2018

M.Sc. 2nd Semester Examination PHYSICS

PAPER-PHS-202

Subject Code-33

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Use separate Answer-scripts for Group-A & Group-B

Group-A

1. Answer any two of the followings:

2×2

- (a) "Perfect diamagnetism is a more fundamental property
 of superconductor in comparison to perfect conductivity"

 justify the statement.
- (b) Given the maximum wavelength of photon to break up cooper-pair in tin is 1.08×10^{-3} m. Calculate the energy gap.

(c) Find the magnetic field strength necessary to destroy superconductivity in a sample of lead at 4.2K. The critical magnetic field at 0K is 0.8 tesla and the critical temperature is 7.2K.

2. Answer any two of the followings:

2x3

- (a) Determine the percentage of ionic polarizability in the sodium chloride crystal which has the optical index of refraction and the static dielectric constant as 1.5 and 5.6 respectively.
- (b) Derive London equations from the current density of a superconductor

$$\vec{J} = -\frac{A}{\wedge_s c} + \frac{\hbar}{q \wedge_s} \nabla \theta$$

where the symbols have their usual meaning.

- (c) Explain polarizability of atoms and molecules. Discuss what are its sources.
- 3. Answer any one of the followings:
 - (a) Derive the expression for Debye equation in connection with dipolar polarizability. Show that the value of $\frac{\hbar}{2e}$ can be measured from a.c Josephson effect. 7+3

(b) What is superconductivity? Explain the term critical magnetic field in a superconductor. How does it vary with temperature?

Consider the relation

$$S_N - S_S = -\frac{B_c}{\mu_0} \frac{dB_c}{dT}$$

derive Rutger's formula for specific heat.

Prove that the total magnetic flux threading a closed resistance less circuit cannot be changed.

2+1+2+3+2

Group-B

Answer Q. No. 1 and 2 and any one from the rest.

1. Answer any two bits:

 2×2

- (a) Find the expression of depletion temperature from impurity to intrinsic conductivity in a p-type semiconductor.
- (b) What is meant by diffusion length?
- (c) Find an expression of barrier potential in a p-n junction under equilibrium condition.

2. Answer any two bits:

2×3

- (a) Show that Fermilevel remains invariant in p-n junction under equilibrium condition.
- (b) What is meant by quadratic recombination? Find an expression of excess carrier at any time when light is off in such recombination event?
- (c) What is meant by diffusion capacitance & find an expression of this capacitance?
- Find an expression of density of states in the conduction band of a semiconductor. Find the carrier concentration for degenerate semiconductor. How do you distinguish nondegenerate and degenerate semiconductor. 5+3+2
- 4. Explain the mechanism of operation of solar cell. Find an expression of efficiency of a solar cell. How the efficiency vary with band gap?

 3+6+1