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1 Introduction

The thesis entitled as ‘Some problems on supply chain management’ consists of recent

development on supply chain management. Supply chain management is handling of the

flow of goods, data, information, and fund among different stages of an extended industrial

sector which includes manufacturers, vendors, retailers, customers or any other facilities.

The target of a successful supply chain is to satisfy the end customer’s demand. This the-

sis covers a number of problems which are the hurdles to form a successful supply chain.

The thesis contains ten chapters. Chapter 1 and 2 consist of abstract and introduction,

respectively. The mathematical models based on this research starts from Chapter 3.

The first research model deals with a single-vendor single-buyer supply chain model with

single-setup-multi-delivery (SSMD) policy. An effort to reduce the vendor’s setup cost is

developed to gain more at the optimum level. The second research model is an extended

version of the first one with imperfect quality of products. The third model extends all

previous models with setup cost reduction and quality improvement of products under

just-in-time manufacturing system. The fourth model relaxed one assumption of previ-

ous models as constant demand throughout the year. This fourth model was based on

price-dependent demand with fixed and variable purchase cost. The fifth research model

contains of a different delivery policy named as consignment policy. The model is solved

using a distribution free approach with known mean and standard deviation. The sixth

model is constructed with a single-vendor multi-buyer supply chain model under variable

production cost which is dependent on the production rate. The seventh research model

extends the sixth one with the reliability of the production process. The eighth research

model consists of a three-echelon facility location model. This study emphasizes on a

comparative study among three different dimensional facility location problems.
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1.1 Literature review

Goyal [1] developed the first research work on the integrated vendor-buyer problem.

Banerjee [2] extended Goyal’s [1] model with an assumption on the number of lot size.

Goyal [3] extended Banerjee’s [2] model by assuming the manufacturing quantity of the

vendor as an integer multiple of the buyer’s ordering quantity. Ha and Kim [4] developed

an integrated single-retailer single-supplier model with lot splitting policy. An integrated

lot splitting model deals with multiple shipments in small lots. Ouyang et al. [5] in-

vestigated an integrated vendor-buyer cooperative model with controllable lead time and

stochastic demand. Shah et al. [6] developed an optimizing inventory and marketing

policy for non-instantaneous deteriorating items with generalized type deterioration and

holding cost rates. Sarkar et al. [7] derived an integrated vendor-buyer inventory model

with controllable lead time and delay-in-payments.

Liao and Shyu [8] first incorporated a probabilistic inventory model assuming lead

time as a unique decision variable. Ben-Daya and Rauf [9] considered an inventory model

as an extension of Liao and Shyu’s [8] model where lead time is one of the decision vari-

ables. Ben-Daya and Rauf’s [9] model dealt with no shortage and continuous lead time.

Ouyang et al. [10] extended Ben-Daya and Rauf’s [9] model by assuming discrete lead

time and shortages. Pan and Yang [11] analyzed an integrated inventory model with lead

time in a controllable manner.

Scarf [12] first introduced the min-max distribution free approach in a newsvendor

problem. Gallego and Moon [13] simplified Scarf’s [12] ordering rule and made this ap-

proach very popular to the researchers. Ouyang et al. [14] investigated an inventory

model with distribution free approach. They used an investment function to improve

quality of products and to reduce the setup cost. Sarkar and Majumder [15] developed

an integrated vendor-buyer supply chain model with distribution free approach and man-

ufacturer’s setup cost reduction.
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Whitin [16] developed concepts of economic price theory and inventory control. Lau

and Lau [17] extended the classical newsboy problem with stochastic price-demand re-

lationship. Gallego and Ryzin [18] investigated dynamic pricing of inventories where

demand is price-sensitive as well as stochastic and firm’s objective is to maximize the

expected profit. Abad [19] formulated a dynamic and lot size model for perishable items.

Sana [20] developed an economic order quantity model for perishable items with quadratic

price-sensitive demand.

In the classical supply chain model, the rate of production is assumed to be inflexible

or constant. However, in many cases the machine production rate may easily change

(Khouja and Mehrez [21]). Machine tool cost also increases with increasing production

rate. According to the analysis of Conard and McClamrock [22], a 10% change in the

processing rate results in a 50% change in the machine tool cost. Porteus [23] explained

the gradual fall of the product quality with an increased amount of production. The

process approaches to the out-of-control state from the ‘in-control’ state as the number

of produced units increases. Rosenblatt and Lee [24] considered the elapsed time until

the production process reaches the out-of-control state to be an exponentially distributed

random variable.

The first research work was done by Weber [25] in his industrial location theory.

It was extended by Hakimi [26]. The concept of supply chain management (SCM) was

established by Weber and Oliver [27]. Chopra et al. [28] showed an excel based solution

of facility location model. According to ReVelle et al. [29], future studies led to different

location models such as analytic model, continuous model, discrete location model and

network model. Sana [30] introduced an inventory model in supply chain environment.

Teng et al. [31] developed a supply chain model where the optimal economic order quan-

tity for buyer-distributor-vendor was derived without derivative.

Melo et al. [32] mentioned, in his review article that, six different groups of discrete fa-

cility location problem entitled as median problems, center problems, covering problems,

3



uncapacitated facility location problems (UFLP), capacitated facility location problems

(CFLP) and supply chain network design (SCND) problems. The first three problems

were well discussed in Owen and Daskin’s [33] paper. A two echelon supply chain net-

work was introduced by Amiri [34]. Hinojosa et al. [35] studied a dynamic supply chain

with inventory.

The research models developed in the thesis based on the various problems on supply

chain management are described onwards.
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2 Integrated vendor-buyer supply chain model with

vendor’s setup cost reduction

This study deals with an integrated vendor-buyer supply chain model. Two models

are constructed based on the probability distribution of the lead time demand. The lead

time demand follows a normal distribution in the first model. In the second model, we

consider the distribution free approach for the lead time demand. For the second model,

only mean and standard deviation are known. The aim of our model is to reduce the total

system cost by considering the setup cost reduction of the vendor.

Assumptions

1. When the buyer orders a lot size Q, the vendor manufactures the lot mQ with finite

production rate P (P > D) at one setup but delivers the quantity Q over m times

(Single setup multi-delivery policy).

2. The buyer places an order when the level of inventory reaches to the reorder point

R.

3. The reorder point is R = DL + kσ
√
L, where DL = the expected demand during

the lead time, kσ
√
L = safety stock, and k = safety factor.

4. Shortages are allowed and fully backordered.

5. The lead time L has n mutually independent components. For the ith component,

ai = minimum duration, bi = normal duration, and ci = crashing cost per unit time.

For the sake of convenience, we assume c1 ≤ c2 ≤ ... ≤ cn.

6. We assume L0 ≡
∑n

j=1 bj and Li be the length of the lead time with components

1, 2, ...i crashed to their minimum duration, then Li can be expressed as Li =
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L0 −
∑i

j=1(bj − aj), i = 1, 2, ...n. The lead time crashing cost per cycle C(L) is

expressed as C(L) = ci(Li−1 − L) +
∑i−1

j=1 cj(bj − aj).

7. The transportation cost per unit time from the vendor to the buyer is constant and

independent of the quantity ordered. Thus, the total transportation cost per unit

time is neglected.

2.1 Mathematical model

Investment in setup cost reduction

If IS is an investment for the setup cost reduction, then it can be expressed as

IS = B ln

(
S0

S

)
= B(lnS0 − lnS) for 0 < S ≤ S0

where S0 is the original setup cost, B = 1
δ
, and δ = the percentage decrease in S per

dollar increase in IS.

The joint total expected cost per unit time for the vendor and the buyer can be

expressed as

JATC(Q, k, S, L,m) = ATCb(Q, k, L) + ATCv(Q,S,m)

= αB(lnS0 − lnS) +
D

Q

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

Q

2

[
rbCb + rvCv

{
m

(
1− D

P

)
− 1 +

2D

P

}]
+ rbCbkσ

√
L(1)

For fixed positive integer m, the values of Q, Φ(k), and S are obtained as

Q =

2D
[
A+ S

m
+ πσ

√
Lψ(k) + C(L)

]
H(m)


1
2

(2)

Φ(k) = 1− rbCbQ

Dπ
(3)

S =
αBQm

D
(4)
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For fixed Q, k, S, and m, the function JATC(Q, k, L, S,m) is concave in L. Hence,

for fixed Q, k, S, and m, the minimum value of JATC(Q, k, L, S,m) is attained at the

end points of the interval [Li, Li−1].

Distribution free approach

We do not make any assumption for the distribution of the lead time demand X except

that the cumulative distribution function (c.d.f.) F of the lead time demand belongs to

the class = of c.d.f. with mean DL and standard deviation σ
√
L.

The joint total cost for distribution free case is

Min JATCf (Q, k, S, L,m) = αB(lnS0 − lnS) +
D

Q

[
A+

S

m
+

1

2
πσ
√
L(
√

1 + k2 − k)

+ C(L)
]

+
Q

2
H(m) + rbCbkσ

√
L (5)

2.2 Conclusions

This study considered an integrated vendor-buyer supply chain model with the lead

time, ordering quantity of the buyer, reorder point, quantity shifted from the vendor to

the buyer, and the setup cost for the vendor as decision variables. An investment function

was used to minimize the vendor’s setup cost. The demand during lead time follows a

normal distribution and in the second model, the distribution free approach is applied

for the lead time demand. We minimized the joint total expected cost for the buyer

and the vendor for both the normal distribution and the distribution free cases. Finally,

we saved more amount of money compared to the previous studies related to this problem.
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3 Manufacturing quality improvement and setup cost

reduction in an integrated vendor-buyer supply chain

system

This research improves the quality improvement of a single type of product and reduces

vendor’s setup cost in a single-vendor and single-buyer model. The buyer’s demand is

deterministic, but the lead time demand follows firstly a normal distribution and then

follows no specific distribution except known mean and standard deviation. Based on the

nature of lead time demand distribution, this research considers two different models. The

procedure of reducing the vendor’s setup cost and the manufacturing quality improvement

of products are established analytically.

Assumptions

The assumptions remains same as previous model since this model is an extension of

the previous model.

3.1 Mathematical model

If IS is the investment for setup cost reduction, then it can be expressed as

IS = B ln(S0

S
) for 0 < S ≤ S0, i.e., IS = B(lnS0− lnS), where S0 is the initial setup cost,

B = 1
δ
, and δ = The percentage decrease in S per dollar increase in IS.

Investment in quality improvement of the product

We assume the capital investment as Iθ for the reduction of the out-of-control proba-

bility θ. Thus, Iθ can be expressed as

Iθ = b ln( θ0
θ

) for 0 < θ ≤ θ0, i.e., Iθ = b(ln θ0 − ln θ), where θ0 is the initial probability for

which the production process can go out-of-control and b = 1
∆

, where ∆ represents the
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percentage decrease in θ per dollar increase in Iθ.

The joint total expected cost of the buyer and the vendor is

JATC(Q, k, S, θ, L,m) = ATCb(Q, k, L) + ATCv(Q,S,m)

= α [B(lnS0 − lnS) + b(ln θ0 − ln θ)]

+
D

Q

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

Q

2

[
rbCb + rvCv

{
m

(
1− D

P

)
− 1 +

2D

P

}]
+ rbCbkσ

√
L+

sDmQθ

2
(6)

The minimum value of JATC(Q, k, S, θ, L,m) attends at the end point of the interval

[Li, Li−1]. Now for fixed positive integer m, the values of Q, Φ(k), S, and θ are obtained

from the following equations

Q =

2D
[
A+ S

m
+ πσ

√
Lψ(k) + C(L)

]
H(m) + sDmθ


1
2

(7)

Φ(k) = 1− rbCbQ

Dπ
(8)

S =
αBQm

D
(9)

θ =
2αb

sDmQ
(10)

The optimal value of m can be obtained when

JATC(m∗ − 1) ≥ JATC(m∗) ≤ JATC(m∗ + 1)

Distribution free approach

We consider any distribution function (d.f.) F for the lead time demand in the class

G of d.f.’s with mean DL and standard deviation σ
√
L. The model,in distribution free

9



case, can be written as

Min JATCf (Q, k, S, θ, L,m) = α [B(lnS0 − lnS) + b(ln θ0 − ln θ)]

+
D

Q

[
A+

S

m
+

1

2
πσ
√
L(
√

1 + k2 − k)

+ C(L)
]

+
Q

2
H(m) + rbCbkσ

√
L+

sDmQθ

2

subject to 0 < S ≤ S0

0 < θ ≤ θ0 (11)

where H(m) = rbCb + rvCv

[
m

(
1− D

P

)
− 1 +

2D

P

]

3.2 Conclusions

This research model considered an single-vendor single-buyer supply chain model with

controllable lead time. This research improved the manufacturing quality of products and

reduced the vendor’s setup cost by using an investment function. The total system cost is

reduced for the variable setup cost rather than fixed setup cost. The initial out-of-control

probability was also reduced after using the investment function for quality improvement.

This study suggests the managers of an industry to pay funds for collecting market infor-

mation. The model can be extended by assuming the production of multi-item.
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4 Two-echelon supply chain model with manufactur-

ing quality improvement and setup cost reduction

For quality improvement purposes often times, a manufacturing unit has to change

certain parts of equipment. Any such changes in the assembly line manufacturing system

or production process involves a cost known as the setup cost. Minimizing the setup cost

and improving the product quality is of prime importance in today’s competitive business

arena. This research develops the effects of setup cost reduction and quality improvement

in a two-echelon supply chain model with deterioration. The objective is to minimize the

total cost of the entire supply chain model (SCM) by simultaneously optimizing setup

cost, process quality, number of deliveries, and lot size.

Assumptions

We relax the common assumptions which were already used in the previous models.

1. As SSMD policy is used to save the holding cost of buyer, thus buyer pays trans-

portation costs. For SSMD policy, it is assumed that there are some constant

transportation costs and some variable costs. These both constant and variable

transportation cost are paid by buyer.

2. Information regarding the inventory position and demand of the buyer are given to

the supplier.

3. The vendor uses autonomation policy (automatically detects the defective item by

machine, no human inspector is needed to inspect the defectiveness of items) to

detect the imperfect production. As a result, if the system moves to out-of-control

state from in-control state, it will continue production of defective items until the

whole lot is produced.

4. A constant rate of deterioration is considered for products.
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4.1 Mathematical model

Let y be the number of deteriorating units for the supplier. y can be expressed as

y = dAs. y + dqT/2 denotes the total number of deteriorating items for the entire SCM.

With the following expressions Q = Nq + y and t1 = Q
P

and considering the initial and

the total inventory for the entire SCM, we obtain

y +
dqT

2
=

dT

2P
{2Dq + (Nq + y)(P −D)}.

Hence,

As =
y

d

= qT

(
D

P
+
N − 1

2
− DN

2P

)
. (12)

Investment to reduce the out-of-control probability θ is given as

Iθ(θ) = b ln
(θ0

θ

)
for 0 < θ ≤ θ0

Now IC(C), the investment for setup cost reduction is expressed as

IC(C) = B ln
(C0

C

)
for 0 < C ≤ C0

The expected annual defective cost is sDθ
2

[
Nq + 2Ndq2

2D+dq

(
D
P

+ N−1
2
− DN

2P

)]
. The

integrated inventory cost for the entire SCM is

TC(θ,N, q, C) =
( D
Nq

+
d

2N

)
(A+ C +NF + V Nq) +

q

2

[
(HB + Cdd)

+ (Hs + Cdd)
((2−N)D

P
+N − 1

)]
+ α

(
G− b ln θ −B lnC

)
+ sD

θ

2

[
Nq +

2Ndq2

2D + dq

(
D

P
+
N − 1

2
− DN

2P

)]
(13)

for 0 < θ ≤ θ0 and 0 < C ≤ C0, α being the fractional cost of capital investment (e.g.,

the rate of interest).
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We obtain the the values of the decision variables as

θ =
2bα

sD
[
Nq + 2Ndq2

2D+dq

(
D
P

+ N−1
2
− DN

2P

)] , (14)

N =

√
φ2 −N3φ3

φ1

, (15)

where,

φ1 =
q

2

[
(Hs + Cdd)

(
1− D

P

)]
+

sD2θq

2D + dq
(1 +

dq

P
)

φ2 =
(2D + dq)(A+ C)

2q

φ3 =
3

2

(
1− D

P

)(
sDθdq2

2D + dq

)

q =

√
ρ1

ρ4 +Nρ2{1 + 2dqρ3(4D+dq)
(2D+dq)2

}
, (16)

where,

ρ1 =
D

N
(A+ C +NF )

ρ2 =
sDθ

2

ρ3 =

(
D

P
+
N − 1

2
− DN

2P

)
ρ4 =

1

2

[
(HB + Cdd) + (Hs + Cdd){(2−N)D

P
+N − 1}

]
+
dV

2

C =
2αBNq

2D + dq
. (17)
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4.2 Conclusions

The objective of this research was to minimize the total cost of the entire SCM while

simultaneously optimizing lot size, number of deliveries, setup cost, and process quality.

Two logarithmic investment functions for quality improvement and setup cost reduction,

respectively were incorporated in this model. Quality improvement and setup cost reduc-

tion played a very significant role in improving efficiency of businesses and organizations

from every sphere by reducing redundancy in costs and enhancing productivity thereby

accounting for the flexibility of today’s diverse business environment. Any adverse event

would have a direct consequence on the business and customers leading to wastage of time

and resource. An accurate expertise on the approaches of industries and organizations to

implement these changes for a sustainable quality improvement is therefore critical. This

model proved the global optimization solution of the decision variables.
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5 Joint effect of price and demand on decision mak-

ing in a supply chain management

This research model deals with a manufacturer-retailer supply chain model with de-

centralized decisions. Manufacturer’s profit depends on the decisions made by retailer.

Depending on the nature of the purchasing cost of retailer, this study considers two cases.

In first case, retailer’s purchase cost fully depends on the decisions made by retailer and

in second case manufacturer determines the purchase cost of the retailer independently.

Single-setup single-delivery (SSSD) and single-setup multi-delivery (SSMD) policies are

considered for first and second cases, respectively. Retailer obtains the optimum selling

price of product to maximize its profit. The customer’s demand is price-sensitive whereas

the lead time demand is considered as stochastic. The lead time demand follows a normal

distribution. The distribution free approach is considered for known mean and standard

deviation.

Assumptions

We relax the common assumptions which were already used in the previous models.

1. Due to the economic background of the people of suburban areas, increasing selling

price is a important factor of decreasing demand. Thus, we assume that demand is

dependent on selling price of retailer with the relation D(p) = a−bp−cp2; a, b, c > 0.

2. Continuous review policy is considered i.e., retailer places an order when the inven-

tory level reaches to the reorder point.
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5.1 Mathematical model

Total expected profit for retailer is

TEPb(Q, r, L, p) = (p− Cb)D(p)− A(a− 2bp− 3cp2)

Q
− rbCb

(
Q

2
+ r −D(p)L

)
− πD(p)

Q
σ
√
Lψ(k)− D(p)C(L)

Q
(18)

ψ(k) = φ(k)− k[1− Φ(k)] and

φ(k) = standard normal probability density function

Φ(k) = cumulative density function of normal distribution

Taking partial derivatives of the above equation with respect to Q and k, and equating

to zero, we obtain

Qb =

{
2D(p)[A+ πσ

√
Lψ(k) + C(L)]

rbCb

}1/2

(19)

Φ(k) = 1− rbCbQb

πD(p)
(20)

The second order partial derivative of (18) with respect to L is negative, thus, the

optimum value of L can be obtained at the end point of the interval [Li, Li−1].

The optimal selling price are

p∗1 =

√
B2

1 − 4A1C1 −B1

2A1

(21)

p∗2 =
−
√
B2

1 − 4A1C1 −B1

2A1

(22)

where A1 = −3c

B1 = 2

{
cCb − b+

αc

Q

}
C1 = Cbb+

bα

Q
+ a

α = A+ πσ
√
Lψ(k) + C(L)

(23)
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SSSD policy

In this case, manufacturer’s total profit equation is

TEPv(p,Q) = Total revenue− Setup cost− Holding cost−Material cost

= CbD(p)− SD(p)

Q
− rvCv

QD(p)

2P
− CvD(p) (24)

The optimal lot size for manufacturer is

Qv =

{
2SP

rvCv

}1/2

(25)

Clearly, the order quantity for retailer must be equal to the lot size produced by

manufacturer. The purchase cost for retailer is

C∗b =
rvCvD(p)α

rbPS
(26)

The manufacturer’s total profit can be obtained by substituting values of the decision

variables of the retailer’s in the manufacturer’s profit function i.e.,

TEPv(Q
∗
b , C

∗
b , p
∗) = C∗bD(p∗)− SD(p∗)

Q∗
− rvCvQ

∗D(p∗)

2P
− CvD(p∗) (27)

SSMD policy

The total profit equation for manufacturer is

TEPv(Q,Cb, p,m) = CbD(p)− SD(p)

mQ
− rvCv

2

[
m

(
1− D(p)

P

)
− 1

+
2D(p)

P

]
Q− CvD(p) (28)

Substituting the values of decision variables of retailer in manufacturer’s total profit

equation for SSMD policy, the maximum profit for the manufacturer can be obtained

when the following inequality holds

TEPv(Q
∗
b , C

∗
b , p
∗,m− 1) ≤ TEPv(Q

∗
b , C

∗
b , p
∗,m) ≥ TEPv(Q

∗
b , C

∗
b , p
∗,m+ 1)
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Distribution free approach

We consider a distribution function (d.f) F for the lead time demand in the class G (say)

of d.f.’s with the finite mean D(p)L and standard deviation σ
√
L.

Total profit equation for retailer for distribution free case is

TEP f
b (Q, k, p, L) = (p− Cb)D(p)−

[AD(p)

Q
+ rbCb

(
Q

2
+ r −D(p)L

)
+ CbD(p)

+
πD(p)

Q
σ
√
L(
√

1 + k2 − k)/2 +
D(p)C(L)

Q

]
(29)

The optimal selling price for distribution free case are

pf∗1 =

√
B2

2 − 4A2C2 −B2

2A2

(30)

pf∗2 =
−
√
B2

2 − 4A2C2 −B2

2A2

(31)

Now, for SSSD policy the purchase cost for the retailer and the manufacturer’s profit

equation can be calculated as

Cf∗
b =

rvCvD(p)β

rbPS
(32)

and TEPv(Q
f∗
b , C

f∗
b , p

f∗) = Cf∗
b D(pf∗)− SD(pf∗)

Qf∗

− rvCvQ
f∗D(pf∗)

2P
− CvD(pf∗) (33)

Similarly, for SSMD policy the total profit for manufacturer is

TEPv(Q
f∗, Cf∗

b , p
f∗,m) = Cf∗

b D(pf∗)− SD(pf∗)

mQf∗

− rvCv
2

[
m

(
1− D(pf∗)

P

)
− 1 +

2D(pf∗)

P

]
Qf∗

− CvD(pf∗) (34)

The optimal profit for the manufacturer can be obtained as

TEPv(Q
f∗
b , C

f∗
b , p

f∗,m− 1) ≤ TEPv(Q
f∗
b , C

f∗
b , p

f∗,m) ≥ TEPv(Q
f∗
b , C

f∗
b , p

f∗,m+ 1)
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5.2 Conclusions

When manufacturer determined the purchasing cost for retailer by SSSD policy, it was

found that both manufacturer and retailer were gainer. If the manufacturer determined

retailer’s purchasing cost of its own without taking retailer’s decisions into consideration,

then either manufacturer or retailer or both of them would face low profit. In that case,

manufacturer fixed purchasing cost such that the difference between the total profit of

manufacturer and retailer would be minimum. Otherwise, uncontrolled increase of pur-

chasing cost might result increase of selling price of retailer which decreased the annual

demand and hence the revenue also. Thus, the retailer might face a significant loss.

Furthermore, for fixed purchase cost, the manufacturer can also follow SSMD policy to

increase its profit.
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6 Distribution free newsvendor model with consign-

ment policy and retailer’s royalty reduction

This study deals with a single period newsvendor problem with a consignment policy. A

consignment policy is an agreement between any two parties called the consignor and the

consignee. Both parties carry some portions of the holding cost, instead of just one. A

new policy for paying the fixed fee to the consignee is introduced. This research considers

no specific probability distribution for the customer’s demand except mean and standard

deviation. The solution of this model is obtained by using a distribution free approach.

A comparison between the traditional supply chain policy and the consignment policy is

also established. The price sensitivity for the mean demand is analyzed.

Assumptions

1. A single period newsvendor model is considered and no specific probability distri-

bution is considered for the customer’s demand. However, the mean and standard

deviation of the demand are known.

2. In the traditional policy, total inventory carrying cost is carried by the retailer while

in the consignment policy, the financial and the operational portion of the inventory

holding cost are given by the manufacturer and the retailer, respectively.

3. The manufacturer pays a commission to the retailer per unit item sold, as well as a

fixed fee.

4. During stockout, for each item, the manufacturer or retailer has to face a goodwill

loss.
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6.1 Mathematical model

Traditional policy

The Retailer’s expected profit can be written as

E(πTSr ) = p(µ+Q)− wQ− hTSr
{

[σ2 + (Q− µ)2]1/2 − (µ−Q)

2

}
− sr

{
[σ2 + (Q− µ)2]1/2 − (Q− µ)

2

}
= p(µ+Q)− wQ− hTSr + sr

2
[σ2 + (Q− µ)2]1/2

− hTSr − sr
2

(Q− µ).

(35)

The revenue of the manufacturer is wQ and the cost incurred by the manufacturer is

the manufacturing cost. The expected profit of the manufacturer is

E(πTSm ) = wQ− cQ = (w − c)Q. (36)

In order to maximize the expected total profit of the retailer, we take the derivative

of (35) with respect to Q.

∂E(πTSr )

∂Q
= p− w − hTSr + sr

2
[σ2 + (Q− µ)2]−1/2(Q− µ).

Equating the above equation to zero we obtain

Q∗r = µ+
σΓ√

1− Γ2
where Γ =

2(p− w)− (hTSr − sr)
hTSr + sr

. (37)

Using (37), (36) can be written as

E(πTSm ) = (w − c)Q∗r = (w − c)
[
µ+

σΓ√
1− Γ2

]
. (38)
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Consignment policy

The expected total profit of the retailer for the consignment policy is

E(πCPr ) = α(µ+Q)− hCPr
{

[σ2 + (Q− µ)2]1/2 − (µ−Q)

2

}
− sr

{
[σ2 + (Q− µ)2]1/2 − (Q− µ)

2

}
+ A

= α(µ+Q)− hCPr + sr
2

√
σ2 + (Q− µ)2

+
hCPr − sr

2
(µ−Q) + A.

(39)

In order to maximize the profit of the retailer, we take the derivative of (39) with

respect to Q which gives

∂E(πCPr )

∂Q
= α− (hCPr + sr)(Q− µ)

2
√
σ2 + (Q− µ)2

− hCPr − sr
2

.

Now, equating the above equation to zero, we obtain

QCP∗
r = µ+

σΓCP√
1− Γ2

CP

where Γ =
2α− (hCPr − sr)

hCPr + sr
. (40)

The expected total profit of the manufacturer is

E(πCPm ) = p(µ+Q)− αµ− αQ− cQ− hCPm
{

[σ2 + (Q− µ)2]1/2 − (µ−Q)

2

}
− sm

{
[σ2 + (Q− µ)2]1/2 − (Q− µ)

2

}
− A

= p(µ+Q)− cQ− αQ− αµ− hCPm + sm
2

√
σ2 + (Q− µ)2

+
hCPm − sm

2
(µ−Q)− A.

(41)
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The joint total expected profit for manufacturer and retailer under consignment policy

is

E(πCPJ ) = α(µ+Q)− hCPr + sr
2

√
σ2 + (Q− µ)2 +

hCPr − sr
2

(µ−Q) + A

+ p(µ+Q)− cQ− αQ− αµ− hCPm + sm
2

√
σ2 + (Q− µ)2

+
hCPm − sm

2
(µ−Q)− A

= (α + p)(µ+Q)− cQ− αQ− αµ

− (hCPr + hCPm ) + (sr + sm)

2

√
σ2 + (Q− µ)2

+
(hCPr + hCPm )− (sr + sm)

2
(µ−Q).

(42)

In order to maximize the joint total expected profit we take the derivative of (42)

with respect to Q and equating to zero we obtain

QCP∗
J = µ+

σλ√
1− λ2

where λ =
2(p− c)− ((hCPr + hCPm )− (sr + sm))

(hCPr + hCPm ) + (sr + sm)
(43)

(44)

Evaluation of per unit commission

α =
hr − sr

2
+

hr + sr
2(HCP + SCP )

(2(p− c)− (HCP − SCP )), (45)

where HCP = (hCPr + hCPm ) and SCP = (sr + sm).

Evaluation of the fixed fee paid by the manufacturer to the retailer

A ≤ p(µ+QTS
r )− wQTS

r −
hTSr + sr

2

√
σ2 + (QTS

r − µ)2

− hTSr − sr
2

(QTS
r − µ)− α(µ+QCP

r ) +
hCPr + sr

2

√
σ2 + (QCP

r − µ)2

+
hCPr − sr

2
(QCP

r − µ).

(46)

23



Proposed way to evaluate the fixed fee

A = E(πTSr )− E(πCPr )

The value of A will be negative if

E(πCPr ) > E(πTSr ) (47)

Now, we obtain the ratio

r =
∣∣∣E(πTSr )

E(πCPr )

∣∣∣ (48)

If (47) holds then r < 1 and

An = rA =
∣∣∣E(πTSr )

E(πCPr )

∣∣∣A < A (49)

Thus, the royalty which is to be given by the retailer can be reduced in this way. The

expected profit for the retailer and the manufacturer for this new fixed cost will be

E(πCPrn ) = α(µ+QCP
r )− hCPr

{
[σ2 + (QCP

r − µ)2]1/2 − (µ−QCP
r )

2

}
− sr

{
[σ2 + (QCP

r − µ)2]1/2 − (QCP
r − µ)

2

}
+ An

= α(µ+QCP
r )− hCPr + sr

2

√
σ2 + (QCP

r − µ)2

+
hCPr − sr

2
(µ−QCP

r ) + An and

(50)

E(πCPmn ) = p(µ+QCP
r )− αµ− αQCP

r − cQCP
r − hCPm

{
[σ2 + (QCP

r − µ)2]1/2 − (µ−QCP
r )

2

}
− sm

{
[σ2 + (QCP

r − µ)2]1/2 − (QCP
r − µ)

2

}
− An

= p(µ+QCP
r )− cQCP

r − αQCP
r − αµ−

hCPm + sm
2

√
σ2 + (QCP

r − µ)2

+
hCPm − sm

2
(µ−QCP

r )− An, respectively.

(51)
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6.2 Conclusions

The optimal decisions was obtained for both traditional and consignment policy. It was

observed that the joint profit for the consignment policy is greater than that of the tra-

ditional policy. To reduce the royalty for the retailer to the manufacturer a new method

was provided. By using the proposed method the royalty for the retailer was reduced

without affecting the joint total expected profit for both parties. The price sensitivity on

demand was also been examined which showed that increment of a fraction of price may

result reduction of total expected profit.
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7 A multi-retailer supply chain model with backo-

rder and variable production cost

This model considers an integrated supply chain model where a single vendor manufac-

tures goods in a batch production process and supplies to a set of buyers over multiple

times. Instead of assuming a fixed production rate which is commonly used in literature,

variable production rate is considered by the vendor and also the production cost of the

vendor is treated as a function of production rate. The continuous review inventory policy

is applied by the buyers to inspect the inventory level and a crashing cost is incurred by

all buyers to reduce lead time. The lead time demand follows a normal distribution. The

unsatisfied demand at the buyers end are partially backordered. A service level constraint

is incorporated corresponding to each buyer. A model is formulated to minimize the joint

expected cost of the vendor-buyers supply chain system.

Assumptions

1. A single vendor supplies products to a number of buyers.

2. To satisfy the demand of each buyer, vendor supplies a total of Q quantity such

that Q =
∑n

i=1 qi.

3. The vendor manufactures mQ quantity against the order of qi quantity of buyer i

but the shipment should be in quantity Q over m times. The shipment procedure

follows the relation qi = di
Q
D

i.e., qi
di

= Q
D

.

4. Production rate is a variable quantity which varies within the range Pmin (Pmin >

D =
∑n

i=1 di) and Pmax.

5. The unit production cost of the vendor is a function of P .

6. Partial backorder is considered with backorder ratio βi for ith retailer.
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7. For ith retailer, we assume Li,0 ≡
∑ni

j=1 bi,j. Li,r is the length of lead time with

components 1, 2, ..., r crashed to their minimum duration. Thus, Li,r can be ex-

pressed as Li,r = Li,0 −
∑r

j=1(bi,j − ai,j), r = 1, 2, ..., n; and the lead time crashing

cost per cycle Ci(Li) is expressed as Ci(Li) = ci,r(Li,r−1−Li) +
∑r−1

j=1 ci,j(bi,j − ai,j),

L ∈ [Li,r, Li,r−1].

8. The lead time crashing cost entirely belongs to the buyer’s cost component.

7.1 Mathematical model

The joint total expected cost for both vendor and the buyers (JTEC) is obtained from

the following equation.

JTEC(Q, ki, Li, P,m) =
n∑
i=1

D

Q

[
Abi + {πi + πoi(1− βi)}σi

√
Liψ(ki) +

Av
m

+R(Li)

]
+

n∑
i=1

hbi

[
Q

2D
di + kiσi

√
Li + (1− βi)σi

√
Liψ(ki)

]
+

Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+D

(a1

P
+ a2P

)
(52)

We note that the second order partial derivative of the joint total cost function with

respect to Li is

∂2JTEC(Q, ki, Li, P,m)

∂L2
i

= − D

4Q
{πi + π0i(1− βi)}σiψ(ki)L

−3/2
i

− (kiσi + (1− βi)σiψ(ki))
hbiL

−3/2
i

4
(53)

Which is a negative term for 0 < βi < 1 and all the positive values of the parameters

and decision variables present in (53). Therefore, for fixed Q, ki, P , and m, the function

JTEC(Q, ki, Li, P,m) is concave in Li. Thus, for fixed Q, ki, P , and m, the minimum

value of JTEC(Q, ki, Li, P,m) attains at the end point of the interval [Li,j, Li,j−1]. Now

for fixed positive integer m, and for any fixed value of Li the values of Q, Φ(ki), and P
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can be obtained as,

Q =

{
2D{Av/m+

∑n
i=1(Abi + [πi + π0i(1− βi)]σi

√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(
1− D

P

)
− 1 + 2D

P

] }1/2

(54)

Φ(ki) = 1− hbi
D
Q

(πi + π0i(1− βi)) + (1− βi)
(55)

P =

{
2a1 −Qhv(m− 2)

2a2

}1/2

(56)

7.2 Conclusions

This study proposed a single vendor and multiple buyers supply chain model. Variable

lead time was considered at the buyer’s end. The lead time demand was assumed to follow

a normal distribution. The vendor’s production rate was considered as variable rather

than as a fixed entity. Moreover, the unit production cost was also treated as a variable

that was dependent on the production rate, and a special type of function was considered

to establish the relation between the production rate and the unit production cost. At the

end of the production, the finished goods were delivered to a number of buyers through

a multi-delivery policy.
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8 Relation between quality of products and production-

rate in a single-vendor multi-retailer joint economic

lot size model with variable production cost

This study deals with an integrated single vendor multi-buyer supply chain model with

variable production rate and imperfect quality. The production rate of the vendor is

treated as flexible. The quality of the products is also dependent on the production rate.

The relation between process quality and production rate is established in this context.

Moreover, the unit production cost is also considered to be a function of the production

rate. End products are delivered to satisfy the demands of buyers over multiple time

segments. The lead time is variable and a lead time crashing cost is incorporated by the

buyers to lower the lead time, whereas the lead time demand is considered to be stochas-

tic and to follow a normal distribution. The aim of this research is to analyze how the

flexibility of the production rate affects the entire supply chain cost under a single-setup

multi-delivery policy.

Assumptions

We relax the common assumptions which were already used in the previous models.

1. The unit production cost is dependent on the production rate P and the quality of

the product deteriorates with increasing production rate.

2. The elapsed time after the production system goes out-of-control is an exponen-

tially distributed random variable and the mean of the exponential distribution is

a decreasing function of the production rate [21].
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8.1 Mathematical model

The objective of this research is to obtain centralized decisions for both the vendor and

the buyers to minimize the joint total supply chain cost. The joint total expected cost

for both the vendor and the buyers (JTEC) can be expressed as

JTEC(Q, ki, Li, P,m) =
n∑
i=1

[AbiD
Q

+ hbi

{
Q

2D
di + kiσi

√
Li

}
+

D

Q
πiσi

√
Liψ(ki) +R(Li)

D

Q

]
+

AvD

mQ
+
Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+ RDαf(P )

Q

2P
+DC(P ). (57)

When the machines are inoperative i.e., the production process ceases, there is no

chance of any defective products to be created or the probability of the process going

out-of-control is zero. As the machines change into operation mode, the chances of the

arrival of defective goods appear. We consider an increasing function f(P ) of production

rate P such that the mean time to failure 1
f(P )

becomes a decreasing function of P . We

introduce three different cases with three different functions to define the mean time to

failure.

Case 1:
1

f(P )
=

1

b1P
(The quality function f(P ) is linear in P ), (58)

Case 2:
1

f(P )
=

1

b2P + c2P 2
(The quality function f(P ) is quadratic in P ), (59)

Case 3:
1

f(P )
=

1

b3P + c3P 2 + d3P 3
(The quality function f(P ) is cubic in P ).(60)

where b1, b2, c2, b3, c3 and d3 are non-negative real numbers that provide the best fit for

the function f(P ) as well as 1
f(P )

. We denote Qp, k
p
i , and Pp for Case p, p = 1, 2, and 3,

denote the three cases described above, respectively.
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Case 1 (Linear quality function)

Q1 =

 2D{Av/m+
∑n

i=1(Abi + πiσi
√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(

1− D
P1

)
− 1 + 2D

P1

]
+ RDαb1P1

P1

1/2

, (61)

Φ(k1
i ) = 1− hbiQ1

Dπi
, (62)

P1 =

[
2a1D −Q1hvD(m− 2)

2Da2

]1/2

, (63)

JTEC1(Q1, ki, Li, P1,m) =
n∑
i=1

[AbiD
Q1

+ hbi

{
Q1

2D
di + kiσi

√
Li

}
+

D

Q1

πiσi
√
Liψ(ki) +R(Li)

D

Q1

]
+

AvD

mQ1

+
Q1

2
hv

[
m

(
1− D

P1

)
− 1 +

2D

P1

]
+ RDαb1P1

Q1

2P1

+D

(
a1

P1

+ a2P1

)
. (64)

Case 2 (Quadratic quality function)

Q2 =

 2D{Av/m+
∑n

i=1(Abi + πiσi
√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(

1− D
P2

)
− 1 + 2D

P2

]
+

RDα(b2P2+c2P 2
2 )

P2

1/2

, (65)

Φ(k2
i ) = 1− hbiQ2

Dπi
, (66)

P2 =

[
2a1D −Q2hvD(m− 2)

2Da2 +RαDQ2b

]1/2

, (67)

JTEC2(Q2, ki, Li, P2,m) =
n∑
i=1

[AbiD
Q2

+ hbi

{
Q2

2D
di + kiσi

√
Li

}
+

D

Q2

πiσi
√
Liψ(ki) +R(Li)

D

Q2

]
+

AvD

mQ2

+
Q2

2
hv

[
m

(
1− D

P2

)
− 1 +

2D

P2

]
+ RDα(b2P2 + c2P

2
2 )
Q2

2P2

+D

(
a1

P2

+ a2P2

)
. (68)
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Case 3 (Cubic quality function)

Q3 =

 2D{Av/m+
∑n

i=1(Abi + πiσi
√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(

1− D
P3

)
− 1 + 2D

P3

]
+

RDα(b3P3+c3P 2
3 +d3P 3

3 )

P3

1/2

, (69)

Φ(k3
i ) = 1− hbiQ3

Dπi
, (70)

P3 =

[
2Da1 −Q3hvD(m− 2)

2(d3RαDQ3P3 +Da2) +RαDQ3c2

]1/2

, (71)

JTEC3(Q3, ki, Li, P3,m) =
n∑
i=1

[AbiD
Q3

+ hbi

{
Q3

2D
di + kiσi

√
Li

}
+

D

Q3

πiσi
√
Liψ(ki) +R(Li)

D

Q3

]
+

AvD

mQ3

+
Q3

2
hv

[
m

(
1− D

P3

)
− 1 +

2D

P3

]
+ RDα(b3P3 + c3P

2
3 + d3P

3
3 )
Q3

2P3

+D

(
a1

P3

+ a2P3

)
.(72)

8.2 Conclusions

The effects of mean time to failure for the three cases stated above on the entire supply

chain cost was examined, which provides a tremendous managerial insight for the indus-

try. Again, the model was also studied when the mean time to failure was independent

of the production rate. Moreover, the unit production cost was also treated as a variable

that was dependent on the production rate, and a special type of function was considered

to establish the relation between the production rate and the unit production cost. At the

end of the production, the finished goods were delivered to a number of buyers through

a multi-delivery policy.
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9 A study on three different dimensional facility lo-

cation problems

In supply chain strategy, designing a network is one of the most important part. This

model deals with various dimensional facility location models. Initially, this study begins

with two echelon facility location model of dimension two. Then, it is extended to three

dimensional model by adding commodity type and then, different types of transportation

modes are added to make it four dimensional model. Delivery lead time and outside

suppliers are assumed to meet the retailer’s demand too. This research compares the

optimal solutions among every dimension. A study on the procedure of reducing the

total cost of the supply chain network is also incorporated by applying a small change in

constraint set.

Assumptions

1. The model deals with two echelon supply chain network with plants and warehouses

having fixed capacities..

2. Outsider suppliers are considered to fulfill the demands of the retailers too.

3. An annual fixed cost is needed for each warehouse and plant to be opened.

4. Plant and warehouse at each site have a fixed inventory holding.

9.1 Mathematical model

Problem P1

Here, we assume a capacitated facility location problem in dimension two. The

dimensions are considered as two locations in between which the commodity are to be

shifted. This model deals with two echelon supply chain. i.e., the commodities are to be
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delivered from plants to warehouses and from warehouses to retailers.

Objective function:

Minf =
∑
i∈I

∑
j∈J

TCijxijDi +
∑
k∈K

∑
j∈J

PTCjkyjkWCj

+
∑
i∈I

OSCiDisi +
∑
j∈J

ICjIj +
∑
k∈K

JCkJk +
∑
j∈J

TCWjzj

+
∑
k∈K

TCPkck +
∑
i∈I

∑
j∈J

MDiTWRijxij +
∑
j∈J

∑
k∈K

MWCjTPRjkyjk

Subject to the constraints: ∑
j∈J

xij ≥ 1

si ≥ 1∑
k∈K

yjk ≥ 1∑
i∈I

Dixij + Ij ≤ WCjzj∑
j∈J

WCjyjk + Jk ≤ PCkck

zj, ck ∈ {0, 1}∀j ∈ J, k ∈ K

0 ≤ xij, yjk, si ≤ 1

Problem P2

Now, product type is added as another new dimension.

Objective function:

Minf =
∑
i∈I

∑
j∈J

∑
p∈P

TCijpxijpDip +
∑
k∈K

∑
j∈J

∑
p∈P

PTCjkpyjkpWCj

+
∑
i∈I

∑
p∈P

OSCipDipsip +
∑
j∈J

∑
p∈P

ICjpIjp +
∑
k∈K

∑
p∈P

JCkpJkp +
∑
j∈J

TCWjzj

+
∑
k∈K

TCPkck +
∑
i∈I

∑
j∈J

∑
p∈P

MpDipTWRijpxijp +
∑
j∈J

∑
k∈K

∑
p∈P

MpWCjTPRjkpyjkp
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Subject to the constraints: ∑
j∈J

xijp ≥ 1

sip ≥ 1∑
k∈K

yjkp ≥ 1∑
i∈I

∑
p∈P

Dipxijp +
∑
p

Ijp ≤ WCjzj∑
j∈J

∑
p∈P

WCjyjkp +
∑
p

Jkp ≤ PCkck

zj, ck ∈ {0, 1}∀j ∈ J, k ∈ K

0 ≤ xijp, yjkp, sip ≤ 1

Problem P3

Again, another dimension is added here. Now, the type of transportation mode is set

as new additional dimension.

Objective function:

Minf =
∑
t∈T

∑
i∈I

∑
j∈J

∑
p∈P

TCt
ijpx

t
ijpDip +

∑
t∈T

∑
k∈K

∑
j∈J

∑
p∈P

PTCt
jkpy

t
jkpWCj

+
∑
i∈I

∑
p∈P

∑
t∈T

OSCt
ipDips

t
ip +

∑
j∈J

∑
p∈P

ICjpIjp +
∑
k∈K

∑
p∈P

JCkpJkp

+
∑
j∈J

TCWjzj +
∑
k∈K

TCPkck +
∑
t∈T

∑
i∈I

∑
j∈J

∑
p∈P

MpDipTWRt
ijpx

t
ijp

+
∑
t∈T

∑
j∈J

∑
k∈K

∑
p∈P

MpWCjTPR
t
jkpy

t
jkp
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Subject to the constraints:∑
t∈T

∑
j∈J

xtijp ≥ 1∑
t∈T

stip ≥ 1∑
t∈T

∑
k∈K

ytjkp ≥ 1∑
t∈T

∑
i∈I

∑
p∈P

Dipx
t
ijp +

∑
p

Ijp ≤ WCjzj∑
t∈T

∑
j∈J

∑
p∈P

WCjy
t
jkp +

∑
p

Jkp ≤ PCkck

zj, ck ∈ {0, 1}∀j ∈ J, k ∈ K

0 ≤ xtijp, y
t
jkp, s

t
ip ≤ 1

Change in constraint set

If the demand constraint sets for outside suppliers of the above three problems P1,

P2 and P3 are changed from each retailer to for all retailers i.e., if the demand is divided

into all retailers, then, the total cost will be minimized.

9.2 Conclusions

We concluded that the increment or reduction of cost depends on the type of the

dimension used. Two separate type of dimensions were used such as product type and

transportation mode. The types of products depend on the retailer’s demand, hence,

these create the increments of costs. Again, the mode of transportation is independent of

the retailer’s demand which indicates the reduction of the cost. Lastly, a small change in

the constraint sets was considered which results the decrement of total cost.
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Future extensions

There are many possible extensions of this research. Some of them are pointed below.

1. The single setup multi-delivery policy can be extended by unequal shipment.

2. The dimension of a facility location problem can be extended by generalized n

dimension for n ∈ N (Set of natural number).

3. A fruitful research can be done by assuming a discrete investment to reduce setup

cost instead of continuous investment.
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