all defective products produced until the end of the production run are

fully reworked. Due to some misclassification during inspection, from the inspector’s side

two types of inspection errors as Type I and Type II are considered to make the model

more realistic rather than existing models. Defective items, found by the inspector, are

salvaged at some cost before being shipped. Non-inspected defective items are passed to

customers with free minimal repair warranty. The model gives three special cases, where

it is found that this model converges over the exiting literature. Some numerical examples

along with graphical representations are provided to illustrate the proposed model with

comparison with the existing models. Sensitivity analysis of the optimal solution with

respect to key parameters of the model has been carried out and the implications are

discussed.

7.1 Formulation of the model

This section contains problem definition, and mathematical model.

Problem definition

An imperfect production system for a single-type of item is considered. Production starts

from in-control state and after a period of operation, the production system may shift to

out-of-control state until the end of the production-run. At each state, θ1 and θ2 represent

the percentage of the number of defective items during in-control state and out-of-control

35



state, respectively with θ1 < θ2. The elapsed time until the production system shifts to

the out-of-control state is denoted by X, which follows an exponential distribution with

g(x) as probability density function, G(x) as distribution function, and G(= 1 − G(x))

as survival function. The failure rate function of the random variable X is defined as

φ(x) = g(x)/G(x). After completion of a lot, the system is inspected with fixed cost

η to obtain the information about the state of the system. If the system is in out-of-

control state, after completion of the production cycle, the production system brought

back to the in-control state with an additional restoration cost r. To detect the defective

items produced in a produced lot, a product inspection policy is carried out at a fixed

cost Ic. The inspection time is considered as negligible. Product inspection policy starts

from (pu1t)th item to (pu2t)th item, and the defective items from those inspected will

be salvaged at some fixed cost Cs before being shipped. After completion of inspection,

all produced products during production time u2t to the end of production are reworked

without inspections. During inspection, due to misclassification an inspector classified

some non-defective items as defective with a fixed rate m1 and classified some defective

items as non-defective with a fixed rate m2. The non-inspected defective items are taken

as salvageable and those items are sent to the market with post sale (warranty) cost Cw

with the assumption Ic + Cs < Cw.

Mathematical model

The inventory level starts with p− d rate and depletes with a rate −d, where production

rate (p) > demand rate (d) > 0. The total produced items are pt during cycle time t

and the time duration of a production cycle is pt/d. The production cost per product

is Cp and the inventory holding cost per unit per unit time is Ch. Thus, the maximum

inventory is (p − d)t and the holding cost is 1
2
Ch(pt/d)(p − d)t. Hence, the holding cost

per item is Ch(p−d)t
2d

. Setup cost for each production-run is S0. Theretofore, setup cost per

item is S0

pt
and hence the system inspection cost per item is η

pt
. If the system moves to

out-of-control state, then r is the fixed cost to transfer the system back to the in-control

36



state. Therefore, the restoration cost per unit item is rG(t)
pt

.

Expected number of defective items in the time interval [u1t, u2t] is obtained as

E[N2(t)]− E[N1(t)] = θ2p(u2 − u1)t− (θ2 − θ1)p
∫ u2t

u1t
G(x)dx

During product screening process, the inspectors make Type I and Type II errors. They

classify some non-defective item as defective item i.e., (1 − θ1)m1 in in-control state

and (1 − θ2)m1 in out-of-control state. In another side, the inspector classifies some

defective items as non-defective i.e., θ1m2 in in-control state and θ2m2 in out-of-control

state. Therefore, the inspector rejects some non-defective items and accepts some defective

items, thus, two cases arise: Case I: X < u1t and Case II: X ≥ u1t. Total defective

cost is

Cd =


CRp[(1− θ1)X + (1− θ2)(u1t−X)]m1

+CAp[θ1X + θ2(u1t−X)](1−m2), if X < u1t

CR(1− θ1)pu1tm1 + CAθ1pu1t(1−m2), if X ≥ u1t

The expected value of defective cost, E[Cd1 ] within the time interval [0, u1t] and expected

value of defective cost E[Cd2 ] in the time interval [0, u2t] are obtained separately. Then,

the expected defective cost within the interval [u1t, u2t] is

E[Cd2 ]− E[Cd1 ] = p(u2 − u1)t {CAθ2(1− E[m2]) + CR(1− θ2)E[m1]}

+ p(θ1 − θ2) {CA(1− E[m2])− CRE[m1]}
∫ u2t

u1t
G(x)dx

The expected total warranty, salvage, defective, and rework cost with lot size pt under

the inspection policy (u1, u2) is

CwE[N1(t)] + Cs{E[N2(t)]− E[N1(t)]}+ E[Cd2 ]− E[Cd1 ] + Crpt(1− u2)

Now, the expected total cost per item i.e., C(t, u1, u2) is the addition of manufacturing

cost, holding cost, setup cost, process inspection cost, restoration cost, product inspection
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Table 1: Summary of numerical results

This model Sarkar and Saren (2016) Hu and Zong (2009) Wang (2005)

(t∗, u∗1, u
∗
2) (t∗, u∗) (t∗, u∗1, u

∗
2) (t∗, u∗)

C(t∗, u∗1, u
∗
2) C(t∗, u∗) C(t∗, u∗1, u

∗
2) C(t∗, u∗)

(2.04,0.058,0.251) (1.85,0.064) (2.05,0.062,0.239) (1.83,0.069)

$8.48 $8.90 $8.49 $8.97

cost, warranty cost, salvage cost, defective cost, and rework cost as follows:

C(t, u1, u2) = Cp +
Ch(p− d)t

2d
+
K + rG(t)

pt
+ (Ic + Csθ2)(u2 − u1) + Cwθ2u1

+ Cr(1− u2) + (u2 − u1)
[
CA(1− E[m2])θ2 + CRE[m1](1− θ2)

]
+

(θ1 − θ2)

t
{Cs + CA(1− E[m2])− CRE[m1]}

∫ u2t

u1t
G(x)dx

+
Cw(θ1 − θ2)

t

∫ u1t

0
G(x)dx

where K = S0 + η.

The objective is to obtain the optimum value of t, u1, and u2 such that C(t, u1, u2) is

minimum. The optimization of this model is done by numerical example. This model is

the extension of several models.

Some special cases:

Case I If u2 = 1 and Cr = Cs, then this model converges to Sarkar and Saren’s (2016)

model.

Case II If CA = CR = 0, and Cs = Cr, then the model becomes Hu and Zong’s (2009)

model.

Case III If u2 = 1, CA = CR = 0, and Cs = Cr, then the model becomes Wang’s (2005)

model.

Numerical comparison of these three models with our model is given in following table.

Sensitivity analysis of the optimal solution with respect to major parameters of the system
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has been carried out and the implications are discussed.

7.2 Conclusions

This model developed an imperfect production process under the presence of Type I and

Type II errors. The out-of-control probability of the system as well as Type I and Type

II inspection errors are considered as random variable with known probability density

function. Variable inspection interval was considered. Inspected items are salvaged as

some fixed cost before they are released for sale. Non-inspected items are sold at market

with post-sale warranty. This model minimized the total cost per item by obtaining the

production run time and inspection policy. The numerical comparison between other

models has been conducted to display the impact of inspection errors on the optimum

solutions. This model can be extended for items having linear increasing demand, price,

and advertising-dependent demand or power-demand. This study can be extended further

by considering stochastic demand.

39



References

1. Benkherouf, L. (1997) A deterministic order level inventory model for deteriorating

items with two storage facilities. International Journal of Production Economics,

48, 167-175.

2. Cárdenas-Barrón, L.E. (2007) Optimizing inventory decisions in a multi-stage multi-

customer supply chain: a note. Translational Research, 43, 647-654.

3. Cárdenas-Barrón, L.E. (2008) Optimal manufacturing batch size with rework in

a single-stage production system - a simple derivation. Computers & Industrial

Engineering, 55, 758-765.

4. Cárdenas-Barrón, L.E. (2009a) Economic production quantity with rework process

at a single-stage manufacturing system with planned backorders. Computers &

Industrial Engineering, 57, 1105-1113.

5. Cárdenas-Barrón, L.E. (2009b) On optimal batch sizing in a multi-stage production

system with rework consideration. European Journal of Operational Research, 196,

1238-1244.

6. Cárdenas-Barrón, L.E. and Treviño-Garza, G. (2014) An optimal solution to a three

echelon supply chain network with multi-product and multi-period. Applied Math-

ematical Modelling, 38, 1911-1918.
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