M.Sc. 3rd Semester Examination, 2018

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Partial Differential Equations and Generalized Functions)

PAPER - MTM-301

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any two from the rest

The figures in the right-hand margin indicate marks

- 1. Answer any two of the following questions: 4×2
 - (a) Define distribution on an open subset X of \mathbb{R}^n with an example. Using the differentiation of distribution, show that $H' = \delta$.
 - (b) Solve the following: $p^2 + q^2 = u^2$, u(x, 0) = 1.

(Turn Over)

- (c) Give an example of a second order partial differential equation (PDE) which is not well-posed. Justify your answer.
- 2. (a) Reduce the following equation to a canonical form and hence solve it:

$$3u_{xx} + 10u_{xy} + 3u_{yy} = 0.$$
 8

(b) Find the solution of

$$(D^2D' + D'^2 - 2)z = e^{2y}\cos 3x + e^x\sin 2y$$

where
$$D \equiv \frac{\partial}{\partial x}$$
, $D' \equiv \frac{\partial}{\partial y}$.

(c) Solve:
$$2(z + px + qy) = p^2y$$
.

3. (a) Show that the following Cauchy problem

$$u_{tt} - c^2 u_{xx} = F(x, t), -\infty < x < \infty, t > 0$$

$$u(x, 0) = f(x), u_t(x, 0) = g(x), -\infty < x < \infty$$

is well-posed for $-\infty < x < \infty$, $0 \le t \le \tau$ where $\tau > 0$ is fixed; $F, f_x \in C(\mathbb{R}^2), f \in C^2(\mathbb{R})$ and $g \in C^1(\mathbb{R})$.

6

(b) A pressure wave generated as a result of an explosion satisfies the equation

$$P_{tt} - 16P_{xx} = 0, -\infty < x < \infty, t > 0,$$

where P(x, t) is the pressure at the point x at time t. Suppose a building is located at the point $x_0 = 10$. The engineer who designed the building determined that it will sustain a pressure up to P = 5. Find the time t_0 when the pressure at the building is maximal. Will the building collapse?

8

(c) Find the parallelogram identity for the wave equation when the wave speed $c \neq 1$.

2

4. (a) Establish the Poisson's formula for the Dirichlet Problem of the Laplace equation in a disk.

5

(b) State and prove the mean value principle for the harmonic function.

5

(c) (i) What is the Laplace transform of Dirac Delta function?

(4)

(ii) Find the adjoint of the following PDE:

$$u_{xx} + 4u_{xy} + u_x = 0.$$

(iii) Define dirac delta function.

[Internal Assessment: 10 Marks]

6