2018

M.Sc. 1st Seme. Examination

ZOOLOGY

PAPER-200-103

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Immunology)

[Marks: 20]

1. Answer any two questions:

2×2

- (a) What do you mean by Affinity and Avidity.
- (b) Write the functional significance of
 - (i) Thymosin; (ii) Psoriosin; (iii) Hinge region;
 - (iv) Perforin.

expression.

3.

C/18/MSc/1st Sem/ZOO-103

(c) State how viral interferences negatively regulate MHC

	(d)	W	nat are NK cells	s ? Mention it	s function.	•		
2.	Answer any two questions:							
	(a)	(i)	Write the prop	perties of B-c	ell epitope.			
		(ii)	What is super	antigen ?		3+1		
	(b) Provide a comparative account of characteristics of l class I and Class II Peptide.							
	(c) Distinguish between Necrosis and Apoptosis with a diagram.							
	(d)	(i)	Write the prin	ciple of RIA.				
		(ii)	What is Sandy	vich ELISA?		3+1		
3.	Ans	swer any <i>one</i> question:						
	(a)		thern Blotting		procedure and application of dization. What is hybridization			
		hini	JC F			1 1 + 4 + 1 1 + 1		

(Continued)

(b) What are Antigen Presenting Cells (APC's)? Give example. Discuss endogenous pathway of antigen processing and presentation with proper illustrations. 2+6

Group-B

(Methods in Biology)

[Marks : 20]

4. Answer any two questions:

 2×2

- (a) Which vector (Plasmid, Phage λ, Cosmid, Bacterial Artifical Chromosome) can be used to clone a continuous fragment of DNA with the following lengths?
 - (i) 4 Kb; (ii) 35 Kb; (iii) 20 Kb; (iv) 100 Kb.
- (b) Write the applications of Agarose Gel Electrophoresis.
- (c) (i) State the role of lead citrate and uranyl acetate in the preparation of staining the specimen of TEM sample.
 - (ii) How many lenses are present in a TEM? 1+1
- (d) What is Biomagnification? Give example.

- (a) (i) Write the principle of SDS-PAGE.
 - (ii) What is the composition of loading dye used in gel electrophoresis?

3+1

- (b) Describe the features of a phagemid vector with ample.
- (c) (i) State the utility of BLAST.
 - (ii) Write the principle of 2D gel electrophoresis.

2+2

- (d) (i) How can you calculate the Rf value in TLC of a sample?
 - (ii) How you prepare the TLC plate in a biological laboratory?
- 6. Answer any one question :

1×8

- (a) (i) What is Bioremediation? Describe ex-situ and Insitu bioremediation process.
 - (ii) Add a note on cell fractionation.

1+4+3

(b) The drawing below shows a restriction map of a segment of a DNA molecule. Eco refers to locations where the restriction endonuclease Eco RI cuts the DNA, and Pst refers to locations where the restriction enzyme Pst I cuts the DNA. Potential restriction sites are numbered 1-6. Distance between restriction sites are shown on the bottom scale in base pair (bp). The thick line represents the part of the molecule that has homology with a probe.

Eco	Pst	Eco	Pst	Eco	Pst
].	Ţ	1	1
1	2	3	4	5	6
!	1 .	1	P I E	1	,
1 5000 t	p 3000	bp 4000	bp 2000	bp 5000	0 bp

- (i) Assume that individual 1 has restriction sites 1 through 6. If DNA is digested with Pst I, what are the expected size of the DNA fragments that will hybridize with the probe?
- (ii) Assume that individual 2 has a mutation that eliminates site 4. If DNA is digested with Pst I, what

are the expected sizes of the DNA fragments that will hybridize with the probe?

- (iii) Assume that individual 3 has a mutation that eliminates site 5. If the DNA is digested with Pst I, what are the expected size of the DNA fragments that will hybridize with the probe?
- (iv) If the DNA of individual 1 is digested with both Pst I and Eco Rl what are the expected size of DNA fragments that will hybridize with the probe?
- (v) If the DNA of individual 3 is digested with both Pst I and Eco RI what are the expected sizes of the DNA fragments that will hybridize with the probe?