## 2018

## MCA 2nd Semester Examination DATA STRUCTURE

PAPER-MCA-201

Subject Code-32

Full Marks: 100

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

## Answer any five questions.

- 1. (a) What is sparse matrix? How can we store sparse matrix in computer memory?
  - (b) Write a C program to store a sparse matrix in memory.
  - (c) Write down the general formula for representing location of a 2D matrix in column-major form and row-major form.

    (2+3)+5+4
- 2. (a) Define queue with example.
  - (b) Write an algorithm to insert an element into the queue and delete an element from the queue. 2+(6+6)

J 12 24

| 3. | (a) | Write an algorithm to evaluate a postfix expression. Trace |
|----|-----|------------------------------------------------------------|
|    |     | the same algorithm with stack contents for the following   |
|    |     | expression:                                                |

ABC + \*CBA - + \* with A = 1, B = 3, C = 5.

(b) Define AVL tree with an example.

10+4

4. Explain insertion sort with the following example (show step by step process):

15 5 19 2 8 1 6 13

14

11.

- 5. (a) Write an algorithm to insert an element in doubly linked list.
  - (b) Write an algorithm to delete the last element from doubly linked list.
- 6. Write an algorithm to construct a binary search tree and check the duplicate data. Draw binary search tree constructed for the following input:

14, 3, 6, 2, 18, 20, 15, 18, 0, 23.

14

7. Write short notes on (any two):

7+7

- (a) Threaded binary tree (insertion, deletion).
- (b) Circular queue (insertion, deletion).
- (c) AVL tree (insertion, deletion).
- (d) Polynomial Addition using linked list.

[Internal Assessment: 30 Marks]