2018

M.Sc.

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-401

Subject Code-21

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Functional Analysis)

Answer Q. No. 1 and any four from the rest.

1. Answer any four questions:

4x2

(a) Let F and G be subspaces of a Hilbert space H. Show that $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.

- (b) Let T: H → H be a bounded linear operator on a Hillert space H. Prove that if T is self-adjoint then <Tx, x> is real for all x∈ X.
- (c) Check whether C¹[0, 1] with the supremum norm is a Banach space.
- (d) Let X be a Banach space and f(x) = f(y), $\forall f \in X^*$, $x, y \in X$. Then show that x = y.
- (e) Let X be an inner product space and $A, B \subseteq X$. Then show that $A \subseteq B \Rightarrow B^{\perp} \subseteq A^{\perp}$.
- (f) Let A ∈ BL(H) where H is a Hilbert space.
 Show that there exist unique self-adjoint operators B and C such that A = B + iC.
- 2. (a) Let Y be a normed space and Y_0 be a dense subspace of Y. Suppose Z is a Banach space and $T \in B(Y_0, Z)$. Prove that there exists a unique $\tilde{T} \in B(Y, Z)$ such that $\tilde{T}/Y_0 = T$.
 - (b) In a finite dimensional normed linear space X, prove that any norm is equivalent to any other norm. 5+3
- (a) Suppose X = C¹[0, 1], the set of all functions f: [0, 1] →
 C such that f' exists and is continuous. Let Y = C[0, 1]
 and let X and Y be equipped with supremum norm. Define
 A: X → Y by Af = f'. Show that the graph of A is closed.

- (b) Let $\{T_n\}$ be a sequence of bounded self adjoint linear operators $T_n: H \to H$ on a Hilbert space H. If $T_n \to T$ then show that T is bounded self adjoint linear operator on H.
- 4. (a) Assume that $\{u_{\alpha}\}_{\alpha \in I}$ is an orthonormal set in the inner product space X and $x \in X$. Let $E_x = \{u_{\alpha} : \langle x, u_{\alpha} \rangle \neq 0\}$. Then show that E_x is a countable set.
 - (b) If H is simply an inner product space, then show that T∈BL(H, Y) may not have an adjoint. Here, Y is also an inner product space.
 4+4
- (a) Let A ∈ BL(H) is self adjoint, where H is a Hilbert space.
 Then show that
 - $||A|| = \sup \{|\langle Ax, x \rangle| : x \in H, ||x|| \le |\}.$
 - (b) Let X and Y be inner product spaces. Then a linear map F: X → Y satisfies < F(x), F(y) >=< x, y > for all x, y ∈ X if and only if it satisfies ||F(x)|| = ||x|| for all x ∈ X, where the norms on X and Y are induced by the respective inner products.

- 6. (a) Let P∈BL(H) be a non-fero Projection on a Hilbert space
 H. Show that P = 1 implies that P is an orthogonal Projection.
 - (b) Let A ∈ BL(H,Y) where H is a Hilbert space and Y is an inner Product space. Then show that the adjoint T* of T is the unique mapping of Y into H. ALso, show that T* ∈ BL(Y,H).

[Internal Assessment: 10 Marks]