2018

M.Sc.

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-206 (Unit-I)

Subject Code-21

Full Marks: 25

Time: 1 Hour

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(General Topology)

Answer Q. No. 1 and any two from the rest.

1. Answer any two questions:

2×2

- (a) Compare box topology and Product topology on the product space Πx_{α} .
- (b) Let $Y = [1, 2) \cup \{3\}$ be a subset of \mathbb{R} . Show that the subspace topology on Y is different from the order topology on Y.

- (c) Define locally connected and locally compact topological spaces.
- 2. (a) Let Y be a subspace of X. Then show that a set A is closed in Y if and only if $A = G \cap Y$, where G is closed set in X.
 - (b) Let X and Y be topological spaces and $f: X \to Y$ be a function. Then show that the following are equivalent—
 - (i) For every closed set B of Y, the set f⁻¹ (B) is closed in X,
 - (ii) For every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$. 4+4
- 3. (a) Show that \mathbb{R}^{w} in the box topology is not metrizable.
 - (b) Define path-connected topological space with example. Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X. Let A be a connected subspace of X. Show that if $A \cap A_{\alpha} \neq \emptyset$ for all α , then $A \cup (\cup A_{\alpha})$ is connected.

4+4

- 4. (a) Give an example of a topological space which is 1st countable but not 2nd countable.
 - (b) Show that every compact T2-space is normal.
 - (c) Show that a subspace of a completely regular space is completely regular. 2+3+3

[Internal Assessment — 5 Marks]